Academic literature on the topic 'PDEs in fluid mechanics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'PDEs in fluid mechanics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "PDEs in fluid mechanics"

1

BREIT, D., L. DIENING, and S. SCHWARZACHER. "SOLENOIDAL LIPSCHITZ TRUNCATION FOR PARABOLIC PDEs." Mathematical Models and Methods in Applied Sciences 23, no. 14 (2013): 2671–700. http://dx.doi.org/10.1142/s0218202513500437.

Full text
Abstract:
We consider functions u ∈ L∞(L2)∩Lp(W1, p) with 1 < p < ∞ on a time–space domain. Solutions to nonlinear evolutionary PDEs typically belong to these spaces. Many applications require a Lipschitz approximation uλ of u which coincides with u on a large set. For problems arising in fluid mechanics one needs to work with solenoidal (divergence-free) functions. Thus, we construct a Lipschitz approximation, which is also solenoidal. As an application we revise the existence proof for non-stationary generalized Newtonian fluids of Diening, Ruzicka and Wolf, Existence of weak solutions for unste
APA, Harvard, Vancouver, ISO, and other styles
2

Bilige, Sudao, and Yanqing Han. "Symmetry reduction and numerical solution of a nonlinear boundary value problem in fluid mechanics." International Journal of Numerical Methods for Heat & Fluid Flow 28, no. 3 (2018): 518–31. http://dx.doi.org/10.1108/hff-08-2016-0304.

Full text
Abstract:
Purpose The purpose of this paper is to study the applications of Lie symmetry method on the boundary value problem (BVP) for nonlinear partial differential equations (PDEs) in fluid mechanics. Design/methodology/approach The authors solved a BVP for nonlinear PDEs in fluid mechanics based on the effective combination of the symmetry, homotopy perturbation and Runge–Kutta methods. Findings First, the multi-parameter symmetry of the given BVP for nonlinear PDEs is determined based on differential characteristic set algorithm. Second, BVP for nonlinear PDEs is reduced to an initial value problem
APA, Harvard, Vancouver, ISO, and other styles
3

Swapna, Y. "Applications of Partial Differential Equations in Fluid Physics." Communications on Applied Nonlinear Analysis 31, no. 1 (2024): 207–20. http://dx.doi.org/10.52783/cana.v31.396.

Full text
Abstract:
Partial differential equations, or PDEs, assume a critical part in grasping and outlining different fluid physics peculiarities. They have an expansive scope of utilizations, from expecting weather patterns to consolidating ocean streams, fire cycles, and fluid streams into system plan. These equations oversee the way of behaving of fluid amounts like as speed, stress, temperature, and consistency. They portray complex collaborations like changes in precipitation, scattering, and fluid-solid associations. Partial differential equations are utilized to apply the developing methodology. The arra
APA, Harvard, Vancouver, ISO, and other styles
4

Cao, Ruohan, Jin Su, Jinqian Feng, and Qin Guo. "PhyICNet: Physics-informed interactive learning convolutional recurrent network for spatiotemporal dynamics." Electronic Research Archive 32, no. 12 (2024): 6641–59. https://doi.org/10.3934/era.2024310.

Full text
Abstract:
<p>The numerical solution of spatiotemporal partial differential equations (PDEs) using the deep learning method has attracted considerable attention in quantum mechanics, fluid mechanics, and many other natural sciences. In this paper, we propose an interactive temporal physics-informed neural network architecture based on ConvLSTM for solving spatiotemporal PDEs, in which the information feedback mechanism in learning is introduced between the current input and the previous state of network. Numerical experiments on four kinds of classical spatiotemporal PDEs tasks show that the extend
APA, Harvard, Vancouver, ISO, and other styles
5

Boyaval, Sébastien. "A class of symmetric-hyperbolic PDEs modelling fluid and solid continua." ESAIM: Proceedings and Surveys 76 (2024): 2–19. http://dx.doi.org/10.1051/proc/202476002.

