To see the other types of publications on this topic, follow the link: Peak shaving.

Dissertations / Theses on the topic 'Peak shaving'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 47 dissertations / theses for your research on the topic 'Peak shaving.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Cornelio, Antonio M. M. "Viability study to implement peak load shaving at UCT Medical School." Master's thesis, University of Cape Town, 2007. http://hdl.handle.net/11427/5265.

Full text
Abstract:
Includes bibliographical references (p. 189-191).
This Master thesis investigates the application of Peak Load Shaving (PLS) at University of Cape Town Medical School (UCTMS). The purpose was to decrease the monthly maximum demand (MMD) in kVA such that UCTMS monthly electricity bill is decreased. It was purposed that implementing a three-phase inverter in conjunction with a lead-acid battery at UCTMS for PLS is technical and financial viable. Five-year UCTMS MMD data history was gathered from UCT maintenance office as well as eight-month UCTMS load profile, which was gathered using the available electrical meter at Electrical Department Substation for Medical School at FalmouthRoad. Control strategies studies from previous works enabled the quickly synchronization of the three-phase inverter to a three-phase grid. It gave a good quality balanced control of the three-phase currents through the filter inductors, consequently gave a good quality control of the real and reactive power. Secondly a PLS algorithm (PLSA) was developed, which had the aim of setting a threshold point (TP) to prevent the MMD supplied to UCTMS to surpass the TP. In addition, the PLSA in conjunction with designed controllers would charge the battery at unity power factor (PF), whenever the MD is below the set TP and discharge at the same PF conversely, hence limiting the MMD at the TP. To test the purposed PLS topology, simplorer simulator was used, where two daily UCTMS load profile were simulated. The controls design and PLSA were implemented and the result showed that implementing PLS at UCTMS is technical viable. In practice, a prototype was built to show the synchronization of the three-phase inverter with three-phase grid by using a digital phase locked loop PI-based controller implemented in a DSP chip.
APA, Harvard, Vancouver, ISO, and other styles
2

Olausson, Axel, and Niclas Prahl. "Ett batterihybridfartygs driftsmöjligheter : Hur Coey Viking bör operera." Thesis, Linnéuniversitetet, Sjöfartshögskolan (SJÖ), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-103758.

Full text
Abstract:
Syftet med arbetet var att undersöka hur ett nyproducerat batterihybridfartyg av PSV-typ (plattform supply vessel) bör operera för att uppnå en så energieffektiv drift som möjligt utan att äventyra säkerhet eller redundanskrav. Att framföra ett fartyg så energieffektivt som möjligt är något som är av hög prioritet till sjöss, dels ur ett ekonomiskt perspektiv men även ur miljösynpunkt, då sjöfartsbranschen ständigt arbetar för en minskad miljöpåverkan. Även nyproducerade fartyg, byggda med modern teknik som ger goda förutsättningar för en energieffektiv drift ställer stora krav på att det tydligt framgår hur fartyget ska framföras för att nyttja fartygets fulla potential och uppnå optimal drift. För att ta fram procedurer över hur fartygen bör operera har loggade och teoretiska data från fartyget Coey Viking sammanställts, och presenteras i samråd med Viking Supply Ships. Resultatet innefattar generatorkombinationers specifika bränsleförbrukning, lågtrycks-dual-fuel-motorers generella miljöpåverkan med avseende på metanslip och fartygets loggade effektförbrukning till kaj. Resultatet visade att hög generatorlast resulterade i optimal specifik bränsleförbrukningen, att låga generatorlaster genererade stort metanslip samt att en förändrad elkraftstyrning tillsammans med fartygets energilagring möjliggör en förbättrad drift till kaj med en minskad miljöpåverkan. Arbetet öppnar upp för vidare forskning inom optimal peak-shaving-effekt, hur energilagringens storlek påverkar driftsmöjligheter och hur peak-shaving till kaj på ett stabilt sätt reglertekniskt bör styras.
The purpose of this undertaking was to investigate a new built battery-hybrid-vessel of PSV-type (platform supply vessel) and its operational ability to achieve the most energy efficient operation without jeopardizing safety or redundancy. The energy efficient operation of a vessel is of great priority in the maritime industry, not only because of economical profit but also based on environmental perspective, since the maritime industry is constantly aiming towards a decreased environmental impact. Newly built vessels containing modern technology opens up great opportunity in achieving energy efficient operation, though it sets high standard regarding correct operation of the vessel to use its full potential and achieve optimal running. To be able to present procedures regarding the vessel’s operation, logged and theoretical data from the vessel Coey Viking has been compiled and is presented in consultation with Viking Supply Ships. The results refered to different generator combination’s specific fuel consumption, the general environmental impact of low pressure dual fuel engines with respect to methane slip and the vessel’s logged power consumption in port.  The result indicated that a high generator load resulted in optimal specific fuel consumption, while low generator loads resulted in poor specific fuel consumption together with an increase in methane slip. The result also showed that the vessel’s energy storage together with a change in the PMS-system (Power Management System) would enable an improved power supply in port with shore connection. The paper raises questions to be answered in further research regarding optimal peak-shaving effect, what impact the size of the energy storage would have on operational capability and how peak shaving in port with shore connection appropriately should be regulated.
APA, Harvard, Vancouver, ISO, and other styles
3

Smith, David Matthew. "Peak shaving and alternative power : a question of economy, quality of life and quality of electricity." Thesis, Springfield, Va. : Available from National Technical Information Service, 1999. http://handle.dtic.mil/100.2/ADA367252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sundgren, Robert. "Optimization of a battery energy storage system : For utilization of peak shaving and fast frequency reserve." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-172786.

Full text
Abstract:
As Sweden switches to increasing renewable electricity production the demand on the energy grid and energy market will become higher. Since a bigger part of the electricity consumption will come from flowing energy sources the production will become less stable and harder to plan with the consumption. The inertia of the electrical system will also decrease since solar and wind power are not synchronously connected to the electrical system which will make the system more sensitive to interference. In order to keep the short-term balance so that the frequency remains at 50 𝐻𝑧, Svenska kraftnät has several reserves at their disposal. As of summer 2020, Svenska kraftnät will launch a new reserve called Fast frequency reserve (FFR) with the purpose to deal with rapid imbalances. By supplementing a wind farm with a battery energy store system (BESS), it becomes possible to even out the wind farm's intermittent electricity production by applying peak shaving and lower the grid costs for the wind farm. Because a BESS can provide power within a fraction of a second and is therefore is suitable to provide FFR. To study the profitability and determine what capacity and power a BESS needs for peak shaving and FFR with a wind farm, an optimization model was built in MATLAB to study the profitability of a BESS with multiple power and capacity combination. In addition, the cycling of the BESS and the limitation of peak shaving was also studied to get deeper knowledge about the limitations. The optimization model is using hourly generation data from a wind farm in northern Sweden. Besides the BESS optimization, a separate optimization model was built in order regulate the output power to minimize the generation cost by prolonging the service life of a wind turbine (WTG). The purpose of this optimization was to study if regulating the output power could lower the generation cost, more for the WTG. In addition of the net income the loss of electricity was also studied. The optimization used hourly data during one time period every season during of 2019. The optimization for the BESS showed that the levelized cost of storage (𝐿𝐶𝑂𝑆𝐸) is currently too high for a BESS to be used for only peak shaving with a wind farm. For a BESS to be feasible together with a wind farm the 𝐿𝐶𝑂𝑆𝐸 needs to decrease towards 𝐿𝐶𝑂𝑆𝐸<6 𝐸𝑈𝑅/𝑀𝑊ℎ, and when the BESS also supplied FFR the income increased between 1.5 – 8% depending on the power output for the BESS. The capacity was the limiting factor for the BESS when preforming peak shaving while FFR was limited by the power because of the low energy demand in FFR. Lowering the power output for a WTG resulted in an increased net income for every month between 10 – 90% although this increased income will become more apparent when the operation and maintenance cost starts to drop over a couple of year but this open up a discussion of how an owner should operate there WTG.
APA, Harvard, Vancouver, ISO, and other styles
5

Robinson, Paul E. "Analysis of Distributed Resources Potential Impacts on Electric System Efficacy." Digital WPI, 2009. https://digitalcommons.wpi.edu/etd-theses/1120.

Full text
Abstract:
"The intent of this Thesis is to study the potential of distributed resources to increase the efficacy of the electric system without decreasing the efficiency of the system. Distributed resources (DR) are technologies that provide an increase in power or a decrease in load on the distribution system. An example of DR is a storage device that uses electricity during low use periods to store energy and then converts the stored energy to power during high use periods. The energy storage being studied is for the purpose of peak shaving or the ability to shift small amounts of load to a more optimum time. In particular the concept of load curve leveling is explored. DR options are studied to determine how size, location, and storage losses impact the overall system efficacy and efficiency. This includes impacts on system losses, capacity utilization, and energy costs."
APA, Harvard, Vancouver, ISO, and other styles
6

Pinkoš, Patrik. "Rozšířené využití bateriových systémů v průmyslových objektech." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2018. http://www.nusl.cz/ntk/nusl-376909.

Full text
Abstract:
The Diploma thesis in theoretical part deals with description of possibilities of accumulations of electricity energy focusing on electrochemical accumulators. Next chapter of theory also describes possible applications of battery storages focusing on costumer. In practical part diploma thesis deals with suggestion of simulation model for battery application peak-shaving. Output of the suggestion represents two case studies based on real data of commercial building consumption. Furthermore, practical part also deals with suggestion of control logic for application peak-shaving which was used for verification of simulation model.
APA, Harvard, Vancouver, ISO, and other styles
7

He, Bo. "High-Capacity Cool Thermal Energy Storage for Peak Shaving - a Solution for Energy Challenges in the 21st century." Doctoral thesis, KTH, Chemical Engineering and Technology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3781.

Full text
Abstract:

Due to climatic change, increasing thermal loads inbuildings and rising living standards, comfort cooling inbuildings is becoming increasingly important and the demand forcomfort cooling is expanding very quickly around the world. Theincreased cooling demand results in a peak in electrical powerdemand during the hottest summer hours. This peak presents newchallenges and uncertainties to electricity utilities and theircustomers.

