Dissertations / Theses on the topic 'PDMS microfluidics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'PDMS microfluidics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Gong, Xiuqing. "PDMS based microfluidic chips and their application in material synthesis /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?NSNT%202009%20GONG.
Full textLamperti, Emanuele. "PDMS based microfluidics membrane contactors for CO2 removal applications." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15261/.
Full textThorslund, Sara. "Microfluidics in Surface Modified PDMS : Towards Miniaturized Diagnostic Tools." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7270.
Full textJOTHIMUTHU, PREETHA. "Photodefinable Polydimethylsiloxane (PDMS) Thin Films." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1212181335.
Full textCartin, Charles. "DESIGN, FABRICATION, AND TESTING OF A PDMS MICROPUMP WITH MOVING MEMBRANES." VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/2742.
Full textRedington, Cecile D. "AN ANALYSIS OF ELIMINATING ELECTROOSMOTIC FLOW IN A MICROFLUIDIC PDMS CHIP." DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/1079.
Full textBell, Laurence Livingstone. "Optically interrogated biosensors in microfluidics." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610215.
Full textNARASIMHAN, JAGANNATHAN. "POLYMER EMBOSSING TOOLS FOR RAPID PROTOTYPING OF PLASTIC MICROFLUIDIC DEVICES." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1061298554.
Full textSamel, Björn. "Novel Microfluidic Devices Based on a Thermally Responsive PDMS Composite." Doctoral thesis, KTH, Mikrosystemteknik, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4470.
Full textQC 20100817
Graham, Brennan P. "Application of Argon Plasma Technology to Hydrophobic and Hydrophilic Microdroplet Generation in PDMS Microfluidic Devices." DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1728.
Full textBHAGAT, ALI ASGAR SALEEM. "DESIGN AND CHARACTERIZATION OF PLANAR LOW REYNOLDS NUMBER MICROFLUIDIC MIXERS FOR LAB-ON-A-CHIP APPLICATIONS." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1154956875.
Full textTsai, Long-Fang. "Microfluidic Devices and Biosensors." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/5821.
Full textMier, Alexandro Castellanos. "Poly(N-Isopropylacrylamide) based BioMEMS/NEMS for cell manipulation." [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001814.
Full textDiBartolomeo, Franklin. "HIGH SPEED CONTINUOUS THERMAL CURING MICROFABRICATION SYSTEM." UKnowledge, 2011. http://uknowledge.uky.edu/gradschool_theses/105.
Full textHansson, Jonas. "Microfluidic blood sample preparation for rapid sepsis diagnostics." Licentiate thesis, KTH, Cellens fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-96313.
Full textQC 20120611
Grove, Fraser Traves Smith. "Impedance Sensing of N2A and Astrocytes as Grounds for a Central Nervous System Cancer Diagnostic Device." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/782.
Full textAristizábal, Sergio Lopera. "Desenvolvimento de sistemas Lab-on-a-Chip para análises em biofísica celular." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/3/3140/tde-10052012-113950/.
Full textThe objective of this study is the development of a methodology for the fabrication of Lab On Chip systems, useful for the analysis of cellular processes, through the adaptation of technologies from microelectronics. All the steps involved with the fabrication of Lab on Chip system in Poly-Di-Methil-Siloxane (PDMS) were explored, developing protocols for mold fabrication, molding techniques and processes for oxygen plasma activation of PDMS for its bonding to different materials, achieving irreversible bonds that enable the integration with other technologies such as silicon microelectronics and green tape packaging. All this techniques constitute a methodology that allows the prototyping of multilayer microfluidic devices comparable with state of the art devices. It was developed the prototype of optical equipment for projection lithography capable of mask fabrication with 5 m resolution, and which offers also the capability of gray scale lithography for the generation of free form microchannels. Additionally three different problems in cellular biophysics where boarded, proposing new devices for the separation of motile cells according to their linear speeds in liquids, new devices for constrained bacterial growth and for curvature manipulation of cell membranes.
