Journal articles on the topic 'PDMS microfluidics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'PDMS microfluidics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
You, Jae Bem, Byungjin Lee, Yunho Choi, Chang-Soo Lee, Matthias Peter, Sung Gap Im, and Sung Sik Lee. "Nanoadhesive layer to prevent protein absorption in a poly(dimethylsiloxane) microfluidic device." BioTechniques 69, no. 1 (July 2020): 46–51. http://dx.doi.org/10.2144/btn-2020-0025.
Full textHashemzadeh, Hadi, Abdollah Allahverdi, Mosslim Sedghi, Zahra Vaezi, Tahereh Tohidi Moghadam, Mario Rothbauer, Michael Bernhard Fischer, Peter Ertl, and Hossein Naderi-Manesh. "PDMS Nano-Modified Scaffolds for Improvement of Stem Cells Proliferation and Differentiation in Microfluidic Platform." Nanomaterials 10, no. 4 (April 2, 2020): 668. http://dx.doi.org/10.3390/nano10040668.
Full textChen, Pin-Chuan, Chung-Ying Lee, and Lynh Duong. "Microfabrication of Nonplanar Polymeric Microfluidics." Micromachines 9, no. 10 (September 25, 2018): 491. http://dx.doi.org/10.3390/mi9100491.
Full textChen, Pin Chuan, and Zhi Ping Wang. "A Rapid and Low Cost Manufacturing for Polymeric Microfluidic Devices." Advanced Materials Research 579 (October 2012): 348–56. http://dx.doi.org/10.4028/www.scientific.net/amr.579.348.
Full textLunelli, Lorenzo, Federica Barbaresco, Giorgio Scordo, Cristina Potrich, Lia Vanzetti, Simone Luigi Marasso, Matteo Cocuzza, Candido Fabrizio Pirri, and Cecilia Pederzolli. "PDMS-Based Microdevices for the Capture of MicroRNA Biomarkers." Applied Sciences 10, no. 11 (June 2, 2020): 3867. http://dx.doi.org/10.3390/app10113867.
Full textBaczyński, Szymon, Piotr Sobotka, Kasper Marchlewicz, Artur Dybko, and Katarzyna Rutkowska. "Low-cost, widespread and reproducible mold fabrication technique for PDMS-based microfluidic photonic systems." Photonics Letters of Poland 12, no. 1 (March 31, 2020): 22. http://dx.doi.org/10.4302/plp.v12i1.981.
Full textRaj M, Kiran, and Suman Chakraborty. "PDMS microfluidics: A mini review." Journal of Applied Polymer Science 137, no. 27 (January 17, 2020): 48958. http://dx.doi.org/10.1002/app.48958.
Full textYuan, Yapeng, Yaxiaer Yalikun, Nobutoshi Ota, and Yo Tanaka. "Property Investigation of Replaceable PDMS Membrane as an Actuator in Microfluidic Device." Actuators 7, no. 4 (September 28, 2018): 68. http://dx.doi.org/10.3390/act7040068.
Full textTorino, Stefania, Brunella Corrado, Mario Iodice, and Giuseppe Coppola. "PDMS-Based Microfluidic Devices for Cell Culture." Inventions 3, no. 3 (September 6, 2018): 65. http://dx.doi.org/10.3390/inventions3030065.
Full textDavic, Andrew, and Michael Cascio. "Development of a Microfluidic Platform for Trace Lipid Analysis." Metabolites 11, no. 3 (February 24, 2021): 130. http://dx.doi.org/10.3390/metabo11030130.
Full textDodge, Arash, Edouard Brunet, Suelin Chen, Jacques Goulpeau, Val?rie Labas, Joelle Vinh, and Patrick Tabeling. "PDMS-based microfluidics for proteomic analysis." Analyst 131, no. 10 (2006): 1122. http://dx.doi.org/10.1039/b606394b.
Full textTropmann, Artur, Laurent Tanguy, Peter Koltay, Roland Zengerle, and Lutz Riegger. "Completely Superhydrophobic PDMS Surfaces for Microfluidics." Langmuir 28, no. 22 (May 21, 2012): 8292–95. http://dx.doi.org/10.1021/la301283m.
Full textMalecha, Karol. "The utilization of LTCC-PDMS bonding technology for microfluidic system applications – a simple fluorescent sensor." Microelectronics International 33, no. 3 (August 1, 2016): 141–48. http://dx.doi.org/10.1108/mi-03-2016-0027.