Cool thermal storage systems have not only the potential tobecome one of the primary solutions to the electrical powerimbalance between production and demand, but also shift coolingenergy use to off-peak periods and avoid peak demand charges.It increases the possibilities of utilizing renewable energysources and waste heat for cooling generation. In addition, acool storage can actually increase the efficiency of combinedheat and power (CHP) generation provided that heat drivencooling is coupled to CHP. Then, the cool storage may avoidpeaks in the heat demand for cooling generation, and this meansthat the CHP can operate at design conditions in most oftime.

Phase Change Materials (PCMs) used for cool storage hasobtained considerable attention, since they can be designed tomelt and freeze at a selected temperature and have shown apromising ability to reduce the size of storage systemscompared with a sensible heat storage system because they usethe latent heat of the storage medium for thermal energystorage.

The goal of this thesis is to define suitable PCM candidatesfor comfort cooling storage. The thesis work combines differentmethods to determine the thermophysical properties oftetradecane, hexadecane and their binary mixtures, anddemonstrates the potential of using these materials as PCM forcomfort cooling storage. The phase equilibrium of the binarysystem has been studied theoretically as well asexperimentally, resulting in the derivation of the phasediagram. With knowledge of the liquid-solid phase equilibriumcharacteristics and the phase diagram, an improvedunderstanding is provided for the interrelationships involvedin the phase change of the studied materials. It has beenindicated that except for the minimum-melting point mixture,all mixtures melt and freeze within a temperature range and notat a constant temperature, which is so far often assumed in PCMstorage design. In addition, the enthalpy change during thephase transition (heat of fusion) corresponds to the phasechange temperature range; thus, the storage density obtaineddepends on how large a part of the phase change temperaturerange is valid for a given application.

Differential Scanning Calorimetery (DSC) is one frequentlyused method in the development of PCMs. In this thesis, it hasbeen found that varying results are obtained depending on theDSC settings throughout the measurements. When the DSC runs ata high heating/cooling rate it will lead to erroneousinformation. Also, the correct phase transition temperaturerange cannot be obtained simply from DSC measurement. Combiningphase equilibrium considerations with DSC measurements gives areliable design method that incorporates both the heat offusion and the phase change temperature range.

The potential of PCM storage for peak shaving in differentcooling systems has been demonstrated. A Computer model hasbeen developed for rapid phase equilibrium calculation. The useof phase equilibrium data in the design of a cool storagesystem is presented as a general methodology.

Keywords:Comfort cooling, peak shaving, PCM, coolthermal storage system, DSC, phase change temperature range,the heat of fusion, phase equilibrium, phase diagram. Language:English

APA, Harvard, Vancouver, ISO, and other styles
8

MALAGA, MANOLO MIGUEL PINTO. "DEVELOPMENT OF A METHODOLOGY FOR SIZING AN ELECTRIC ENERGY SUPPLY HIBRID SYSTEM FOR PEAK SHAVING AND COMMERCIAL SECTOR." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=16719@1.

Full text
Abstract:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
Qualquer atividade em uma sociedade moderna só é possível com o uso intensivo e eficiente de uma ou mais formas de energia. Das diversas formas de energia interessam, em particular, aquelas que são processadas e colocadas à disposição dos consumidores, tais como a energia elétrica. Neste trabalho é apresentado o desenvolvimento de duas metodologias que permitem gerar curvas de Capacidade de Carga a partir de (i) dados aleatórios de perfil de consumo de energia elétrica da PUC – Rio (ii) as contas (Faturas) da concessionária local. A seguir, faz-se uma analise econômica de investimentos que possa dimensionar o número ótimo de geradores de energia elétrica necessários para diminuir o custo deste investimento, tudo isto no setor comercial e no horário de ponta. As duas metodologias se ajustam a perfis reais de consumo, nos quais não se têm acesso a todos os dados desejados. Para validar as duas metodologias, utilizaram-se dados reais de consumo de energia elétrica cada 15 minutos e durante quatro anos da PUC - Rio. A primeira metodologia mostra a geração das curvas de Capacidade de Carga fazendo uso da Função Densidade de Probabilidade, com dados de um mês qualquer. A segunda metodologia mostra como gerar a curva de Capacidade de Carga somente com as faturas fornecidas pela concessionária. Utilizou-se um programa computacional para a solução de sistemas de equações polinomiais de terceiro grau.
Any activity in modern society is only possible with intensive and efficient use of energy. Among the various forms of energy the most important are those that are processed by companies and distributed to consumers, such as electricity. This work presents the development of two methodologies that will allow us to generate load capacity curves from (i) Random data obtained from power consumption of the PUC - Rio (ii) Bills (invoices) from the local utility company. With this data we will do an economic analysis of investment performed. This analysis can help us choose the optimum number of generators of electrical energy required to reduce the cost of the electricity supplied, all within the framework of the commercial sector and at peak hours. Both methods will be validated with the real power consumption, every fifteen minutes during four years from the energy profile of the PUC - Rio. The first method shows how we can generate load capacity curves making use of a statistic function called Probability Density, using data of any month. The second method shows how one can create the load capacity curves with only the invoices obtained from the local utility company. For this second methodology the program EES (Engineering Equation Solver) was used to solve systems of polynomial equations of the third degree.
APA, Harvard, Vancouver, ISO, and other styles
9

Diko, Mpho. "An investigation into the use of the vanadium redox flow energy storage system for peak-shaving and load-leveling." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53276.

Full text
Abstract:
Thesis (MScEng)--University of Stellenbosch, 2003.
ENGLISH ABSTRACT: This thesis investigates the credibility of the vanadium redox flow energy storage system, sometimes termed vanadium redox battery (VRB). The focus is on the use of this technology in peak-shaving and load-leveling applications. The initial problem is to find a suitable mathematical model for representing the daily load profile. A sinusoidal function is identified as an elementary approximation of the first order. Due to the periodicity characteristics that are inherent in a daily load profile, the Fast Fourier Transform (FFT) algorithm is identified as a mathematical model that closely resembles a load profile. The main theme in this thesis is the determination of an optimal solution during the peak-shaving process. In this particular context, the optimal solution refers to the following: With the energy capacity of the VRB and the power rating of the entire system considered as the constraints, the interest is on (i) the constant power that the VRB can deliver in order to bring down the maximum demand quite significantly, (ii) and the time interval in which this constant power is delivered. Therefore, the VRB power delivered during peak-shaving (PVRB) and the corresponding time interval are the main two parameters under consideration in the optimization process. The mathematical algorithm that can be used to determine suitable values for these two parameters is developed. Maple" V 5.1 is used for determining the solution analytically. The obtained results are verified by simulation with Excel". The investigation into the economic benefits that may be derived from the utilization of the vanadium energy storage device is also presented.
AFRIKAANSE OPSOMMING: Hierdie tesis ondersoek die waarde en toepassing van die vadium "redox" vloei energie stoorstelsel (VRB). Die fokus is op die gebruik van hierdie tegnologie om pieklas te verminder en om laste meer egalig te maak. Die aanvanklike probleem is om 'n geskikte wiskundige model vir die daaglikse las-profiel te kry. Deur gebruik te maak van sinus-komponente en die toepassing van die Vinnige Fourier Transform (FFT) is hierdie probleem opgelos. Die hooftema van hierdie werk is om 'n analitiese oplossing te vind vir die optimale toepassing van die konsep vir pieklas vermindering. In hierdie konteks verwys die optimale oplossing na die volgende: Met die gegewe verrnoe van die VRB stelsel en drywingsvermoe van die kragelektronika is die vrae rondom (i) die konstante drywing wat die VRB kan lewer om die maksimum aanvraag van die las beduidend te verminder en (ii) die tydsduur waarin dit plaasvind. Dus is die twee veranderlikes waarvoor oplossings in die optimale proses gesoek word die drywing (PVRS) en die tyd-interval daarvan. Die wiskundige algoritme is met die hulp van Maple® V5.1 ontwikkel. Die resultate is daarna met behulp van simulasies in Excel® getoets. 'n Analise van die moontlike ekonomiese voordele is ook ondersoek.
APA, Harvard, Vancouver, ISO, and other styles
10

Skog, Nestorovic Benjamin, and Douglas Lindén. "Techno-economic analysis of Battery Energy Storage Systems and Demand Side Management for peak load shaving in Swedish industries." Thesis, KTH, Kraft- och värmeteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-277824.