Full text
Abstract:
We generalize a new symmetric-hyperbolic system of PDEs proposed in [ESAIM:M2AN 55 (2021) 807-831] for Maxwell fluids to a class of systems that define unequivocally multi-dimensional visco-elastic flows. Precisely, within a general setting for continuum mechanics, we specify constitutive assumptions i) that ensure the unequivocal definition of motions satisfying widely-admitted physical principles, and ii) that contain [ESAIM:M2AN 55 (2021) 807-831] as one particular realization of those assumptions. The new class can capture the mechanics of various materials, from solids to viscous fluids,
APA, Harvard, Vancouver, ISO, and other styles
6

Dalir, Nemat. "Modified Decomposition Method with New Inverse Differential Operators for Solving Singular Nonlinear IVPs in First- and Second-Order PDEs Arising in Fluid Mechanics." International Journal of Mathematics and Mathematical Sciences 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/793685.

Full text
Abstract:
Singular nonlinear initial-value problems (IVPs) in first-order and second-order partial differential equations (PDEs) arising in fluid mechanics are semianalytically solved. To achieve this, the modified decomposition method (MDM) is used in conjunction with some new inverse differential operators. In other words, new inverse differential operators are developed for the MDM and used with the MDM to solve first- and second-order singular nonlinear PDEs. The results of the solutions by the MDM together with new inverse operators are compared with the existing exact analytical solutions. The com
APA, Harvard, Vancouver, ISO, and other styles
7

Moaddy, K., S. Momani, and I. Hashim. "The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics." Computers & Mathematics with Applications 61, no. 4 (2011): 1209–16. http://dx.doi.org/10.1016/j.camwa.2010.12.072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Da Prato, Giuseppe, and Vicenţiu D. Rădulescu. "Special issue on stochastic PDEs in fluid dynamics, particle physics and statistical mechanics." Journal of Mathematical Analysis and Applications 384, no. 1 (2011): 1. http://dx.doi.org/10.1016/j.jmaa.2011.06.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sharma, Nishchal. "Deep Learning for Solving Partial Differential Equations: A Review of Literature." International Journal for Research in Applied Science and Engineering Technology 12, no. 10 (2024): 588–91. http://dx.doi.org/10.22214/ijraset.2024.64623.

Full text
Abstract:
Partial Differential Equations (PDEs) are fundamental in modeling various phenomena in physics, engineering, and finance. Traditional numerical methods for solving PDEs, such as finite element and finite difference methods, often face limitations when applied to high-dimensional and complex systems. In recent years, deep learning has emerged as a promising alternative for approximating solutions to PDEs, offering potential improvements in both efficiency and scalability. This paper provides a comprehensive review of the literature on deep learning-based methods for solving PDEs, focusing on ke
APA, Harvard, Vancouver, ISO, and other styles
10

Naowarat, Surapol, Sayed Saifullah, Shabir Ahmad, and Manuel De la Sen. "Periodic, Singular and Dark Solitons of a Generalized Geophysical KdV Equation by Using the Tanh-Coth Method." Symmetry 15, no. 1 (2023): 135. http://dx.doi.org/10.3390/sym15010135.

Full text
Abstract:
KdV equations have a lot of applications of in fluid mechanics. The exact solutions of the KdV equations play a vital role in the wave dynamics of fluids. In this paper, some new exact solutions of a generalized geophysical KdV equation are computed with the aid of tanh-coth method. To implement the tanh-coth procedure, we first convert the PDEs to ODEs with the help of wave transformation. Then, using a system of algebraic equations, we obtain several soliton solutions. To verify and clearly illustrate the exact solutions, several graphic presentations are developed by giving the parameter va
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "PDEs in fluid mechanics"

1

Li, Siran. "Analysis of several non-linear PDEs in fluid mechanics and differential geometry." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:20866cbb-e5ab-4a6b-b9dc-88a247d15572.