Pussadee, Nirut. "Poly(dimethylsiloxane) Based Micro- and Nanofluidic Device Fabrication for Electrophoresis Applications." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1268179904.
Full textBodin, Noémi. "Formation d'émulsions multiples stables, stimulables et biocompatibles; application à l'encapsulation et au relargage contrôlé de principes actifs." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX060/document.
Full textIn this work, we studied different kinds of emulsions stabilized by biocompatible diblock copolymers polydimethylsiloxane-b-poly(dimethylaminoethyle methacrylate) (PDMS-b-PDMAEMA). PDMAEMA is sensitive to pH and ionic strength thanks to the amine groups carried by the chain. Varying the latter parameters, we obtained direct, inverse and W/O/W double emulsions in only one emulsification step, by shearing an aqueous phase and a biocompatible oil (Miglyol® 812 or isopropyle myristate). For a copolymer having hydrophilic and hydrophobic blocks of similar lengths, PDMS60-b-PDMAEMA50, very stable multiple emulsions (more than two years) were obtained, for pH close to pKa of PDMAMEA and in a large range of salt concentrations. Cytotoxicity measurements were performed on intestinal human cells, proving the possibility of using the emulsions stabilized with these copolymers to develop applications for health care.pH lowering allows to turn direct emulsions to multiple ones, leading to the controlled release of encapsulated species in the inner water drops. Encapsulation tests have been carried out with a model molecule, sucrose, and with an antioxidant extracted from green tea, catechin. Both molecules could be released from our emulsions by reducing the pH, despite the formation of hydrogen bonds between the encapsulated compounds and the copolymer which prevented complete deliverance. We demonstrated the ability of our multiple emulsions to protect the fragile catechin molecule during storage and preserve its antioxidant capacity.Additionally, we achieved the formation of PDMS-b-PDMAEMA stabilized emulsions by microfluidics. An innovative method was developed to allow the formation of double emulsions on PDMS microchips in an easy way. W/O/W emulsions were obtained for precise pH and salt concentrations, and catechin could also be successfully encapsulated in the internal water droplets by this method
Jo, Myeong Chan. "An Acoustic-based Microfluidic Platform for Active Separation and Mixing." Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4697.
Full textKlepáčová, Ivana. "Detekce biomarkerů pomocí elektrochemických metod mikrofluidickým čipem." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-317012.
Full textCottet, Jonathan. "Development of microsystems for the controlled formation of cell aggregates by dielectrophoresis." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEC033/document.
Full textCell aggregates are an intermediary model between single cells and cell tissues used in many applications such as tissue engineering and in vitro drug screening. The creation of cells aggregates of controlled size and properties requires the development of new bottom-up strategies. The work developed in this manuscript aims at presenting the development of microsystems for the electric force-driven controlled formation of cell aggregates under flow conditions. This approach is based on dielectrophoresis, a phenomenon that causes induced motion on dielectric particles placed in a non-uniform electric field. A computational tool, MyDEP, was first developed in order to predict the behavior of cells in a specific medium. It allows to study the dielectric response of particles and cells as a function of frequency. The software also includes a database gathering cell dielectric models available in the literature to help experienced users as well as neophytes to understand the dielectrophoretic behavior of particles and cells and to choose parameters such as electric conductivity of the medium and frequency before performing laboratory experiments. Different designs for cell trapping are proposed and simulated in 2D with FEM using COMSOL Multiphysics. Their fabrication implied the development of a reproducible method for μm precision alignment of microchannels in a polymer called polydimethylsiloxane (PDMS) with coplanar titanium/platinum electrodes deposited on glass, using a conventional mask aligner. It is based on the use of a silicon mold in combination with a Poly(methyl methacrylate) (PMMA) sarcophagus for precise control of the parallelism between top and bottom surfaces of molded PDMS. The trapping design based on coplanar electrodes was successfully tested experimentally on human embryonic kidney cells (HEK) with an automated setup. It proves its capability to create aggregates of a controlled number of cells with DEP. The cell aggregates proved to be stable (no disruption) after only 5 minutes of cell-cell contact. An impedance-based sensor design was proposed for characterizing single cells and cells aggregates before and after the trapping chamber. This sensor was successfully tested experimentally to detect particle passage in combination with the dielectrophoretic trapping design
Liu, Miao. "A CUSTOMER PROGRAMMABLE MICROFLUIDIC SYSTEM." Doctoral diss., University of Central Florida, 2008. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2330.