Full textChiu, Yi-Lung, Ruchi Ashok Kumar Yadav, Hong-Yuan Huang, Yi-Wen Wang, and Da-Jeng Yao. "Unveiling the Potential of Droplet Generation, Sorting, Expansion, and Restoration in Microfluidic Biochips." Micromachines 10, no. 11 (November 6, 2019): 756. http://dx.doi.org/10.3390/mi10110756.
Full textŠustková, Alena, Klára Konderlová, Ester Drastíková, Stefan Sützl, Lenka Hárendarčíková, and Jan Petr. "Rapid Production of PDMS Microdevices for Electrodriven Separations and Microfluidics by 3D-Printed Scaffold Removal." Separations 8, no. 5 (May 14, 2021): 67. http://dx.doi.org/10.3390/separations8050067.
Full textSchneider, Stefan, Eduardo J. S. Brás, Oliver Schneider, Katharina Schlünder, and Peter Loskill. "Facile Patterning of Thermoplastic Elastomers and Robust Bonding to Glass and Thermoplastics for Microfluidic Cell Culture and Organ-on-Chip." Micromachines 12, no. 5 (May 18, 2021): 575. http://dx.doi.org/10.3390/mi12050575.
Full textHiltunen, Jussi, Christina Liedert, Marianne Hiltunen, Olli-Heikki Huttunen, Johanna Hiitola-Keinänen, Sanna Aikio, Mikko Harjanne, Marika Kurkinen, Leena Hakalahti, and Luke P. Lee. "Roll-to-roll fabrication of integrated PDMS–paper microfluidics for nucleic acid amplification." Lab on a Chip 18, no. 11 (2018): 1552–59. http://dx.doi.org/10.1039/c8lc00269j.
Full textMiralles, Vincent, Axel Huerre, Hannah Williams, Bastien Fournié, and Marie-Caroline Jullien. "A versatile technology for droplet-based microfluidics: thermomechanical actuation." Lab on a Chip 15, no. 9 (2015): 2133–39. http://dx.doi.org/10.1039/c5lc00110b.
Full textFolch, A., A. Ayon, O. Hurtado, M. A. Schmidt, and M. Toner. "Molding of Deep Polydimethylsiloxane Microstructures for Microfluidics and Biological Applications." Journal of Biomechanical Engineering 121, no. 1 (February 1, 1999): 28–34. http://dx.doi.org/10.1115/1.2798038.
Full textLian, Zheng, Chaohui Wei, Bin Gao, Xiaogang Yang, Yue Chan, Jing Wang, George Zheng Chen, et al. "Synergetic treatment of dye contaminated wastewater using microparticles functionalized with carbon nanotubes/titanium dioxide nanocomposites." RSC Advances 10, no. 16 (2020): 9210–25. http://dx.doi.org/10.1039/c9ra10899h.
Full textVlassov, S., S. Oras, M. Antsov, I. Sosnin, B. Polyakov, A. Shutka, M. Yu Krauchanka, and L. M. Dorogin. "Adhesion and Mechanical Properties of PDMS-Based Materials Probed with AFM: A Review." REVIEWS ON ADVANCED MATERIALS SCIENCE 56, no. 1 (May 1, 2018): 62–78. http://dx.doi.org/10.1515/rams-2018-0038.
Full textZhang, Wenhua, Shuichao Lin, Chunming Wang, Jia Hu, Cong Li, Zhixia Zhuang, Yongliang Zhou, Richard A. Mathies, and Chaoyong James Yang. "PMMA/PDMS valves and pumps for disposable microfluidics." Lab on a Chip 9, no. 21 (2009): 3088. http://dx.doi.org/10.1039/b907254c.
Full textDimov, Ivan K., Asif Riaz, Jens Ducrée, and Luke P. Lee. "Hybrid integrated PDMS microfluidics with a silica capillary." Lab on a Chip 10, no. 11 (2010): 1468. http://dx.doi.org/10.1039/b925132d.
Full textFürjes, P., E. G. Holczer, E. Tóth, K. Iván, Z. Fekete, D. Bernier, F. Dortu, and D. Giannone. "PDMS microfluidics developed for polymer based photonic biosensors." Microsystem Technologies 21, no. 3 (April 6, 2014): 581–90. http://dx.doi.org/10.1007/s00542-014-2130-y.
Full textSatpute, Surekha, Nishigandha Mone, Parijat Das, Arun Banpurkar, and Ibrahim Banat. "Lactobacillus acidophilus Derived Biosurfactant as a Biofilm Inhibitor: A Promising Investigation Using Microfluidic Approach." Applied Sciences 8, no. 9 (September 4, 2018): 1555. http://dx.doi.org/10.3390/app8091555.