Full text
Abstract:
The Swedish electrical grid has historically been robust and reliable, but with increased electrification in numerous sectors, out-phasing of nuclear power and a high market diffusion of wind power, the system is now facing challenges. The rotational energy in the system is expected to decrease as a result of higher shares of intermittent energy sources, which can affect the stability of the grid frequency negatively. To manage increased frequency drops, the new Fast Frequency Reserve (FFR) market will be implemented by June 2020 in the Nordic power system. Simultaneously, it is expected that the demand of electricity will increase significantly in the transport and industry sectors in the coming years. Several DSOs already today indicate challenges with capacity and power security and have or will implement power tariffs as an economic incentive to prevent these problems. For energy intensive customers, such as industries, it will become important to reduce power peaks to avoid high grid fees. Several peak load shaving strategies can be utilized by industries to reduce their power peaks and thus the power tariff. The aim of this study is to economically analyze peak load shaving for Swedish industries. This is done using Li-Ion BESS and DSM, and to maximize the utilization of the BESS by including energy arbitrage and FFR market participation into the analysis. Firstly, a literature review is conducted within the topics of peak load shaving strategies, energy arbitrage and ancillary services. Secondly, data is gathered in collaboration with WSP Systems – Energy, the initiators of the project, to conduct case studies on two different industries. These cases are simulated in the modeling software SAM, for technical analysis, and then economically evaluated with NPV. Also, nine scenarios are created for the emerging FFR market concerning the number of activations per year and the compensation price per activation. The results from the case studies indicate that peak load shaving of 1 – 3 % with BESS provides a positive NPV for both case industries. However, higher percentages result in negative NPVs when no additional revenue streams are included. When considering energy arbitrage, it is concluded that the additional revenues are neglectable for both industries. Participating in the FFR market provides similar trends in the results as before. The exception is valid for scenarios with high numbers of FFR activations and compensation prices, where positive NPVs for all levels of peak load shaving can be concluded. The peak load shaving strategy DSM is implemented for one of the industries, where efficiency measures are concluded to have the most impact on the economic evaluation. If all efficiency measures would be implemented, the electricity consumption would be reduced by 17 %. Additionally, the power peaks would be reduced with 18 % and result in a significantly more positive NPV than peak load shaving using BESS. A sensitivity analysis concerning BESS capital cost and power tariff price concludes that the BESS price has a strong relation to the NPV, where a BESS price reduction of 60 % results in an NPV increase of at least 100 %. BESS prices have decreased the past years and are expected to keep decreasing in the future. Hence, investments in BESS can become more profitable and attractive in the coming years. Finally, for future research, it is recommended to combine the methodology from this study together with a load forecasting method. This combined methodology could then be practically applied to case specific industries with high peak loads.
Det svenska elnätet har historiskt sett varit robust och pålitligt, men i takt med ökad elektrifiering i flera sektorer, utfasning av kärnkraft samt ökad mängd installerad vindkraft ställs nu systemet inför nya utmaningar. Bland annat förväntas rotationsenergin i systemet minska som ett resultat av högre andelar intermittenta energikällor i systemet. För att hantera detta kommer den nya Fast Frequency Reserve (FFR) marknaden finnas tillgänglig från och med juni 2020. Samtidigt förväntas även efterfrågan på el inom transport- och industrisektorn öka markant de kommande åren. Redan idag är effektbrist ett problem i vissa regioner, vilket kan komma att förvärras. Många nätägare ska eller har redan infört effekttariffer för utnyttjande av deras elnät, vilket är ett ekonomiskt incitament för att hantera effektproblematiken där kunder med en mer flexibel elkonsumtion kommer gynnas. För större elförbrukare, som exempelvis industrier, kan det bli ekonomiskt betydelsefullt att sänka sina effekttoppar och därmed undvika höga nätavgifter. För att minska effekttoppar finns ett flertal så kallade peak load shaving-strategier, som kan utnyttjas av industrier för att minska kostnaderna för effekttariffen. Syftet med denna studie är att analysera peak load shaving för svenska industrier, med hjälp av ett Li-Ion batterilagringssystem och efterfrågeflexibilitet, samt maximera utnyttjandet av batteriet genom att inkludera energiarbitrage och deltagande i FFR-marknaden i analysen. Ett första steg i arbetet är att utföra en litteraturstudie för de berörda områdena. I ett andra steg insamlas data tillsammans med WSP, initiativtagaren av projektet, för att kunna göra en fallstudie på två industrier. För dessa fallstudier undersöks de tekniska förutsättningarna för att implementera peak load shaving-strategier genom modellering i simuleringsprogrammet SAM. Sedan utreds de ekonomiska förutsättningarna för fallstudierna, där NPV används som ekonomiskt nyckeltal. Dessutom skapas nio scenarion för den kommande FFR-marknaden för att uppskatta kostnader och inkomster. Resultatet av fallstudien visar att 1 – 3 % kapade effekttoppar med batterilagring ger ett positivt NPV för båda industrierna. Över 3 % blir resultatet negativt utan ytterligare inkomstströmmar inkluderade. Energiarbitrage konstateras att bidra med marginella positiva fördelar. Vid inkludering av FFR-marknaden i analysen erhålls liknande trender i resultaten, bortsett från scenarion med relativt högt antal avrop och pris. I dessa fall blir även 4 – 10 % kapade effekttoppar ekonomiskt attraktiva. För en av industrierna utvärderas efterfrågeflexibilitet, där effektivisering av elkrävande processer har störst inflytande på resultatet. Vid implementering av samtliga effektiviseringsåtgärder skulle elkonsumtionen minska med 17 %. Dessutom minskar effekttopparna med 18 %, vilket resulterar i ett signifikant mer positivt NPV, jämfört med användningen av batterilager. En känslighetsanalys gällande batteripris och effekttariffer, konstaterade att batteripriset har en stark påverkan på NPV. Vid en batteriprisminskning på 60 % ökar NPV med minst 100 %. Därmed kan batteriinvesteringar bli mer gynnsamma och attraktiva om batteripriser fortsätter att falla, vilket flera prognoser indikerar. Slutligen rekommenderas framtida studier att kombinera metodiken från detta arbete med en prognostiseringsmetod för elanvändning i industrier. Denna kombinerade metod kan sedan praktiskt tillämpas på fallspecifika industrier med höga effekttoppar.
APA, Harvard, Vancouver, ISO, and other styles
11

Nabiallahi, Edwin, Mahmoud Alabassi, Roni Ali, Marcus Lundström, Oscar Jonsson, Johan Sjögren, and Kajsa Nordén. "Implementering av V2G i mobilitetshuset Dansmästaren : En modelleringsstudie." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447166.

Full text
Abstract:
Uppsala’s population and infrastructure is expanding at a fast rate. This results in problems with supplying sufficient electrical power during peak hours such as early mornings and late evenings. One of the many ways to solve this issue is through peak shaving by using parked electrical vehicles as batteries to discharge into the power grid (vehicle-to-grid). In this report, the possibilies for peak shaving during peak hours in a mobility house called Dansmästaren are presented, as well as the possibilities for the vehicle-to-grid technology in the future. Dansmästaren has 60 available parking slots for electric vehicles, and a large central battery available.Through simulations using MATLAB, the results show that it’s possible to achieve a considarable degree of peak shaving, while battery degradation is kept reasonably low. Conclusions regarding vehicle-to-grid in the future are that there is a large potential for Vehicle-to-grid to become an important part of tomorrow’s energy system. However, continued research and development is necessary, as well as bigger focus on the social and economic aspects of this technology. A succesful implementation will require cooperation between the grid owners, the industry and the customers.
APA, Harvard, Vancouver, ISO, and other styles
12

Pariona, Curi Marvin Alberto. "Peak shaving y su influencia en la optimización de los costos de energía en un cliente libre del sector industrial de manufactura." Bachelor's thesis, Universidad Nacional Mayor de San Marcos, 2022. https://hdl.handle.net/20.500.12672/17768.

Full text
Abstract:
Estudia la estrategia de gestión de demanda llamada “peak shaving” y determina de qué manera esta técnica influye en la optimización de los costos de energía en un cliente libre de electricidad. Por ello responde al problema principal ¿De qué manera la estrategia peak shaving influye en la optimización de los costos de energía en un cliente libre del sector industrial de manufactura?, y a las preguntas específicas ¿Qué estrategias son utilizadas para la optimización de costos de energía en un cliente libre del sector industrial de manufactura? ¿Cómo optimizar los costos de energía mediante la implementación de la estrategia peak shaving en un cliente libre del sector industrial de manufactura?. La investigación es de tipo aplicada, utilizó un enfoque cuantitativo de diseño no experimental, transversal, descriptivo y correlacional. Los resultados de la investigación concluyen en que si es posible reducir los costos de energía mediante un sistema de autogeneración.
APA, Harvard, Vancouver, ISO, and other styles
13

Abran, Eszter, Elin Andersson, and Rova Therese Nilsson. "Battery Storage for Grid Application : A case study of implementing a Lithium-ion storage system for power peak shaving and energy arbitrage." Thesis, Uppsala universitet, Institutionen för samhällsbyggnad och industriell teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-443558.

Full text
Abstract:
Large scale Lithium-ion battery energy storage systems (BESS) for stationary power grid application is a developing field among energy storage technologies. Predictions indicate an increased use of the technology which offers a solution to the challenges that the increasing share of intermittent energy sources causes on the power grid. The non-plannability of intermittent power production requires solutions to maintain a stable and reliable power grid. Further commercialization of BESSes is also seen as use increases for electric vehicles and other mobile use. A distribution grid owner, referred to as the Company, has a power subscription for power that is fed from the regional grid, where additional power peak fees are added when exceeding the subscription limit. This study investigates whether a Lithium-ion BESS can be financially beneficial for the Company by examining two power grid services. The first one is power peak shaving, and the second one is energy arbitrage. Energy arbitrage signifies that the BESS is charged during low electricity prices and discharged during high prices, thus generating profit. This is accomplished by simulating a Lithium-ion BESS in MATLAB (2019) where the studied services are combined. The results show that a Lithium-ion BESS can be used for the purpose of peak shaving and energy arbitrage, although an investment is not profitable for the Company with the current market situation. The sensitivity analysis does however indicate profitability if the current power peak fees and spot prices remain unchanged while the BESS investment cost is reduced by 50%. This decrease in BESS cost is predicted possible within the next decade as BESS demand is expected to increase. The study implies that the main factor effecting the solution to be profitable is the high investment cost.
APA, Harvard, Vancouver, ISO, and other styles
14

Arvidsson, Maria, Sara Ericson, and Alicia Söderlind. "Economic and grid potentials of implementing an energy storage system : A case study of the benefits of peak shaving if implementing an energy storage system." Thesis, Uppsala universitet, Institutionen för samhällsbyggnad och industriell teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-412116.

Full text
Abstract:
Morgongåva is an urban centre in Sweden, with several challenges in the electrical power grid. In order to use the power grid more efficiently, this report investigates potentials of installing a battery energy storage system (BESS). Focus lies on finding economic and technical benefits of reducing power peaks, which occur during high demand hours when transmitting energy is more expensive. This method is referred to as peak shaving. Further, economic calculations if installing a BESS are based on electricity pricing data. Calculations regarding technical benefits are based on net power demand data. Further, the study shows that the usage of the grid, which was measured with the load factor, would increase and thus allow installation of more power sources and connecting more load to the grid. The load factor was estimated to increase by an average of 2.12 percent each month in 2019. In one year, the economic profit was estimated to be 91,000 kr. The conclusion is that there are economic profits for Sala-Heby Energi of installing a BESS, but more importantly a BESS has technical consequences in the power grid. Where technical benefits are important in order to reach the goals of Agenda 2030 but also to obtain a more reliable grid for the customers. A sensitivity analysis shows that the model is robust. Thus, the conclusion is that Sala-Heby Energi and the local electricity grid in Morgongåva would benefit from installing a BESS.
APA, Harvard, Vancouver, ISO, and other styles
15

Ek, Ludvig, and Tim Ottosson. "Optimization of energy storage use for solar applications." Thesis, Linköpings universitet, Elektroniska Kretsar och System, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-149305.