Full textPh.D.
Department of Mechanical, Materials and Aerospace Engineering
Engineering and Computer Science
Mechanical Engineering PhD
Marchington, Robert F. "Applications of microfluidic chips in optical manipulation & photoporation." Thesis, University of St Andrews, 2010. http://hdl.handle.net/10023/1633.
Full textGonzález, Domenzain Walter. "Design and fabrication of microfluidic systems in PDMS." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612009.
Full textStanton, John W. "DESIGN AND FABRICATION OF A MICROFLUIDIC ELECTROCHEMICAL PH-STAT." Cleveland, Ohio : Case Western Reserve University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1270498159.
Full textDepartment of EECS - Electrical Engineering Title from PDF (viewed on 2010-05-25) Includes abstract Includes bibliographical references and appendices Available online via the OhioLINK ETD Center
Samel, Björn. "Novel microfluidic devices based on a thermally responsive PDMS composite /." Stockholm : Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4470.
Full textHum, Philip W. (Philip Wing-Jung). "Exploration of large scale manufacturing of polydimethylsiloxane (PDMS) microfluidic devices." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/36748.
Full textIncludes bibliographical references (leaves 54-56).
Discussion of the current manufacturing process of polydimethylsiloxane (PDMS) parts and the emergence of PDMS use in biomedical microfluidic devices addresses the need to develop large scale manufacturing processes for the fabrication of said devices. Casting PDMS parts is found to be the best mass production process after evaluating several different production methods. Automation of the manufacturing process is introduced as a solution to the need for mass production. Changing variables within the production process and its effects are also discussed with the recommendation being made for using low viscosity pre-cured PDMS, high temperature curing and high vacuum degassing techniques to produce high quality parts at high production rates. The further development of producing two-sided PDMS parts is recommended by investigating the usage of a non-closed aspect limited casting process.
by Philip W. Hum.
S.B.
Hu, Jenny (Jenny Ezu). "Characterization and optimization of PDMS microfluidic devices for rapid DNA hybridization." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32936.
Full textIncludes bibliographical references (p. 51-53).
Two elastomeric microfluidic devices were designed for the purpose of conducting rapid, flow-based, multiplexed DNA hybridization. Experimental results showed that flowing hybridization assays could detect similar concentrations of labeled probe as standard stationary microarrays, but in 1/100h of the time, using 2% of the sample volume. An 8-channel device was used to spot glass slides with 64 hybridization assays and generate data supporting a theoretical model of DNA hybridization in both traditional stationary microarrays and flowing sample arrays. Larger devices were also used to create rrays of 96x96 spots on a single slide, demonstrating the scalability of the technology. Protocols were written and optimized for the use of both chips, allowing the technology to be distributed to collaborating labs for further development.
by Jenny Hu.
S.B.
Lobo, Júnior Eulício de Oliveira. "Plataformas alternativas para sistemas eletroforéticos integrados com detecção condutométrica sem contato." Universidade Federal de Goiás, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/6332.