Full text
Abstract:
In the thesis we investigate two problems on Partial Differential Equations (PDEs) in differential geometry and fluid mechanics. First, we prove the weak L<sup> p</sup> continuity of the Gauss-Codazzi-Ricci (GCR) equations, which serve as a compatibility condition for the isometric immersions of Riemannian and semi-Riemannian manifolds. Our arguments, based on the generalised compensated compactness theorems established via functional and micro-local analytic methods, are intrinsic and global. Second, we prove the vanishing viscosity limit of an incompressible fluid in three-dimensional smooth
APA, Harvard, Vancouver, ISO, and other styles
2

Bocchi, Edoardo. "Compressible-incompressible transitions in fluid mechanics : waves-structures interaction and rotating fluids." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0279/document.

Full text
Abstract:
Ce manuscrit porte sur les transitions compressible-incompressible dans les équations aux dérivées partielles de la mécanique des fluides. On s'intéresse à deux problèmes : les structures flottantes et les fluides en rotation. Dans le premier problème, l'introduction d'un objet flottant dans les vagues induit une contrainte sur le fluide et les équations gouvernant le mouvement acquièrent une structure compressible-incompressible. Dans le deuxième problème, le mouvement de fluides géophysiques compressibles est influencé par la rotation de la Terre. L'étude de la limite à rotation rapide montr
APA, Harvard, Vancouver, ISO, and other styles
3

Barker, Tobias. "Uniqueness results for viscous incompressible fluids." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:db1b3bb9-a764-406d-a186-5482827d64e8.

Full text
Abstract:
First, we provide new classes of initial data, that grant short time uniqueness of the associated weak Leray-Hopf solutions of the three dimensional Navier-Stokes equations. The main novelty here is the establishment of certain continuity properties near the initial time, for weak Leray-Hopf solutions with initial data in supercritical Besov spaces. The techniques used here build upon related ideas of Calder&oacute;n. Secondly, we prove local regularity up to the at part of the boundary, for certain classes of solutions to the Navier-Stokes equations, provided that the velocity field belongs t
APA, Harvard, Vancouver, ISO, and other styles
4

Kolumban, Jozsef. "Control issues for some fluid-solid models." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLED012/document.

Full text
Abstract:
L'analyse du comportement d'un solide ou de plusieurs solides à l'intérieur d'un fluide est un problème de longue date, que l'on peut voir décrit dans de nombreux manuels classiques d'hydrodynamique. Son étude d'un point de vue mathématique a suscité une attention croissante, en particulier au cours des 15 dernières années. Ce projet de recherche vise à mettre l'accent sur plusieurs aspects de cette analyse mathématique, en particulier sur le contrôle et les problèmes asymptotiques. Un modèle simple d'évolution fluide-solide est celui d'un seul corps rigide entouré d'un fluide incompressible p
APA, Harvard, Vancouver, ISO, and other styles
5

Helluy, Philippe. "Simulation numérique des écoulements multiphasiques: de la théorie aux applications." Habilitation à diriger des recherches, Université du Sud Toulon Var, 2005. http://tel.archives-ouvertes.fr/tel-00657839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Perrin, Charlotte. "Modèles hétérogènes en mécanique des fluides : phénomènes de congestion, écoulements granulaires et mouvement collectif." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM023/document.

Full text
Abstract:
Cette thèse est dédiée à la description et à l'analyse mathématique de phénomènes d'hétérogénéités et de congestion dans les modèles de la mécanique des fluides.On montre un lien rigoureux entre des modèles de congestion douce de type Navier-Stokes compressible qui intègrent des forces de répulsion à très courte portée entre composants élémentaires; et des modèles de congestion dure de type compressible/incompressible décrivant les transitions entre zones libres et zones congestionnées.On s'intéresse ensuite à la modélisation macroscopique de mélanges formés par des particules solides immergée
APA, Harvard, Vancouver, ISO, and other styles
7

Benjelloun, Saad. "Quelques problèmes d'écoulement multi-fluide : analyse mathématique, modélisation numérique et simulation." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2012. http://tel.archives-ouvertes.fr/tel-00764374.