Full text
Abstract:
Energy storage systems is very useful to use in solar panel systems to save money, but also tobe more environment-friendly. The project was given by the solar energy companyPerpetuum Automobile (PPAM) and the project is for their customer, the condominiumcompound Ekoxen. The task is to make a energy regulation for Ekoxen's energy storage sothey can save more money. The energy storage primary task is to shave the top-peaks of theconsumption for Ekoxen. Which means that the battery will supply the household instead forthe three-phase grid. This will make the electric bill for Ekoxen cheaper. Thesimulation/analysis of the energy regulation is done in a spreadsheet tool, where one partworks as a Time-of-Use program and the other work as a modbus feature. Time-of-Use is aweb-based program for PV systems with battery storage, where time-periods can be set toaffect the battery behavior. The modbus feature simulates a system where an algorithm can beimplemented. The results will show that the time-periods for charging the battery with theTime-of-Use program needs to be changed two times per year. One time for the summermonths and a second time for the rest of the months. The results will also show that themodbus feature is better on peak shaving than the time-of-use program.
APA, Harvard, Vancouver, ISO, and other styles
16

Sultan, Sahira. "Cost Evaluation of Building Space Heating; District Heating and Heat Pumps." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-37137.

Full text
Abstract:
Climate change and energy efficiency has become a matter of concern in recent times; therefore, energy efficiency of buildings has drawn major attention. According to the European Commission, EU countries must improve energy efficiency of existing buildings by retrofitting and renovating the buildings. A case study of a renovated commercial building is considered in this degree project. A model of the building is developed in the IDA Indoor Climate and Energy (IDA ICE) software. The model is then augmented to include renovations in the building. Further, the model is simulated in IDA ICE before and after renovations to investigate the impact of renovations on energy consumption of the building for one year. The simulation results indicate peak demands of district heating that occur in the coldest days of the year. The peak demands of energy are expected to increase the district heating cost because they serve as a basis for new pricing model introduced by the energy providers. Hence, it is important from the customer point of view to reduce the peak loads for cost shavings. The project work also provides an insight into the alternative source of energy such as heat pumps to reduce the peak load demands of district heating.
APA, Harvard, Vancouver, ISO, and other styles
17

Arding, Karin, and de Betou Siri In. "Making grid capacity available through heat pump control." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-384182.

Full text
Abstract:
In this report the problem of constructing a bus depot with electrical buses despite the lack of grid capacity, was analyzed. A potential solution is investigated, namely smart control of heat pumps in industries. The possibility of allocating grid capacity to the bus depot by reducing power consumption in heat pumps during peak hours, is taken into consideration. The maximum amount of released capacity in an industrial area is calculated through the controlling of heat pumps. This investigation was made through simulations with a simplified building energy model (lumped capacity model) which was applied to a reference building. After mapping the area Boländerna and the geothermal wells located there, IKEA Uppsala was chosen as the reference building, since a third of the total number of wells were found in that area. To take the whole capacity of Boländerna into account, the model was scaled up to estimate the total, possible reduction of power. The bus depot requires 6 MW nighttime and 4 MW daytime, the total amount of electrical power that could be withdrawn, if all heat pumps were on maximum heat, in the chosen area were 0.75 MW and by controlling the heat pumps during an optimized level, the amount of 142 kW could be made available to the electric grid. 142 kW is not enough cover the need for the bus depot but it could supply the need for a slow charger to one of the buses and is therefore a possible sub-solution to the larger problem.
APA, Harvard, Vancouver, ISO, and other styles
18

Westerberg, Jacob. "Active Phase Balancing and Battery Systems for Peak Power Reduction in Residential Real Estate : An Economic Feasibility Study." Thesis, KTH, Industriell Management, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-272974.

Full text
Abstract:
Research has shown that three-phase balancing alone can improve the operation of secondary distribution networks and that the addition of energy storage to the phase balancing power electronics further helps to alleviate the negative effects of phase unbalances. However, less attention has been paid to the economic potential of said technologies and particularly for loadside implementation. It appears that the deployment of phase balancers, with or without energy storage, is indeed hampered by uncertainty related to its economic feasibility, despite both technologies being commercially available. This thesis therefore aims to assess and compare the economic feasibility of the two configurations for peak shaving purposes in the context of residential property loads in Sweden. The assessment was performed using a specially developed deterministic techno-economic model taking into consideration historical load data from three Swedish real estate, cost estimations for a range of alternatives used when sizing the systems, applicable tariffs and fees for electricity and its distribution as well as technical parameters such as the capacities and efficiencies of the involved components. A novel approach was taken by linearly extrapolating the three load profiles into three sets of 91 synthesized load profiles to enable a larger dataset for analysis. The net present values generated for each set were then graphed and analyzed per original real estate. The results showed that both configurations can be economically feasible, but only under certain conditions. A phase balancer alone was found to be feasible for real estate whose peak currents are distinctly unbalanced and exceed 50 A, with the best expected rate of return for profiles exceeding 63 A since they enable a tariff switch. The combined system was found to be even more contingent on the tariff switch and therefore only feasible for peaks above 63 A. A substantial difference in the initial investment further makes the single phase balancer the preferred choice, unless the discount rate is as low as 2 % or less. On this basis, potential investors need to assess the state of unbalance of their loads and perform their own calculation based their load profile, cost of capital and applicable tariffs.
Tidigare forskning har visat att fasbalansering enskilt kan förbättra driften hos lokala distributionsnät och att ett batterisystem i tillägg till fasbalanserarens kraftelektronik ytterligare kan minska de negativa effekterna av fasobalanser. Däremot har mindre uppmärksamhet riktats mot den ekonomiska genomförbarheten hos dessa teknologier och i synnerhet för implementation på lastens sida av elmätaren. Det tycks vara så att spridningen av fasbalanserare, med eller utan energilagring, hindras av osäkerheten kring dess ekonomiska potential trots att båda teknologierna är kommersiellt tillgängliga. Detta arbete ämnar därför att värdera och jämföra den ekonomiska nyttan hos de två konfigurationerna vid toppreducering av fastighetselen i svenska bostadsfastigheter. Värderingen utfördes med hjälp av en särskilt utvecklad deterministisk tekno-ekonomisk modell som beaktade historiska lastdata från tre svenska fastigheter, kostnadsuppskattningar för en uppsättning av konfigurationer som användes vid dimensionering av systemen, applicerbara tariffer och avgifter för elektricitet och dess distribution samt tekniska parametrar såsom kapaciteter och verkningsgrader för de olika komponenterna. Ett annorlunda tillvägagångssätt tillämpades vidare för att utöka datamängden genom linjär extrapolation av lastprofilerna, vilket resulterade i tre uppsättningar av 91 syntetiserade lastprofiler. Nettonuvärdet beräknades följaktligen för varje profil och investeringsalternativ för att sedan plottas och analyseras per ursprunglig fastighet. Resultaten visade att båda konfigurationerna kan uppvisa lönsamhet, men endast under särskilda förutsättningar. Den enskilda fasbalanseraren bedömdes som lönsam för fastigheter vars strömtoppar är påtagligt obalanserade och som överstiger 50 A, med största möjliga lönsamhet för profiler som överstiger 63 A då dessa möjliggör ett tariffbyte. Det kombinerade systemets lönsamhet bedömdes vara ännu mer beroende av tariffbytet och därför endast lönsamt för strömtoppar över 63 A. En betydligt större grundinvestering för det kombinerade systemet gör vidare att den enskilda fasbalanseraren i regel är att föredra, såvida inte kalkylräntan är så låg som 2 % eller mindre. Baserat på detta uppmanas potentiella investerare att undersöka balanstillståndet hos deras laster och att utföra en egen kalkyl baserat på deras specifika last, kapitalkostnad och nätföretag.
APA, Harvard, Vancouver, ISO, and other styles
19

Darle, Maria, and Saga Lindqvist. "Identification of AdvantagesConnected to Aggregation of SeveralBattery Energy Storage Systems." Thesis, Uppsala universitet, Elektricitetslära, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-448432.

Full text
Abstract:
In this study, an examination regarding what benefits an aggregatedpopulation of Battery Energy Storage Systems (BESSs) could result incompared to when the individual units in the population are being usedseparately has been executed. The increased flexibility and reducedsafety margins as results of the aggregation was also examined. Thestudy was executed on behalf of the smart energy service companyCheckWatt AB and the study furthermore rests upon results of earlierperformed master theses on behalf of the company. By investigating previous work and studies through a literature study,the enabling of anumerical study was done. The numerical study wasbased on a simple model of a Virtual Power Plant (VPP) where severalBESSs are smartly controlled in order to be used for both local peakshaving and as common providers of the frequency reserve FrequencyContainment Reserve - Normal (FCR-N). The study involved the formation of a numerical model which simulated cases of both aggregated and non-aggregated populations of up to 45 load profile units, this in order for advantages and differences to be distinguished. The data used inthe simulations was received mainly from the CheckWatt AB andconsisted of photovoltaic (PV) electricity production and load data of 45 customers of the company. A sensibility analysis of the numericalstudy was also performed, which showed that the studied model andsystem were quite stable. The results of the simulations of the case of the study proved thatthere are some advantages connected to aggregation of several BESSs,and that the aggregation enabled an added value and a higher level offlexibility within the system. The safety margins connected todelivery of FCR-N could be reduced when aggregating several BESS,while a more extensive study is requested regarding safety marginsconnected to peak shaving. The study’s results further showed that anaggregator can be used as a sustainable and flexible solution forbalancing the electrical grid in the transition to a sustainableenergy system allowing a higher penetration of intermittentenergy sources.
APA, Harvard, Vancouver, ISO, and other styles
20

Singh, Baljot. "A case study about the potential of battery storage in Culture house : Investigation on the economic viability of battery energy storage system with peak shaving & time-of-use application for culture house in Skellefteå." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-52998.