Full textApproved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-10-03T14:18:22Z (GMT) No. of bitstreams: 2 Dissertação - Eunício de Oliveira Lobo Junior - 2016.pdf: 5628245 bytes, checksum: cb5cfdfdb21a0a9bed0292decf6c094f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2016-10-03T14:18:22Z (GMT). No. of bitstreams: 2 Dissertação - Eunício de Oliveira Lobo Junior - 2016.pdf: 5628245 bytes, checksum: cb5cfdfdb21a0a9bed0292decf6c094f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-03-10
Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq
This report describes the development of two alternative platforms for electrophoretic runs in microsystems. Firstly, the development of a hybrid capillary system that dispenses microfabrication steps is presented using fused silica capillaries interconnected by a commercial crossed shape interface. This hybrid system was coupled with contactless conductivity detector (C4D) to allow the determination of inorganic cations in biological samples. Electrokinetic sample injection was performed through gated mode approach for the first time in this arrangement. Operational parameters such as: (i) wave frequency and amplitude applied in C4D system, (ii) electrical potential applied in injection, (iii) injection time, (iv) detection point, (v) effect of capillary conditioning as well as and (vi) recovery percentage were extensively investigated and optimized. Better separations of cationic mixture containing NH4+, K+, Na+, Ca2+ and Mg2+ were achieved using a buffer system composed of 50 mM Lactic Acid, 20 mM Histidine and 3 mM 18-crown-6 on a capillary with effective length of 14.5 cm. . Addition of internal standard was used to ensure analytical reproducibility and allow the recording of merit figures. Linear behaviors were observed in concentration ranges between 10 and 100 M for NH4+, K+, Ca2+ e Mg2+, and 20-200 M for Na+. The limit of detection values calculated were 3.75 μM (NH4+), 3.70 μM (K+), 7.50 μM (Na+), 5.00 μM (Ca2+) and 5.35 μM (Mg2+). The concentration levels achieved for cations in biological samples ranged from 4,1 μM to 200 μM. Besides the hybrid system, this report also describes the development of an alternative methodology for the fabrication of high-relief masters for soft-lithography in poly(dimethylsiloxane) (PDMS) substrate. One of the innovative features makes reference to the use of low cost commercial photoresist from textile industry - poly(vinyl acetate) (PVAc) - which exhibits low toxicity. PVAc films were deposited on printed cirtuitry boards through the use of a homemade spincoater developed by desktop cooler, with rotation time control. This methodology allowed the production of high relief masters and PDMS channels with width and depth of 50 μm and 40 μm, respectively. Channels and masters profiles They were characterized with the following techniques: scan electron microscopy, perfilometry, optical and electrical. PDMS electrophoresis devices were successfully used for the separation of major inorganic cations.
Esta dissertação descreve o desenvolvimento de duas plataformas alternativas para a realização de eletroforese em microssistemas. Inicialmente é descrita um sistema eletroforético híbrido que dispensa etapas de microfabricação utilizando capilares de sílica fundida, conectados por uma interface comercial com formato em cruz. Este sistema capilar híbrido foi acoplado com detecção condutométrica sem contato (C4D) e aplicado na determinação de cátions inorgânicos (NH4+, K+, Na+, Ca2+, Mg2+) em amostras biológicas. A injeção de amostras foi realizada eletrocineticamente no modo gated, sendo o primeiro estudo em capilares utilizando esta modalidade de injeção. Foram avaliados os parâmetros operacionais de funcionamento do sistema incluindo (i) frequência e amplitude da onda senoidal aplicada ao sistema de detecção, (ii) potencial elétrico aplicado na injeção, (iii) tempo de injeção, (iv) composição do tampão, (v) ponto de detecção, (vi) efeito do condicionamento do capilar e (vii) recuperação. As melhores separações para uma mistura contendo os cátions inorgânicos foram obtidas usando-se um sistema tamponante composto de ácido lático 50 mM, histidina 20 mM e éter coroa (18-crown-6) 3 mM em um capilar com comprimento efetivo de 14,5 cm. As figuras de mérito analítico foram obtidas a partir da adição do íon Li+ como padrão interno, o qual assegurou confiabilidade nas análises quantitativas. A partir da