Full text
Abstract:
La présente thèse comporte trois parties indépendantes. La première partie présente une preuve d'existence de solutions faibles globales pour un modèle de sprays de type Vlasov-Navier-Stokes-incompressible avec densité variable. Ce modèle est obtenu par une limite formelle à partir d'un modèle Vlasov-Navier-Stokes-incompressible avec fragmentation, où seules deux valeurs de rayons de particules sont considérées : un rayon r1 pour les particules avant fragmentation, et un rayon r2 plus petit pour les particules obtenues par fragmentation. Le modèle asymptotique est obtenu dans la limite r2 tend
APA, Harvard, Vancouver, ISO, and other styles
8

Noisette, Florent. "Interactions avec la frontière pour des équations d’évolutions non-linéaires, non-locales." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0356.

Full text
Abstract:
Ce manuscrit est découpé en deux parties et 9 chapitres. Dans la deuxième partie, j’ai mis les six résultats principaux prouvé pendant ma thèse :• Chapitre 5 : unicité des solutions d’Euler 2D avec sources et puits;• Chapitre 6 : unicité des solutions de l’équation de Camassa-Holm avec flot entrant et sortant ;• Chapitre 7 : un algorithme pour la simulation numérique de la croissance de micro-algues;• Chapitre 8 : Dérivée de forme de l’opérateur Dirichlet vers Neumann sur une variété bornée; ETcaractère bien posé d’une équation sur les protrusions céllulaires;• Chapitre 9 : régularité de l’opé
APA, Harvard, Vancouver, ISO, and other styles
9

Doyeux, Vincent. "Modelisation et simulation de systemes multi-fluides. Application aux ecoulements sanguins." Phd thesis, Université de Grenoble, 2014. http://tel.archives-ouvertes.fr/tel-00939930.

Full text
Abstract:
Dans ce travail, nous développons un cadre de calcul dédié à la simulation d'écoulements à plusieurs fluides. Nous présentons des validations et vérifications de ces méthodes sur des problèmes de capture d'interfaces et de simulations de bulles visqueuses. Nous montrons ensuite que ce cadre de calcul est adapté à la simulation d'objet rigides en écoulement. Puis, nous étendons ces méthodes à la simulation d'objets déformables simulant le comportement des globules rouges : les vésicules. Nous validons aussi ces simulations. Enfin nous appliquons les précédents modèles à des problèmes ouverts de
APA, Harvard, Vancouver, ISO, and other styles
10

Martin, Sébastien. "Modélisation et analyse mathématique de problèmes issus de la mécanique des fluides : applications à la tribologie et aux sciences du vivant." Habilitation à diriger des recherches, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00765580.

Full text
Abstract:
Ce mémoire presente une synthèse de travaux de recherche consacrés à l'analyse de problèmes mathématiques issus de la mécanique des fluides. En particulier, par le mélange de modélisation, d'analyse théorique et numérique d' équations aux dérivées partielles ainsi que de calcul scientifique, les champs applicatifs de ces travaux ont porté essentiellement sur deux grandes thématiques : la mécanique des films minces et les biosciences. Cette synthèse s'articule autour de trois chapitres : 1) la lubrification hydrodynamique, 2) les lois de conservation scalaires sur un domaine borné et 3) la modé
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "PDEs in fluid mechanics"

1

Layton, Anita T., and Sarah D. Olson. Biological fluid dynamics: Modeling, computations, and applications : AMS Special Session, Biological Fluid Dynamics : Modeling, Computations, and Applications : October 13, 2012, Tulane University, New Orleans, Louisiana. American Mathematical Society, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Spurk, Joseph H. Fluid mechanics. 2nd ed. Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Durst, Franz. Fluid Mechanics. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-71343-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Spurk, Joseph H. Fluid Mechanics. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-58277-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Boxer, G. Fluid Mechanics. Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-09805-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Spurk, Joseph H., and Nuri Aksel. Fluid Mechanics. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-30259-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Widden, Martin. Fluid Mechanics. Macmillan Education UK, 1996. http://dx.doi.org/10.1007/978-1-349-11334-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Douglas, J. F. Fluid mechanics. 3rd ed. Longman Scientific & Technical, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Brewster, Hilary D. Fluid mechanics. Oxford Book Co., 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