Full text
Abstract:
The energy demand is steadily increasing, and the electricity sector is undergoing a severe change in this decade. The primary drivers, such as the need to decarbonize the power industry and megatrends for more distributed and renewable systems, are resulting in revolutionary changes in our lifestyle and industry. The power grid cannot be easily or quickly be upgraded, as investment decisions, construction approvals, and payback time are the main factors to consider. Therefore, new technology, energy storage, tariff reform, and new business models are rapidly changing and challenging the conventional industry. In recent times, industrial peak shaving application has sparked an increased interest in battery energy storage system (BESS).  This work investigated BESS’s potential from peak shaving and Time-of-use (TOU) applications for a Culture-house in Skellefteå. Available literature provides the knowledge of various BESS applications, tariff systems, and how battery degradation functions. The predicted electrical load demand of the culture-house for 2019 is obtained from a consultant company Incoord. The linear optimization was implemented in MATLAB using optimproblem function to perform peak shaving and time-of-use application for the Culture-hose BESS. A cost-optimal charging/discharging strategy was derived through an optimization algorithm by analyzing the culture-house electrical demand and Skellefteå Kraft billing system. The decisional variable decides when to charge/discharge the battery for minimum battery degradation and electricity purchase charges from the grid.   Techno-economic viability is analyzed from BESS investment cost, peak-power tariff, battery lifespan, and batter aging perspective. Results indicate that the current BESS price and peak-power tariff of Skellefteå Kraft are not suitable for peak shaving. Electricity bill saving is too low to consider TOU application due to high battery degradation. However, combining peak shaving & TOU does generate more profit annually due to additional savings from the electricity bill. However, including TOU also leads to higher battery degradation, making it not currently a viable application. A future scenario suggests a decrease in investment cost, resulting in a shorter payback period.  The case study also analyses the potential in the second-life battery, where they are purchased at 80 % State of Health (SoH) for peak shaving application. Second-life batteries are assumed to last until 70 % or 60 % before End of Life (EOL). The benefit-cost ratio indicates that second-life batteries are an attractive investment if batteries can perform until 60% end of life, it would be an excellent investment from an economic and sustainability perspective. Future work suggests integrating more BESS applications into the model to make BESS an economically viable project.
APA, Harvard, Vancouver, ISO, and other styles
21

Mohamed, Ali Mohamed. "ANALYZING THE IMPACT OF PHOTOVOLTAIC AND BATTERIE SYSTEMS ON THE LIFE OF A DISTRIBUTION TRANSFORMER." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-54952.

Full text
Abstract:
This degree project presents a study case in Eskilstuna-Sweden, regarding the effect of the photovoltaic (PV) systems with battery energy storage system (BESS) on a power distribution transformer, and how they could change the transformer lifespan. For that, an extensive literature review has been conducted, and two MATLAB models were used to simulate the system. One model simulates the PV generation profile, with the option of including battery in the system, and the other one simulates the transformer loss of life (LOL) based on the thermal characteristics. Simulations were using hourly time steps over a year with provided load profile based on utility data and typical meteorological year weather data from SMHI and STRÅNG. In this study, three different scenarios have been put into consideration to study the change of LOL. The first scenario applies various levels of PV penetrations without energy storage, while, the other scenarios include energy storage under different operating strategies, self-consumption, and peak shaving. Similarly, different battery capacities have been applied for the purpose of studying the LOL change. Thus, under different PV penetrations and battery capacities, results included the variation of LOL, grid power, battery energy status, and battery power. Moreover, results concluded that the PV system has the maximum impact on LOL variation, as it could decrease it by 33.4 %, and this percentage could increase by applying different battery capacities to the system. Finally, LOL corresponding to the battery under peak shaving strategy varies according to the battery discharge target. As different peak shaving targets were used to control the battery discharge, and hence, study the impact on the transformer and estimate its LOL.
APA, Harvard, Vancouver, ISO, and other styles
22

Aranaga, Decori Pierre Ander. "Implementation of energy recovery and storage systems in cranes in the Port of Gävle." Thesis, Högskolan i Gävle, Avdelningen för byggnadsteknik, energisystem och miljövetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-32883.

Full text
Abstract:
Container traffic in seaports around the world in constantly increasing, with energy costs being a significant part of the total costs. The container terminal (CT) of the Port of Gävle, the largest in the east coast of Sweden, is not an exception to this. With traffic growing annually, a new terminal will be opened in the following years, adding three more ship-to-shore (STS) cranes to the two existing ones, and six electric rubber tyred gantry (eRTG) cranes. Therefore, it is highly important to strengthen energy efficiency measures, reducing the energy consumption and the costs associated with it. This is why the aim of this report is to analyse whether implementing energy storage systems in the cranes of the container terminal Port of Gävle can contribute to reduce electricity costs by recovering energy when braking lowering containers, and by shaving power peaks. After a literature review of current energy recovery and storage options, this work presents three solutions: two alternatives for the current situation with two ship-to-shore (STS) cranes, and a third solution to be implemented in the three future STS cranes to be installed, which can also be beneficial for any other crane in the terminal. According to the made calculations, the three alternatives can reduce considerable energy consumption, and they are highly profitable. However, those solutions are a preliminary study and more work needs to be done to determine the exact profitability and technical system details. This work has been done in collaboration with the Port of Gävle and Yilport, the company operating the container terminal.
APA, Harvard, Vancouver, ISO, and other styles
23

Liu, Lollo. "Life Cycle Assessment of a Lithium-Ion Battery pack for Energy storage Systems : - the environmental impact of a grid-connected battery energy storage system." Thesis, Uppsala University, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-428627.

Full text
Abstract:
This thesis assessed the life-cycle environmental impact of a lithium-ion battery pack intended for energy storage applications. A model of the battery pack was made in the life-cycle assessment-tool, openLCA. The environmental impact assessment was conducted with the life-cycle impact assessment methods recommended in the Batteries Product Environmental Footprint Category Rules adopted by the European Commission (2016). The findings in this study showed that the most important parameter in the cradle-to-grave assessment was the use-stage losses, which can be reduced by using electricity grids with high sharesof renewable energy or by increase the round-trip efficiency of the battery system. However, for the cradle-to-gate assessment, five impact categories were found to be relevant. These categories were: climate change, acidification, fossil resource use, resource use (minerals and metals) and particulate matter. Furthermore, within these impact categories, four materials contributed to more than 65 % of all impact. These key materials were; nickel, aluminium, cobalt and graphite. Therefore, a recommendation to battery manufacturers is to prioritise sourcing these four key materials from sustainable suppliers to reduce the overall cradle-to-gate environmental impact. Lastly, by integrating recycling of the battery pack in the end-of-life-stage, it was possibleto achieve a net reduction of 9-20 % of the cradle-to-grave climate change, acidification and fossil resource use compared to not including recycling. Therefore, the development of efficient and large-scale recycling will likely play a major role in reducing the environmental impact from lithium-ion batteries in the future.
APA, Harvard, Vancouver, ISO, and other styles
24

Kabir, MD Ahsan. "Techno-economic study of grid connected residential PV system with battery storage - A review of the Local System Operator (LSO) model." Thesis, KTH, Elektroteknisk teori och konstruktion, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-205594.

Full text
Abstract:
The grid connected solar PV system with battery storage is one of the promising alternativeenergy solutions for electricity consumers. The Local System Operator (LSO) will be a newactor to operate its own energy system by integrating PV and battery system with other technicalsolutions. This thesis investigates the technical and economic viability of a grid connected PVsystem with battery storage in behind-the-meter approach for aggregated residential load toassess the LSO model for the present conditions in Sweden.The system model is developed using the System Advisory Model (SAM) – a simulationsoftware for renewable energy system analysis. The PV system model is designed using solarirradiation profile and fifty multi-dwelling aggregated residential load data from Sweden. Theappropriate design inputs of solar PV module, inverter and system loss are taken from previousstudies. The electricity price is analysed from the comparative study of Nord-pool wholesaleprice, market retail price and distribution grid tariffs. The financial metrics such as discountrate, inflation rate, system cost and currently available PV incentives are considered to make anaccurate model. To help with the assessment, three cases are formed; the first case representsonly the PV system and the other cases include storage - using a lithium-ion or lead-acid battery.This comparative study helps to determine the optimum PV and battery size at two differentlocations in Sweden.The optimum net present value (NPV) and profitability index (PI) is found at the 40 kW PVand 3 kWh battery system at Karlstad, Sweden. The optimum case is considered for furtherinvestigation to evaluate the system life time energy profile, electricity bill saving capabilityand battery performance. The system peak shaving potential is investigated by making twoother scenarios with higher battery capacity. Sensitivity analysis is also performed to assess thesystem’s technical and financial input parameters. The system capacity factor at the site locationis found as an influential parameter to the annual production and profitability. The optimumsize of PV system with a lithium-ion battery investment is found feasible for the LSO realimplementation only considering the current PV incentives and electricity price in Sweden. Thereport concludes with the assessment, the technical and economic feasibility of the studied PVand battery storage system profitability depends on the system site location, residential loadsize, consumer electricity cost and available PV incentives.
solcellsystem (PV) med batterilagring är en lovande alternativenergilösning förslutkonsumenten. Den 'local system operator', LSO, blir en ny aktör som driver egetenergisystem genom att integrera PV- och batterisystem med andra tekniska lösningar. Dennaavhandling undersöker det tekniska och ekonomiska genomförbarhetet i ett nätanslutet PVsystem med batterilagring i 'bakom mätaren' scenario för aggregerade bostäder i ettflerbostadshus, för att urvärdera LSO modellen.Systemmodellen är utvecklat med 'system advisory model' (rådgivande modell), SAM, ettsimuleringsprogram för förnybara energisystem. PV systemparametrarna beräknas med hänsyntill väderprofiler och lastdata från Sverige. Lämpliga parametrar för solcellsmoduler, omriktareoch systemförluster tas från tidigare studier. Slutkonsumenternas elpriser analyseras frånjämförande studie av NordPool grosshandelspris, konsumentpris och distributionnätstariffer.Finansiella mått såsom system kostnad, rabatt och inflationstakten och tillgängliga incitamentför PV investeringar används för att göra modellen noggrannare. Tre fall undersöks; det förstarepresenterar systemet med bara PV, och de övriga fallen lägger till lagring, genom antingenlitiumjon eller bly-syre batterier. Denna jämförande studie är ett underlag för att bestämma denoptimala PV och batteristorleken för anläggninar på två olika område i Sverige.Den optimala netto nuvarande värde (NPV) och lönsamhet index (PI) är på 40 kW PV systemetoch 3 kWh batteri på Karlstad, Sverige. Ytterligare undersökning av detta fall används för attutvärdera energiprofilen under systemets livstid, möjlighet till minskad elräkning, och batterietsprestanda. Potential för utjämning av systemets topplast utreds genom att skapa två andrascenarier med högre batterikapacitet. Känslighetsanalys utförs också för att bedöma de tekniskaoch ekonomiska parametrarna. Den optimuma storleken på PV system med ett litium-jonbatterifinns rimligt för LSO riktiga genomförande med tanke på incitamenten. Simuleringsresultatenoch systemkonsekvenserna av LSO modellen diskuteras. Rapporten visar att den tekniska ochekonomiska genomförbarheten av det studerade PV systemet med litium-jon batteri beror påslutkonsumentelpriset, PV incitament och globala trender i kostnaderna försystemkomponenter, samt på valet av lämplig plats med en effektiv analys av väder profil ochsystemetförluster.
APA, Harvard, Vancouver, ISO, and other styles
25

Elofsson, Fredrik. "Optimering av last och produktion i Gävles fjärrvärmenät : Reducering av effekttoppar via värmelagring i byggnader." Thesis, Högskolan i Gävle, Energisystem och byggnadsteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-29732.