Full textPaoli, Roberto, Davide Di Giuseppe, Maider Badiola-Mateos, Eugenio Martinelli, Maria Jose Lopez-Martinez, and Josep Samitier. "Rapid Manufacturing of Multilayered Microfluidic Devices for Organ on a Chip Applications." Sensors 21, no. 4 (February 16, 2021): 1382. http://dx.doi.org/10.3390/s21041382.
Full textAbidin, Ummikalsom, Majlis Burhanuddin Yeop, and Jumril Yunas. "Fabrication of UV-Curing Polyurethane Methacrylate (PUMA) Microchannel and Fluidics Interconnect for Microfluidics Applications." Applied Mechanics and Materials 819 (January 2016): 351–55. http://dx.doi.org/10.4028/www.scientific.net/amm.819.351.
Full textLe, Tu N., Van-Anh Nguyen, Giang L. Bach, Lam D. Tran, and Ha H. Cao. "Design and Fabrication of a PDMS-Based Manual Micro-Valve System for Microfluidic Applications." Advances in Polymer Technology 2020 (January 12, 2020): 1–7. http://dx.doi.org/10.1155/2020/2460212.
Full textThanh Giang, Le Thuy. "FABRICATING THE MICROFLUIDIC CHIP WITH LENGTH-AND-DIAMETER RATIO OF CHANNEL AROUND 3000." Vietnam Journal of Science and Technology 54, no. 1A (March 16, 2018): 168. http://dx.doi.org/10.15625/2525-2518/54/1a/11822.
Full textTomar, Saurabh, Charlotte Lasne, Sylvain Barraud, Thomas Ernst, and Carlotta Guiducci. "Integration of Ultra-Low Volume Pneumatic Microfluidics with a Three-Dimensional Electrode Network for On-Chip Biochemical Sensing." Micromachines 12, no. 7 (June 28, 2021): 762. http://dx.doi.org/10.3390/mi12070762.
Full textMuluneh, Melaku, and David Issadore. "A multi-scale PDMS fabrication strategy to bridge the size mismatch between integrated circuits and microfluidics." Lab Chip 14, no. 23 (2014): 4552–58. http://dx.doi.org/10.1039/c4lc00869c.
Full textFelton, Harry, Robert Hughes, and Andrea Diaz-Gaxiola. "Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds." PLOS ONE 16, no. 2 (February 3, 2021): e0245206. http://dx.doi.org/10.1371/journal.pone.0245206.
Full textNiioka, Takuma, and Yasutaka Hanada. "Surface Microfabrication of Conventional Glass Using Femtosecond Laser for Microfluidic Applications." International Journal of Automation Technology 11, no. 6 (October 31, 2017): 878–82. http://dx.doi.org/10.20965/ijat.2017.p0878.
Full textJung, Bum-Joon, Jihye Kim, Jeong-ah Kim, Hansol Jang, Sumin Seo, and Wonhee Lee. "PDMS-Parylene Hybrid, Flexible Microfluidics for Real-Time Modulation of 3D Helical Inertial Microfluidics." Micromachines 9, no. 6 (May 23, 2018): 255. http://dx.doi.org/10.3390/mi9060255.
Full textLepowsky, Eric, Reza Amin, and Savas Tasoglu. "Assessing the Reusability of 3D-Printed Photopolymer Microfluidic Chips for Urine Processing." Micromachines 9, no. 10 (October 15, 2018): 520. http://dx.doi.org/10.3390/mi9100520.
Full textBotzolakis, E. J., A. Maheshwari, H. J. Feng, A. H. Lagrange, J. H. Shaver, N. J. Kassebaum, R. Venkataraman, F. Baudenbacher, and R. L. Macdonald. "Achieving synaptically relevant pulses of neurotransmitter using PDMS microfluidics." Journal of Neuroscience Methods 177, no. 2 (March 2009): 294–302. http://dx.doi.org/10.1016/j.jneumeth.2008.10.014.
Full textNagarah, John M., and James R. Heath. "Silicon Chip Patch-clamp Electrodes Integrated With Pdms Microfluidics." Biophysical Journal 96, no. 3 (February 2009): 314a. http://dx.doi.org/10.1016/j.bpj.2008.12.1573.