White, Frank M. Fluid mechanics. 7th ed. McGraw Hill, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "PDEs in fluid mechanics"

1

Mkhatshwa, Musawenkhosi, Sandile Motsa, and Precious Sibanda. "Overlapping Multi-domain Bivariate Spectral Method for Systems of Nonlinear PDEs with Fluid Mechanics Applications." In Advances in Fluid Dynamics. Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4308-1_54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ranjan, Aditya, Vijay S. Duryodhan, and Nagesh D. Patil. "On the Replication of Human Skin Texture and Hydration on a PDMS-Based Artificial Human Skin Model." In Fluid Mechanics and Fluid Power, Volume 4. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7177-0_58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bresch, Didier, and Pierre-Emmanuel Jabin. "Global Weak Solutions of PDEs for Compressible Media: A Compactness Criterion to Cover New Physical Situations." In Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52042-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ward, Michael J., and Mary-Catherine Kropinski. "Asymptotic Methods For PDE Problems In Fluid Mechanics and Related Systems With Strong Localized Perturbations In Two-Dimensional Domains." In Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances. Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-7091-0408-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Diening, Lars, Petteri Harjulehto, Peter Hästö, and Michael Růžička. "PDEs and Fluid Dynamics." In Lebesgue and Sobolev Spaces with Variable Exponents. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18363-8_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Boffi, Daniele, Frédéric Hecht, and Olivier Pironneau. "Distributed Lagrange Multiplier for Fluid-Structure Interactions." In Numerical Methods for PDEs. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94676-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Larson, Mats G., and Fredrik Bengzon. "Fluid Mechanics." In Texts in Computational Science and Engineering. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33287-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Betounes, David. "Fluid Mechanics." In Partial Differential Equations for Computational Science. Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2198-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lawson, Thomas B. "Fluid Mechanics." In Fundamentals of Aquacultural Engineering. Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-7047-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ng, Xian Wen. "Fluid Mechanics." In Engineering Problems for Undergraduate Students. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13856-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "PDEs in fluid mechanics"

1

Akhtar, Imran, Jeff Borggaard, John A. Burns, and Lizette Zietsman. "Using Functional Gains for Optimal Sensor Placement in Fluid-Structure Interaction." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-13090.

Full text
Abstract:
Functional gains are integral kernels of the standard feedback operator and are useful in control of partial differential equations (PDEs). These functional gains provide physical insight into how the control mechanism is operating. In some cases, these functional gains can provide information about the optimal placement of actuators and sensors. The study is motivated by fluid flow control and focuses on the computation of these functions. However, for practical purposes, one must be able to compute these functions for a wide variety of PDEs. For higher dimensional systems, computing these ga
APA, Harvard, Vancouver, ISO, and other styles
2

Polly, James B., and J. M. McDonough. "Application of the Poor Man’s Navier–Stokes Equations to Real-Time Control of Fluid Flow." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63564.

Full text
Abstract:
Control of fluid flow is an important, and quite underutilized process possessing significant potential benefits ranging from avoidance of separation and stall on aircraft wings and reduction of friction factors in oil and gas pipelines to mitigation of noise from wind turbines. But the Navier–Stokes (N.–S.) equations governing fluid flow consist of a system of time-dependent, multi-dimensional, non-linear partial differential equations (PDEs) which cannot be solved in real time using current, or near-term foreseeable, computing hardware. The poor man’s Navier–Stokes (PMNS) equations comprise
APA, Harvard, Vancouver, ISO, and other styles
3

Debnath, Pinku, and K. M. Pandey. "Performance Investigation on Single Phase Pulse Detonation Engine Using Computational Fluid Dynamics." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-66274.