Full text
Abstract:
District heating is today the most common way of providing a building with heat and hot water in Sweden. It is an environmentally friendly product mostly used with renewable fuel. However, at power peaks most companies use production units that are more expensive and worse for the environment and should therefore be avoided as much as possible. This can be done with a method called load management. When a power peak occurs, the heat supply to buildings connected to the district heating system can be temporarily reduced. The heat energy can later be returned when the heat demand is lower. Thanks to the heat inertia of the buildings, the indoor temperature will not fall within the time frame for the load management. Historical data has been analysed to identify when and why power peaks occur in the district heating network. Power peaks throughout the district heating network have proved difficult to identify. However, for individual consumers clear patterns of power peaks have emerged. These power peaks mainly occur because of large use of hot water but also because of the shifting outdoor temperature. In order to see how the production cost would differ from the actual outcome load management was applied for Gävle's district heating 2018. The load management was calculated manually by identifying the most expensive production unit on an hourly basis. If a cheaper production unit had the potential to deliver higher power the next hour, the production was moved to the cheaper production unit. The process was repeated for each hour during 2018. After carrying out load management for Gävle's district heating network, 1 457 MWh had been shifted to a cheaper production unit. This resulted in a financial saving of 1,0 % of the total production cost. The environmental savings showed a reduction from 6.1 to 5.9 g CO2eq /kWh a total of 197 tonne CO2eq. In the exact same way, a load management was performed for a scenario where Gävle and Sandviken's district heating network were connected. The gain for a load management with Sandviken will be considerably larger, a reduced production cost of 3.6 % is possible. The environmental savings showed a reduction from 8.4 to 7.8 CO2eq /kWh a total of 575 tonne CO2eq. For future efficient load management, buildings should be divided into different classes depending on the building's time constant. User patterns for the entire district heating network have proved difficult to detect. Artificial intelligence can be an option for short-term forecasting of the power output
Fjärrvärme är idag det vanligaste sättet att förse en bostad med värme och tappvarmvatten i Sverige. Fjärrvärmen är ofta en miljövänlig produkt som kan produceras av till exempel biobränsle- och avfallseldade kraftvärmeverk eller spillvärme från industrier. Vid tillfälligt högt effektbehov, effekttoppar, använder sig merparten av bolagen av dyrare produktionsenheter med större miljöpåverkan. Dyrare produktionsenheter bör undvikas i största möjliga mån och i detta syfte används metoden laststyrning. Vid en effekttopp kan värmetillförseln till byggnader sänkas temporärt för att återföras några timmar senare när effektbehovet är lägre. Tack vare värmetrögheten i byggnaderna bör inomhustemperaturen inte sjunka inom tidsramen för laststyrning. Statistik från Gävles fjärrvärmanvändning på timbasis under 2018 har analyserats för att identifiera när och varför effekttoppar sker. Effekttoppar i hela fjärrvärmenätet har visat sig svåra att identifiera. På lokal nivå har däremot tydliga mönster för effekttoppar framkommit. Dessa effekttoppar beror till största del av tappvarmvattenanvändning men även förändringar i utomhustemperaturen. För att se hur produktion och last kunde skiljt sig från det verkliga utfallet tillämpades laststyrning för Gävles fjärrvärmeproduktion 2018. Laststyrningen beräknades manuellt genom att den dyraste produktionsenheten identifierades på timbasis. Om en billigare produktionsenhet hade potential att leverera högre effekt nästkommande timmar försköts produktionen. Därefter upprepades processen för varje timme under 2018. Efter utförd laststyrning för Gävles fjärrvärmenät hade ca 1 457 MWh förskjutits till en billigare produktionsenhet. Det gav en ekonomisk besparing på 1,0 % av Gävles totala produktionskostnad. Den miljömässiga besparingen visade på en sänkning från 6,1 till 5,9 [g CO2ekv /kWh] sammanlagt 197 ton CO2ekv. På samma sätt utfördes en laststyrning för ett scenario där Gävle och Sandvikens fjärrvärmenät sammankopplats. Vinsten för en laststyrning med Sandviken blev betydligt större med en minskad produktionskostnaden på 3,6 %. Den miljömässiga påverkan sjönk från 8,4 till 7,8 g CO2ekv /kWh sammanlagt 575 ton CO2ekv. För en framtida effektiv laststyrning bör byggnader delas in i olika klasser beroende på byggnadens tidskonstant. Användarmönster för hela fjärrvärmenätet har visat sig svårt att identifiera. Artificiell intelligens kan vara ett alternativ i framtiden för att prognostisera effektuttaget
APA, Harvard, Vancouver, ISO, and other styles
26

Mancuso, Martin. "Grid-connected micro-grid operational strategy evaluation : Investigation of how microgrid load configurations, battery energy storage system type and control can support system specification." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-40019.

Full text
Abstract:
Operational performance of grid-connected microgrid with integrated solar photovoltaic (PV) electricity production and battery energy storage (BES) is investigated.  These distributed energy resources (DERs) have the potential to reduce conventionally produced electrical power and contribute to reduction of greenhouse gas emissions.  This investigation is based upon the DER’s techno-economic specifications and theoretical performance, consumer load data and electrical utility retail and distribution data.  Available literature provides the basis for DER specification and performance.  Actual consumer load profile data is available for residential and commercial consumer sector customers.  The electrical utility data is obtained from Mälarenergi, AB.  The aim is to investigate how to use simulations to specify a grid connected microgrid with DERs (PV production and a BES system) for two consumer sectors considering a range of objectives.  An open-source, MATLAB-based simulation tool called Opti-CE has successfully been utilized.  This package employs a genetic algorithm for multi-objective optimization.  To support attainment of one of the objectives, peak shaving of the consumer load, a battery operational strategy algorithm has been developed for the simulation.  With respect to balancing peak shaving and self-consumption one of the simulations supports specification of a commercial sector application with 117 kWp PV power rating paired with a lithium ion battery with 41.1 kWh capacity.  The simulation of this system predicts the possibility to shave the customer load profile peaks for the month of April by 20%.  The corresponding self-consumption ratio is 88%.  Differences in the relationship between the load profiles and the system performance have been qualitatively noted.  Furthermore, simulation results for lead-acid, lithium-ion and vanadium-redox flow battery systems are compared to reveal that lithium ion delivers the best balance between total annualized cost and peak shaving performance for both residential and commercial applications.
APA, Harvard, Vancouver, ISO, and other styles
27

Giuliano, Cristina. "Modellazione numerica monodimensionale e bidimensionale per la valutazione del rischio idraulico lungo il fiume Po." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.

Find full text
Abstract:
Lo sviluppo socio–economico avvenuto negli ultimi decenni in molte zone incluse nel bacino idrografico del fiume Po ha indubbiamente concorso ad una rinnovata attenzione sulle nuove iniziative normative e sulle diverse, e più innovative, pratiche di pianificazione per la valutazione quanto–qualitativa del rischio idraulico residuale. L’obiettivo perseguito in questo lavoro di tesi è stato quello di realizzare un modello capace di riprodurre la complessità spazio–temporale con cui fenomeni di piena al limite della prevedibilità evolvono nel tratto medio–inferiore del fiume Po (geometria monodimensionale) e di descrivere le dinamiche di allagamento nei aree esterne al sistema arginale (Fascia C; geometria quasi bidimensionale o bidimensionale). Le simulazioni svolte con il codice numerico HEC–RAS 5.0.3 prendono in riferimento le attuali prestazioni del sistema arginale, sia in assenza di interventi, sia a seguito di opere di consolidamento. I risultati evidenziando come la scelta modellistica utilizzata per rappresentare le aree di fascia C (ovvero aree 2D o quasi-2D) incide sul moto dell’acqua in tali zone e, dunque, anche sulla propagazione della piena verso valle: influenza il numero di comparti allagati, l’estensione delle aree urbane ed industriali esposte a rischio, le potenziali perdite di vite umane, i massimi livelli idrici raggiunti e i danni inferti agli edifici. La modellazione bidimensionale quando basata su DEM ad elevata risoluzione, come nel caso in esame (5m), delinea le reali complessità ed i punti di forza dell’area di studio, utili ad una coerente ed adeguata gestione dei volumi esondati.
APA, Harvard, Vancouver, ISO, and other styles
28

Coll, Matas Joaquin. "Optimization and techno-economic study of a PV Battery system for a vacation home in Sweden." Thesis, Högskolan Dalarna, Energiteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:du-35522.

Full text
Abstract:
Currently, Sälen area in Sweden is finding issues in the power grid due to an irregular load profile with high peak power demand and an infrastructure that is becoming undersized. Distributed PV-battery systems are considered a possible solution to solve this problem.A PV-battery system for a typical vacation home in this town is designed and optimized to give the best economical solution to the homeowner. Then, a techno-economic evaluation of the system is performed. A photovoltaic system and an only grid connected system are also simulated and compared. Finally, a sensitivity analysis is performed on different simulation inputs.HOMER Grid software is used to simulate and size the system. Firstly, a pre-sized system is modelled using average or typical market prices and component characteristics. Afterwards, real market components that fit into the pre-sized model are modelled to get a real system design. The optimized design includes a PV system of 13 kW, a BYD lithium ion battery of 5.1 kWh capacity and a Sungrow hybrid inverter of 10 kW.The economic evaluation of the system indicates that, with current market prices and subsidies, the optimized system is the most economical solution for the homeowner compared to the other systems. In the sensitivity analysis, a significant risk for the profitability of the system is found on the compensation from selling electricity to the grid.The technical evaluation of the system indicates that the battery provides a significant peak-shaving effect that can benefit the power grid. However, large solar energy sales to the grid with high power peaks that could cause instability issues are observed.
APA, Harvard, Vancouver, ISO, and other styles
29

Bränström, Amanda, and Jonna Söderberg. "A package deal for the future: Vehicle-to-Grid combined with Mobility as a Service." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-384588.