Full textXu, Linfeng, Hun Lee, Deekshitha Jetta, and Kwang W. Oh. "Vacuum-driven power-free microfluidics utilizing the gas solubility or permeability of polydimethylsiloxane (PDMS)." Lab on a Chip 15, no. 20 (2015): 3962–79. http://dx.doi.org/10.1039/c5lc00716j.
Full textIm, Sung B., M. Jalal Uddin, Gyeong J. Jin, and Joon S. Shim. "A disposable on-chip microvalve and pump for programmable microfluidics." Lab on a Chip 18, no. 9 (2018): 1310–19. http://dx.doi.org/10.1039/c8lc00003d.
Full textWillems, Stan B. J., Jaccoline Zegers, Anton Bunschoten, R. Martijn Wagterveld, Fijs W. B. van Leeuwen, Aldrik H. Velders, and Vittorio Saggiomo. "COvalent monolayer patterns in Microfluidics by PLasma etching Open Technology – COMPLOT." Analyst 145, no. 5 (2020): 1629–35. http://dx.doi.org/10.1039/c9an02407g.
Full textMarkovic, Tomislav, Gertjan Maenhout, Matko Martinic, and Bart Nauwelaers. "Complementary Split-Ring Resonator for Microwave Heating of µL Volumes in Microwells in Continuous Microfluidics." Chemosensors 9, no. 7 (July 17, 2021): 184. http://dx.doi.org/10.3390/chemosensors9070184.
Full textAsif, Afia, Saed Khawaldeh, Muhammad Salman Khan, and Ahmet Tekin. "Design and simulation of microfluidic device for metabolite screening and quantitative monitoring of drug uptake in cancer cells." Journal of Electrical Bioimpedance 9, no. 1 (August 16, 2018): 10–16. http://dx.doi.org/10.2478/joeb-2018-0003.
Full textMontgomery, R. Hunter, Kelsey Phelan, Sawyer D. Stone, Francois Decuir, and Bryant C. Hollins. "Photolithography-free PDMS stamps for paper microdevice fabrication." Rapid Prototyping Journal 24, no. 2 (March 12, 2018): 361–67. http://dx.doi.org/10.1108/rpj-01-2017-0011.
Full textLee, Kevin S., and Rajeev J. Ram. "Plastic–PDMS bonding for high pressure hydrolytically stable active microfluidics." Lab on a Chip 9, no. 11 (2009): 1618. http://dx.doi.org/10.1039/b820924c.
Full textSheehy, James, Ian Hunter, Maria Eleni Moustaka, S. Ali Aghvami, Youssef Fahmy, and Seth Fraden. "Impact of PDMS-Based Microfluidics on Belousov–Zhabotinsky Chemical Oscillators." Journal of Physical Chemistry B 124, no. 51 (December 14, 2020): 11690–98. http://dx.doi.org/10.1021/acs.jpcb.0c08422.
Full textChiou, Chi-Han, and Gwo-Bin Lee. "Minimal dead-volume connectors for microfluidics using PDMS casting techniques." Journal of Micromechanics and Microengineering 14, no. 11 (August 11, 2004): 1484–90. http://dx.doi.org/10.1088/0960-1317/14/11/008.
Full textPantoja, Rigo, John M. Nagarah, Dorine M. Starace, Nicholas A. Melosh, Rikard Blunck, Francisco Bezanilla, and James R. Heath. "Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics." Biosensors and Bioelectronics 20, no. 3 (October 2004): 509–17. http://dx.doi.org/10.1016/j.bios.2004.02.020.
Full textTonin, Mario, Nicolas Descharmes, and Romuald Houdré. "Hybrid PDMS/glass microfluidics for high resolution imaging and application to sub-wavelength particle trapping." Lab on a Chip 16, no. 3 (2016): 465–70. http://dx.doi.org/10.1039/c5lc01536g.
Full textAnkireddy, Seshadri Reddy, and Jongsung Kim. "Quantum Dot-Bead-DNA Probe-Based Hybridization Fluorescence Assays on Microfluidic Chips." Journal of Nanoscience and Nanotechnology 15, no. 10 (October 1, 2015): 7918–21. http://dx.doi.org/10.1166/jnn.2015.11218.
Full textBhardwaj, Rahul, Phan Tue, Manish Biyani, and Yuzuru Takamura. "A Simple and Efficient Microfluidic System for Reverse Chemical Synthesis (5′-3′) of a Short-Chain Oligonucleotide Without Inert Atmosphere." Applied Sciences 9, no. 7 (March 31, 2019): 1357. http://dx.doi.org/10.3390/app9071357.
Full text