Full text
Abstract:
Pulse detonation engines (PDEs) are new concept propulsion technologies and unsteady propulsion system that operates cyclically and typically consists of four stages, filling of fuel/air mixture, combustion, blow down and purging. Out of these four processes, combustion is the most crucial one since it produces reliable and repeatable detonation wave. Detonation is a supersonic combustion process which is essentially a shock front driven by the energy release from the reaction zone in the flow right behind it. It is based on supersonic mode of combustion and causes rapid burning of a fuel-air
APA, Harvard, Vancouver, ISO, and other styles
4

Mathur, Sanjay R., Aarti Chigullapalli, and Jayathi Y. Murthy. "A Unified Unintrusive Discrete Approach to Sensitivity Analysis and Uncertainty Propagation in Fluid Flow Simulations." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37789.

Full text
Abstract:
In recent years, there has been growing interest in making computational fluid dynamics (CFD) predictions with quantifiable uncertainty. Tangent-mode sensitivity analysis and uncertainty propagation are integral components of the uncertainty quantification process. Generalized polynomial chaos (gPC) is a viable candidate for uncertainty propagation, and involves representing the dependant variables in the governing partial differential equations (pdes) as expansions in an orthogonal polynomial basis in the random variables. Deterministic coupled non-linear pdes are derived for the coefficients
APA, Harvard, Vancouver, ISO, and other styles
5

Cui, X. "Solving Coupled Partial Differential Equations in Porous/Fractured Geomaterials." In 58th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2024. http://dx.doi.org/10.56952/arma-2024-0836.

Full text
Abstract:
ABSTRACT: Exploring efficient and robust algorithms to solve the simultaneous Partial Differential Equations (PDEs) is essential to model the prevalent multiphysics processes in deep rock engineering activities, such as the thermo-hydro-mechanical coupling in nuclear waste disposal and geothermal exploitation. In this study, the staggered and monolithic solution schemes are developed in the context of poroelastic and fractured geomaterials, and the applicability of the two solution schemes is analyzed in detail. It is found that the degree of coupling between primary variables plays a pivotal
APA, Harvard, Vancouver, ISO, and other styles
6

Fopah Lele, Armand, Fréderic Kuznik, Holger Urs Rammelberg, Thomas Schmidt, and Wolfgang K. L. Ruck. "Modeling Approach of Thermal Decomposition of Salt-Hydrates for Heat Storage Systems." In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17022.

Full text
Abstract:
Heat storage systems using reversible chemical solid-fluid reactions to store and release thermal energy operates in charging and discharging phases. During last three decades, discussions on thermal decomposition of several salt-hydrates were done (experimentally and numerically) [1,2]. A mathematical model of heat and mass transfer in fixed bed reactor for heat storage is proposed based on a set of partial differential equations (PDEs). Beside the physical phenomena, the chemical reaction is considered via the balances or conservations of mass, extent conversion and energy in the reactor. Th
APA, Harvard, Vancouver, ISO, and other styles
7

Müftü, Sinan. "Numerical Solution of the Equations Governing the Steady State of a Thin Cylindrical Web Supported by an Air Cushion." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0225.

Full text
Abstract:
Abstract The numerical method used to solve the coupled nonlinear, partial differential equations (PDEs) representing the interaction between a thin, flexible, cylindrical web and an air cushion at steady state is analyzed. The web deflections are modeled by a cylindrical shell theory that allows moderately large deflections. The airflow is modeled in two-dimensions with a modified form of the Navier-Stokes and mass balance equations that have non-linear source terms. The coupled fluid/structure system is solved numerically in a stacked iteration scheme: The fluid equations are solved using ps
APA, Harvard, Vancouver, ISO, and other styles
8

Alexanderian, Alen, William Reese, Ralph C. Smith, and Meilin Yu. "Efficient Uncertainty Quantification for Biotransport in Tumors With Uncertain Material Properties." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86216.