Full text
Abstract:
The aim of this report is to evaluate how a future commercially owned fleet of self-driving electric vehicles (EV:s) would be able to provide power in order to avoid power exceedances in the power grid. Exceedances occur when network agreements between grid operating companies are exceeded. Exceedances are problematic, since they infer penalty fees for the paying company and make dimensioning the grid capacity more difficult for the supplying company. Capacity deficiency regarding the infrastructure of the grid is expected to increase, likely resulting in higher penalty fees. Integrating transport and power systems by using self-driving EV:s as Mobility as a Service combined with Vehicle-to-Grid (V2G) technology is a potential solution for this problem. By modeling the EV-fleet as the New York City taxi fleet, a usage pattern deemed to resemble Mobility as a Service is created. An economic value for the V2G service is estimated by comparing the availability of the EV-fleet with local exceedances from Uppsala as well as regional occurring exceedances. The highest income during the first quarter of 2019 is 96 000 SEK for the whole fleet, or 1100 SEK per EV and hour-long exceedance. The time of exceedance and the power magnitude have to interplay with the availability of the EV-fleet in order to enable the system. The EV battery capacity highly impacts the system, but is concluded to not be a limiting factor due to market logic. Lastly, key features such as market formation as well as geographical and technical aspects are presented and discussed.
APA, Harvard, Vancouver, ISO, and other styles
30

Goutham, Mithun. "Machine learning based user activity prediction for smart homes." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595493258565743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Hamanee, Sahaphol. "Simuleringsbaserad analys av toppeffektreducering med batterisystem i lokalnät." Thesis, Karlstads universitet, Avdelningen för fysik och elektroteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-74450.

Full text
Abstract:
In this thesis, a simulation model developed in MATLAB® in consideration of system losses based on lithium ion-battery is presented. The purpose of the simulation model is to investigate peak shaving potential in the residential distribution network. In other word to determine an optimal threshold limit and battery capacity depending on if the battery system is placed at the transformer or household level. In the report there were economic calculations executed showing that profitability of investing in a battery system depends on the threshold limit and battery capacity.
I denna rapport presenteras analys av toppeffektreducering med ett simuleringsprogram baserad på litium-jon batteri med hänsyn till systemförlust. Simuleringsmodellen är uppbyggd i MATLAB® där metoder som Coulomb counting implementerades. Syftet med simuleringsprogrammet är att definiera en optimal tröskelgräns samt batterikapacitet på transformator- och hushållsnivån. I rapporten utfördes ekonomiska beräkningar som tyder på att lönsamheten för investering av ett batterisystem beror på tröskelgräns och batterikapacitet.
APA, Harvard, Vancouver, ISO, and other styles
32

Reidl, Tim, Jürgen Weber, and Steffen Ihlenfeldt. "Investigation of energy management topologies for forming presses with electro hydrostatic drivetrains." Technische Universität Dresden, 2020. https://tud.qucosa.de/id/qucosa%3A71190.

Full text
Abstract:
Recent Power On Demand approaches, realized by using speed and/or displacement variable pump units, led to a significant increase of energy efficiency on hydraulic forming presses. In this paper we follow up on this development by laying the focus on the energy management and storage design of such machinery. With a derived fluidtronical model, we compare five different topologies that supply and manage the power flow for a forming press with die cushion. Our evaluation criteria are: energy consumption, minimization of the infeed power, and qualitative costs. For a representative forming cycle, the losses occurring on each of the drivetrain components and the power electronics accessory are derived in detail. We expect that this research will lead to deeper investigation of more intelligent energy management systems that use multiple storages in an optimal way and further learn and adapt during operation.
APA, Harvard, Vancouver, ISO, and other styles
33

Júnior, Jorge Paulo Cabral. "Recursos energéticos distribuídos numa rede elétrica: um estudo de caso." Master's thesis, Instituto Politécnico de Setúbal. Escola Superior de Tecnologia de Setúbal, 2019. http://hdl.handle.net/10400.26/31356.

Full text
Abstract:
Dissertação do Mestrado em Engenharia Eletrotécnica e de Computadores - Ramo de Energias Renováveis e Sistemas de Potência
A redução das emissões de CO2 na atmosfera, requer apostas em soluções sustentáveis, sendo uma delas a integração de energias renováveis variáveis (ERV) na rede. A transição para sistemas em que existe forte penetração de ERV, exige o aumento de flexibilidade do sistema elétrico. Um dos requisitos para garantir essa flexibilidade, é o armazenamento de energia. O armazenamento de energia permite mitigar vários problemas na rede, entre eles, a duck curve. Foi realizado o estudo sobre o impacto do armazenamento no diagrama de carga da subestação São João, em Coimbra, na presença de geração fotovoltaica e eólica. Os resultados obtidos permitiram concluir que o armazenamento de energia, é um requisito necessário para que o sistema elétrico tenha flexibilidade, após a penetração da geração fotovoltaica distribuída. O armazenamento através da geração eólica na rede, pode auxiliar na redução da rampa do consumo durante o final do dia. Com este método, foi possível diminuir o efeito duck curve, através do peak shaving. A maioria da energia eólica armazenada foi durante o dia, em que existe consumo reduzido na rede, devido à massiva geração fotovoltaica. Quanto maior for a geração eólica, nos períodos de baixo consumo, maior é a necessidade do armazenamento.
The reduction of carbon pollutions requires betting on sustainable solutions, one of them is the integration of variable renewable energies (VRE) in the grid. The transition to systems where there is a higher penetration of VRE, requires increased power system flexibility. One of the requirements to ensure this flexibility is energy storage. Energy storage enables mitigate several problems on the grid, including the duck curve. The study of the impact of storage on the load diagram of the São João substation, in Coimbra, in the presence of photovoltaic and wind production was carried out. The results obtained allowed to conclude that the storage of energy, is a necessary requirement for the electrical system to have flexibility, after integration of distributed photovoltaic production. Wind production and storage system can help reduce the ramp consumption during the end of the day, where there is no photovoltaic production. It was possible to decrease the effect caused by duck curve, through peak shaving. Most of the wind energy stored was during the day, when the consumption in the grid is low, due massive photovoltaic production. Increased wind production requires increased storage capacity.
APA, Harvard, Vancouver, ISO, and other styles
34

Arzamendia, Lopez Juan Pablo. "Métholodogie de conception des matériaux architecturés pour le stockage latent dans le domaine du bâtiment." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0060/document.

Full text
Abstract:
L'utilisation de systèmes de stockage par chaleur latente constitue une solution permettant l'effacement du chauffage d'un bâtiment résidentiel pendant les périodes de forte demande. Une telle stratégie peut avoir pour objectif le lissage des pics d'appel en puissance du réseau électrique. Cependant, la faible conductivité des matériaux à changement de phase (MCP) qui constituent ces systèmes et le besoin d'une puissance de décharge importante imposent l'utilisation de matériaux dits "architecturés" afin d'optimiser la conductivité équivalente des matériaux stockeurs. Nos travaux s'intéressent plus particulièrement à la méthodologie pour la conception de matériaux pour ces systèmes afin de satisfaire aux exigences de stockage d'énergie et de puissance de restitution. La méthodologie proposée dans ces travaux de thèse est dénommé « Top-down methodology ». Cette méthodologie comporte trois échelles : l'échelle bâtiment (top), l'échelle système et l'échelle matériau (down). L'échelle bâtiment a comme objectif de spécifier le cahier des charges. A l'échelle système, des indicateurs de performance sont définis. Enfin, à l'échelle matériau, l'architecture du matériau solution est proposée. Un outil numérique modélisant le système de stockage par chaleur latente de type échangeur de chaleur air/MCP à été développé pour évaluer les indicateurs de performance. Ce modèle numérique est vérifié avec un cas analytique et validé par comparaison avec des données expérimentales. La méthodologie développée est mise en œuvre dans un deuxième cas d'étude pour le même type de système de stockage. L'analyse du système via les nombres adimensionnels permet d'obtenir des indicateurs de performance du système. A l'issue de cette étape, les propriétés matériaux et fonctionnelles optimales du système sont donc connues. Enfin, un matériau architecturé est alors proposé afin de satisfaire les exigences du système de stockage. Nous montrons alors que par l'intermédiaire d'une plaque sandwich contenant des clous et du MCP les propriétés matériaux nécessaires sont obtenues. De plus, afin de satisfaire aux exigences en termes de propriétés fonctionnelles, le design du système est modifié en ajoutant des ailettes sur les surfaces d'échange. Nous montrons que avec 20 ailettes de 3mm d'épaisseur sur la surface d'échange de la planche à clous, le chauffage est effacé pendant 2h lors de la période de forte demande journalière pendant l'hiver
The use of energy storage systems that exploit latent heat represents a promising solution to erase the heating demand of residential buildings during periods of peak demand. Equipping a building with such components can contribute to the goal of peak shaving in terms of public electricity grid supply. Significant drawbacks, however, are the low thermal conductivity of Phase Change Materials (PCM) that typically constitute such systems,and the requirement for a high rate of discharge. Consequently, the use of so-called architectured materials has been put forward as a means to optimize the effective conductivity of storage materials. Our work is focused upon the development of a methodology to design optimal materials for such systems that meet the criteria of energy storage and energy output. A so-called “top-down metholodogy” was implemented for the present work. This approach includes three scales of interest: building (top), system and material (down). The aim of the building scale analysis is to formulate a set of general design requirements. These are complemented by performance indicators, which are defined at the scale of the system. Finally, at the scale of the material, the architecture of the identified material is elaborated. A numerical simulation tool was developed to determine performance indicators for a latent heat energy storage system comprising of an air/PCM heat exchanger. This model was tested against a benchmark analytical solution and validated though comparison to experimental data. The developed methodology is applied to the specific case of an air/PCM exchanger latent-heat energy storage system. The system is analysed through the study of dimensionless numbers, which provide a set of design indicators for the system. As a result of this stage, the optimal material and functional properties are thus identified. Finally, an architectured material is proposed that would satisfy the design requirements of the storage system. We demonstrate that an arrangement composed of a sandwich of planar layers with nails and PCM can offer the required material properties. Furthermore, in order to meet the desired functional properties, the system design is modified by the addition of fins at the exchange surfaces. With the addition of 20 fins of 3mm thickness attached to the exchange surface of the sandwich panel, the storage system eliminated the heating demand for 2 hours during the period of high daily demand in winter
APA, Harvard, Vancouver, ISO, and other styles
35

Leadbetter, Jason. "Residential Battery Energy Storage Systems for Renewable Energy Integration and Peak Shaving." Thesis, 2012. http://hdl.handle.net/10222/15352.