otimização dos parâmetros analíticos, as curvas analíticas para os íons NH4+, K+, Ca2+ e Mg2+ exibiram comportamento linear (R2>0,99) na faixa de 10-100 M enquanto a curva analítica para o íon Na+ proporcionou resposta linear na faixa de 20-200 M. Os limites de detecção encontrados para os cinco cátions foram entre 3,75 μM (NH4+), 3,75 μM (K+), 7,50 μM (Na+), 5,00 μM (Ca2+) e 5,35 μM (Mg2+). O sistema desenvolvido foi explorado para a determinação dos cátions inorgânicos em amostras de urina, saliva e lágrimas. As concentrações encontradas nas amostras biológicas variaram de 4,1 μM a 200 μM. Além do sistema híbrido, a dissertação também apresenta uma metodologia de baixo custo para produção de moldes em alto relevo para litografia suave em poli(dimetilsiloxano) (PDMS). A principal inovação é o uso de fotoresiste de baixo custo, que se trata de uma emulsão fotossensível de poli(acetato de vinila) (PVAc) utilizada na indústria têxtil e que apresenta baixa toxicidade. Outra inovação é o controle da altura dos moldes utilizando um spincoater de produção própria, com controle de tempo de rotação. Com esta metodologia foram produzidos moldes em alto relevo, e microchips em PDMS com 50 μm de largura e 40 μm de altura. Foram realizadas separações eletroforéticas dos cátions NH4+,K+,Na+,Ca2+,Mg2+e Li+. As eficiências de separação variaram entre 73.000 e 120.000 pratos/m. O que comprova que a metodologia alternativa apresenta aplicabilidade microfluídica
Ness, Stanley J. "Functionalization of In-plane Photonic Microcantilever Arrays for Biosensing Applications." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3281.
Full textCarroll, Andrew W. "Photodefinable and Conductive Polydimethylsiloxane (PDMS) for Low-Cost Prototyping of Microfluidic Systems." University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1250719648.
Full textForster, Simon. "Surface modification of PDMS-based microfluidic devices through plasma polymerisation : production and application." Thesis, University of Sheffield, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531221.
Full textWong, Eehern J. "Modeling and control of rapid cure in polydimethylsiloxane (PDMS) for microfluidic device applications." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61615.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 147-151).
Polydimethylsiloxane (PDMS) is an important thermosetting elastomer for microfluidic devices because it can replicate nano-scale features and form flexible membranes useful for microactuation. PDMS is used extensively in research environments because it is readily available and biocompatible. However, the prototyping process is too slow for volume manufacturing. The dominant rate limiting step is curing, and high temperature cures used to speed the curing process have adverse effects on the shape of the parts produced. This thesis examines the PDMS cure process and presents a methodology to intelligently design faster cure processes without compromising the quality of parts produced. The first part of this thesis applies statistical mechanics to relate the time evolution of cure with the modulus of elasticity. This enables mechanical testing strategies to be used in situ to monitor the extent of cure, which is important to determine the critical gel point and quantify when the cure process is complete. The gel point describes when PDMS first transitions from a liquid to a solid, and is important for modeling shrinkage and warpage. A novel heated microindentation setup is designed to monitor curing of thin PDMS films, and experimentally validate the theory. The second part of this thesis presents a model for final PDMS shrinkage and warpage using the gel point. Gelation is spatially and temporally distributed, and temperature at the gel point has a direct impact on the shrinkage and warpage observed. The model is validated with experimental data. Since gel temperature is the only parameter to affect shrinkage and curvature, the cure process is accelerated after the gel point without affecting dimensional quality. Increasing the process temperature immediately following gelation is indeed shown to decrease the current cure process time by a factor of five, while maintaining comparable quality. Tolerances on shrinkage and curvature can be used with these models to determine the gel temperatures required, and design multi-temperature processes that speed the cure process.
by Eehern J. Wong.
Ph.D.