Full text
Abstract:
We consider modeling of single phase fluid flow in heterogeneous porous media governed by elliptic partial differential equations (PDEs) with random field coefficients. Our target application is biotransport in tumors with uncertain heterogeneous material properties. We numerically explore dimension reduction of the input parameter and model output. In the present work, the permeability field is modeled as a log-Gaussian random field, and its covariance function is specified. Uncertainties in permeability are then propagated into the pressure field through the elliptic PDE governing porous med
APA, Harvard, Vancouver, ISO, and other styles
9

Graber, Benjamin D., Athanasios P. Iliopoulos, John G. Michopoulos, John C. Steuben, Andrew J. Birnbaum, and Nicole A. Apetre. "Towards a Computational Framework for Hypervelocity-Induced Atmospheric Plasma Modeling." In ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/detc2024-143763.

Full text
Abstract:
Abstract The work presented in this paper estimates the spectral radiance emitted from plasma induced by the interaction of hypervelocity moving structural/material systems with the atmosphere. The motivation for this effort originates from the need to compute the radiative heat fluxes imparted to hypersonic vehicles to facilitate their design, control, and maintenance. In response to this need, a computational framework was established to predict the fluid dynamics fields around a hypervelocity vehicle that in turn is coupled with the plasma physics that enables the calculation of the plasma
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Guangfa, Yanglong Lu, and Dehao Liu. "Physics-Constrained Convolutional Recurrent Neural Networks for Solving Spatial-Temporal PDEs With Arbitrary Boundary Conditions." In ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/detc2024-134569.

Full text
Abstract:
Abstract The inception of physics-constrained or physics-informed machine learning represents a paradigm shift, addressing the challenges associated with data scarcity and enhancing model interpretability. This innovative approach incorporates the fundamental laws of physics as constraints, guiding the training process of machine learning models. In this work, the physics-constrained convolutional recurrent neural network is further extended for solving spatial-temporal partial differential equations with arbitrary boundary conditions. Two notable advancements are introduced: the implementatio
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "PDEs in fluid mechanics"

1

Monin, A. S., and A. M. Yaglom. Statistical Fluid Mechanics: The Mechanics of Turbulence. Defense Technical Information Center, 1999. http://dx.doi.org/10.21236/ada398728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Puterbaugh, Steven L., David Car, and S. Todd Bailie. Turbomachinery Fluid Mechanics and Control. Defense Technical Information Center, 2010. http://dx.doi.org/10.21236/ada514567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Martinez-Sanchez, Manuel. Physical Fluid Mechanics in MPD Thrusters. Defense Technical Information Center, 1987. http://dx.doi.org/10.21236/ada190309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Anderson, D. M., G. B. McFadden, and A. A. Wheeler. Diffuse-interface methods in fluid mechanics. National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.ir.6018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Car, David, and Steven L. Puterbaugh. Fluid Mechanics of Compression System Flow Control. Defense Technical Information Center, 2005. http://dx.doi.org/10.21236/ada444617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bdzil, John Bohdan. Fluid Mechanics of an Obliquely Mounted MIV Gauge. Office of Scientific and Technical Information (OSTI), 2018. http://dx.doi.org/10.2172/1429987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lipfert, F., M. Daum, G. Hendrey, and K. Lewin. Fluid mechanics and spatial performance of face arrays. Office of Scientific and Technical Information (OSTI), 1989. http://dx.doi.org/10.2172/5292902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Seume, J., G. Friedman, and T. W. Simon. Fluid mechanics experiments in oscillatory flow. Volume 1. Office of Scientific and Technical Information (OSTI), 1992. http://dx.doi.org/10.2172/10181069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Homsy, George M. Fundamental Studies of Fluid Mechanics: Stability in Porous Media. Office of Scientific and Technical Information (OSTI), 2014. http://dx.doi.org/10.2172/1120125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Keller, H. B., and P. G. Saffman. Analysis, scientific computing and fundamental studies in fluid mechanics. Office of Scientific and Technical Information (OSTI), 1991. http://dx.doi.org/10.2172/5025553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!