Santos, Diógenes Meneses dos. "Microssistemas eletroforéticos em materiais poliméricos de duplo canal com detecção amperométrica." Universidade Federal de Alagoas, 2014. http://www.repositorio.ufal.br/handle/riufal/1919.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
Os microssistemas eletroforéticos (MSE) são ferramentas poderosas para a separação de espécies em microssistemas de análises, onde pode ser facilmente combinada com detecção eletroquímica (DEQ) e tornando-se, portanto, um método de detecção ideal. No entanto, a influência da alta tensão no eletrodo de trabalho utilizada para a separação é um problema a ser contornado devido o aumento da relação sinal/ruído e possíveis danificações do eletrodo e/ou do potenciostato. Assim, foi proposto nesta tese um MSE híbrido de PDMS/vidro com configuração de duplo-canal acoplado a um potenciostato eletricamente isolado com objetivo de minimizar a influência do elevado potencial no canal de separação e melhorar a eficiência de separação das espécies e, subsequentemente, melhorar os limites de detecção. O MSE contém dois canais paralelos separados 200 μm, sendo um canal de separação e outro de referência, e cada um deles contendo um eletrodo de platina de 15 ou 50 μm colocados cerca de 1 a 4 μm dentro do canal. Um eletrodo serviu como eletrodo de trabalho, posicionado no canal de separação, e o outro eletrodo como eletrodo de referência, posicionado no canal de referência. Essa configuração associado ao potenciostato eletricamente isolado permitiu que os sinais amperométricos fossem medidos sem qualquer mudança de potencial ou de interferência oriunda da alta tensão de separação aplicada. Objetivando avaliar a eficiência da metodologia proposta nessa tese, amostras de nitrito e peroxinitrito (espécies reativas de nitrogênio – ERN), tirosina, peróxido de hidrogênio (espécie reativa de oxigênio – ERO), ácido ascórbico, glutationa e cisteína foram injetadas no canal contendo o eletrodo de trabalho, enquanto que simultaneamente o tampão de ácido bórico contendo TTAB pH 11 foi injetado no canal de referência contendo o eletrodo de referência. A partir desta configuração, obteve-se uma significativa diminuição no nível de ruído (cerca de 0,94 pA) e uma relativa melhora na resolução ratificadas pelos eletroferogramas, se comparado com a configuração que utiliza canal único. Os limites de detecção (LOD) para as espécies químicas supracitados foram de 0,58 μM, 0,14 μM, 0,75 μM, 0,21 μM, 0,82 μM, não foi obtida para a cisteína, e 1,63 μM, respectivamente. A eficiência também pode ser vista através das análises de nitrito realizadas em amostras de perfusato de sangue de ovelhas e ratos, onde foram detectados uma concentração de 68,05 μM e 22,04 μM, respectivamente, através da metodologia proposta. Foi proposto também nessa tese, a microfabricação e avaliação de um microssistema eletroforético de PMMA com configuração de canal único acoplado a uma base feita do mesmo material para fixar o microchip, com detecção eletroquímica usando eletrodo de pasta de carbono. O objetivo da construção da base foi obter, através da fixação, reprodutibilidade de eventos. E a microfabricação do MSE de PMMA objetivou a viabilidade do seu uso em análises tendo como perspectiva o baixo custo por unidade confeccionada devido ao uso de laser de CO2 para a microfabricação, o qual possui um valor agregado consideravelmente menor, se comparado com os processos fotolitográficos. A avaliação desse sistema foi feita através das análises de padrões de serotonina e acetaminofeno, onde comprovou-se que a microfabricação desse sistema apresentou boa reprodutibilidade e repetitividade de eventos, tornando-se viável o seu processamento.
Nordh, Nicki. "Development of a cell cultureplatform in PDMS : Microfluidic systems for in vitro productionof platelets." Thesis, Uppsala universitet, Mikrosystemteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-261711.
Full textPadilla, Scott T. "Novel Transducer Calibration and Simulation Verification of Polydimethylsiloxane (PDMS) Channels on Acoustic Microfluidic Devices." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/6922.
Full textTo, Josiah. "Developing a novel heterogeneous three electrode system for a PDMS-based microfluidic electrochemical sensor." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/56174.
Full textApplied Science, Faculty of
Graduate
Azizi, Farouk. "Microfluidic Chemical Signal Generation." Cleveland, Ohio : Case Western Reserve University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1244664596.
Full textTitle from PDF (viewed on 2009-11-23) Department of Electrical Engineering Includes abstract Includes bibliographical references and appendices Available online via the OhioLINK ETD Center
Herrera, Cristhiano da Costa. "Desenvolvimento e controle de circuitos microfluídicos." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/85/85134/tde-29012019-084425/.
Full textThe first stage of the project was to perform tests for controlled and optimized machining of borosilicate optical glass (BK7) by femtosecond laser. Parameters such as energy, number of overlapped pulses, and the focal position variation were investigated for a better extraction of material. Microchannels, microvalves, micropumps, mixers, reactors, heaters and other components were developed to compose applied microfluidic systems. Microchannels built on the surface of BK7 glass sealed by a polydimethylsiloxane (PDMS) sheet form the basis of the microfluidic circuits. The reagents flow control is done by pneumatic mini-valves controlled by an Arduino microcontroller through a Labview platform. This work shows the components developed and two microfluidic systems created. The first contains a microfluidic circuit capable of replicating enzyme-linked immunosorbent assays (ELISA) with a much lower cost of materials. The second has a microfluidic circuit for the production of NaYF4 fluorescent nanocrystals specially used as markers in images of biologic systems.
Cao, Hong Ha. "The fabrication process of microfluidic devices integrating microcoils for trapping magnetic nano particles for biological applications." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112150/document.
Full textIn this study, a concept of microfluidic chip with embedded planar coils is designed and fabricated for the aim of trapping effectively functionalized magnetic nanobeads and immobilizing antibody (IgG type). The planar coils as a heart of microfluidic chip is designed with criterion parameters which are optimized from simulation parameters of the maximum magnetic field, low power consumption and high power efficiency by FE method. The characterization of microcoils such as effectively nanobeads (300 nm) at low temperature (<37oC) is performed and confirmed. The channel network in PDMS material is designed for matching with entire process (including mixing and trapping beads) in microfluidic chip. A process of PDMS’s surface modification is also carried out in the assemble step of chip in order to limit the non-specific adsorption of many bio substances on PDMS surface. The microfluidic chip assemble is performed by using some developed techniques of reversible packaging PDMS microfluidic chip (such as stamping technique, using non-adhesive layer, oxygen plasma combining with solvent treatment). These packaging methods are important to reused microchip (specially the bottom substrate) in many times. The immobilization of antibody IgG-type is performed inside microfluidic chip following the standard protocol of bead-based ELISA in micro test tube. The result showed that IgG antibodies are well grafted on the surface of carboxyl-beads (comparing to result of standard protocol); these grafted antibodies are confirmed by coupling them with labeled second antibody (Fab-FITC conjugation)
Abram, Timothy J. "A PDMS Sample Pretreatment Device for the Optimization of Electrokinetic Manipulations of Blood Serum." DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/172.
Full textViberg, Pernilla. "Development of non-adherent single cell culturing and analysis techniques on microfluidic devices." Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1441.
Full textQin, Yubo. "Developing a Poly(Dimethylsiloxane) (PDMS)/SU-8 (Negative Photoresist) Hybrid Microfluidic System for Sensitive Detection of Circulating Tumour Cells." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37892.
Full textSlavík, Jan. "Analytické metody na mikrofluidním čipu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-220229.
Full textRiordon, Jason A. "Developing Microfluidic Volume Sensors for Cell Sorting and Cell Growth Monitoring." Thèse, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/30955.
Full textTiller, Ben. "Surface acoustic wave streaming in a PDMS microfluidic system : effect of frequency and fluid geometry, &, A remote ultrasonic glucose sensor." Thesis, University of Glasgow, 2016. http://theses.gla.ac.uk/7670/.
Full textJeong, Seung Hee. "Soft Intelligence : Liquids Matter in Compliant Microsystems." Doctoral thesis, Uppsala universitet, Mikrosystemteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-281281.
Full textEpshteyn, Alla. "Design and Fabrication of a Membrane Integrated Microfluidic Cell Culture Device Suitable for High-Resolution Imaging." Scholar Commons, 2010. http://scholarcommons.usf.edu/etd/3517.
Full textVargová, Alžběta. "Pokročilé membránové systémy." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2017. http://www.nusl.cz/ntk/nusl-316229.
Full text