Full text
Abstract:
Renewable energy integration will become a significant issue as renewable penetration levels increase, and will require new generation support infrastructure; Energy storage provides one solution to this issue. Specifically, battery technologies offer a wide range of energy and power output abilities, making them ideal for a variety of integration applications. Distributed energy storage on distribution grids may be required in many areas of Canada where renewables will be installed. Peak shaving using distributed small (residential) energy storage can provide a reduction in peak loads and help renewable energy integration. To this end, a peak shaving model was developed for typical houses in several regions in Canada which provided sizing and performance results. An experimental battery bank and cycling apparatus was designed and constructed using these sizing results. This battery bank and cycling apparatus was then used to calibrate and validate a lithium iron phosphate battery energy storage system model.
APA, Harvard, Vancouver, ISO, and other styles
36

Huang, Ching-Chih, and 黃靖智. "A Study on Peak Load Shaving Strategy for Distributed Generation Series Grid Interconnection Module." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/39w8jb.

Full text
Abstract:
碩士
國立中山大學
電機工程學系研究所
96
This thesis presents the application of a series interconnection module for small distributed generation (DG) or renewable energy systems integration in the distribution network. The concept used one set of voltage source converter (VSC) with battery energy storage system to control the injected voltage magnitude and phase angle for power injection and voltage sag mitigation applications. Through an energy storage device and the VSC, the module allows storage of surplus energy during off peak period and release for use during daytime peak load period, therefore, exhibits a load leveling characteristic. Due to its series connection characteristic, it is convenient in preventing islanding operation and suitable for voltage sag mitigation. The concept is suitable for locations where the voltage phase shift is not a problem. Due to the use of only one set of VSC, it is economic for customer site distributed energy resource applications.
APA, Harvard, Vancouver, ISO, and other styles
37

LIN, HONG-BING, and 林鴻彬. "An investigation of peak-shaving method applied for short-term hydrothermal schedule of Taiwan power company." Thesis, 1991. http://ndltd.ncl.edu.tw/handle/76131791847938405006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ko, Min-Tso, and 柯旻佐. "Study of Self-Consumption Solar Power System Combined with Double Energy Storage and Peak-shaving function." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/e7aa7m.

Full text
Abstract:
碩士
國立臺灣大學
機械工程學研究所
107
The aim of the thesis is to intensify the peak-shaving function of the solar power system combined with double energy storage and enhance its economic benefits by using the PV system during peak hours. The study starts with modifying sPV-1000 controller’s design defect and raising its reliability. Using SCR power controller to do thermal energy storage control, we can make battery not discharge in PV heating mode and save electricity power until peak hours. We can also reduce the power loss of solar energy caused by using electric water heater with constant power. Besides, the study tries to use CCU, which can connect one system to another system and support its electricity to another to improve the power generating efficiency of the overall system.
APA, Harvard, Vancouver, ISO, and other styles
39

Angwald, Filip. "Power mapping and aggregation as a service : A techno-economic view on Li-ion batteries for peak shaving and frequency regulation." Thesis, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-412536.

Full text
Abstract:
The world's energy supply today mainly consists of fossil fuels and nuclear power. Moving away from the use of these energy resources to renewable energy sources is considered a prerequisite for a sustainable future. In order to implement this change, it is necessary for renewable energy sources to be environmentally, technically and economically sustainable. A major challenge encountered in terms of technological sustainability is the intermittent nature of renewable energy sources. As the share of renewable electricity increases in the system, the electricity grid is facing new challenges such as increased instability of the frequency and capacity shortages. In order to meet these new challenges an increased flexibility from electricity users is proposed as a solution. Flexibility can be achieved either by controlling the use of electricity or utilizing energy storages. If different electric loads are to be controlled in a property, data regarding the power use of the loads must first be collected with a high time resolution in order to be able to properly analyze the data. Measures to shift or reduce the power peaks in a property can then be suggested and implemented. A battery storage can help reduce power peaks or shift loads in time and if done on a large scale that would reduce the strain on the entire Swedish grid. One of the ancillary services that the battery could offer is frequency regulation. Using energy storages for such an application could also provide a secondary revenue stream, aside from the revenue stream from peak shaving, and increase the profitability of the storage. Sweden has seen a dramatic increase in electric vehicles over the last decade and charging of the vehicles has become an issue for many property owners as it often creates power peaks. The data collection regarding power use in properties performed in during this thesis showed that valuable data can be collected with the method and material used. With a battery price of 3000 SEK/kWh the payback time for a battery system can be reduced from 17,9 to 7,8 years if it is used for frequency regulation during the night. If power-intensive loads such as electric vehicle charging are added to the model the payback period decreases to 6,1 years. With these results in mind, it can be concluded that the profitability of a battery storage can increase to the extent that the investment is of economic viability. In addition, the investment helps to improve the stability of the Swedish grid. The results are found to be relatively consistent with those of other similar studies.

Digital presentation

APA, Harvard, Vancouver, ISO, and other styles
40

Magallanes, Ibarra Laura. "Thermoelectrochemical model for RFB with an application at a grid level for peak shaving to reduce cost of the total electricity." Thesis, 2020. http://hdl.handle.net/1828/12509.

Full text
Abstract:
Reliable, low-cost energy storage solutions are needed to manage variability, pro-vide reliability, and reduce grid-infrastructure costs. Redox flow batteries (RFB) area grid-scale storage technology that has the potential to provide a range of services.Desirable characteristics are long cycle life, high efficiency, and high energy density.A key challenge for aqueous redox flow battery systems is thermal sensitivity. Oper-ating temperature impacts electrolyte viscosity, species solubility, reaction kinetics,and efficiency. Systems that avoid the need for active thermal management whileoperating over a wide temperature range are needed. A promising RFB chemistry isiron-vanadium because of the use of low-cost iron. This is an analysis of the thermalresponse of on Iron-Vanadium (Fe/V) RFB using a zero-dimensional electrothermalmodel. The model accounts for the reversible entropic heat of the electrochemicalreactions, irreversible heat due to overpotentials, and the heat transfer between thestack and environment. Performance is simulated using institutional load data forenvironmental conditions typical of Canadian jurisdictions.
Graduate
APA, Harvard, Vancouver, ISO, and other styles
41

"Stacked-Value of Battery Storage: Effect of Battery Storage Penetration on Power Dispatch." Master's thesis, 2020. http://hdl.handle.net/2286/R.I.57017.

Full text
Abstract:
abstract: In this work, the stacked values of battery energy storage systems (BESSs) of various power and energy capacities are evaluated as they provide multiple services such as peak shaving, frequency regulation, and reserve support in an ‘Arizona-based test system’ - a simplified, representative model of Salt River Project’s (SRP) system developed using the resource stack information shared by SRP. This has been achieved by developing a mixed-integer linear programming (MILP) based optimization model that captures the operation of BESS in the Arizona-based test system. The model formulation does not include any BESS cost as the objective is to estimate the net savings in total system operation cost after a BESS is deployed in the system. The optimization model has been formulated in such a way that the savings due to the provision of a single service, either peak shaving or frequency regulation or spinning reserve support, by the BESS, can be determined independently. The model also allows calculation of combined savings due to all the services rendered by the BESS. The results of this research suggest that the savings obtained with a BESS providing multiple services are significantly higher than the same capacity BESS delivering a single service in isolation. It is also observed that the marginal contribution of BESS reduces with increasing BESS energy capacity, a result consistent with the law of diminishing returns. Further, small changes in the simulation environment, such as factoring in generator forced outage rates or projection of future solar penetration, can lead to changes as high as 10% in the calculated stacked value.
Dissertation/Thesis
Masters Thesis Electrical Engineering 2020
APA, Harvard, Vancouver, ISO, and other styles
42

Verma, Ankit. "ALTERNATE POWER AND ENERGY STORAGE/REUSE FOR DRILLING RIGS: REDUCED COST AND LOWER EMISSIONS PROVIDE LOWER FOOTPRINT FOR DRILLING OPERATIONS." 2009. http://hdl.handle.net/1969.1/ETD-TAMU-2009-05-587.

Full text
Abstract:
Diesel engines operating the rig pose the problems of low efficiency and large amount of emissions. In addition the rig power requirements vary a lot with time and ongoing operation. Therefore it is in the best interest of operators to research on alternate drilling energy sources which can make entire drilling process economic and environmentally friendly. One of the major ways to reduce the footprint of drilling operations is to provide more efficient power sources for drilling operations. There are various sources of alternate energy storage/reuse. A quantitative comparison of physical size and economics shows that rigs powered by the electrical grid can provide lower cost operations, emit fewer emissions, are quieter, and have a smaller surface footprint than conventional diesel powered drilling. This thesis describes a study to evaluate the feasibility of adopting technology to reduce the size of the power generating equipment on drilling rigs and to provide ?peak shaving? energy through the new energy generating and energy storage devices such as flywheels. An energy audit was conducted on a new generation light weight Huisman LOC 250 rig drilling in South Texas to gather comprehensive time stamped drilling data. A study of emissions while drilling operation was also conducted during the audit. The data was analyzed using MATLAB and compared to a theoretical energy audit. The study showed that it is possible to remove peaks of rig power requirement by a flywheel kinetic energy recovery and storage (KERS) system and that linking to the electrical grid would supply sufficient power to operate the rig normally. Both the link to the grid and the KERS system would fit within a standard ISO container. A cost benefit analysis of the containerized system to transfer grid power to a rig, coupled with the KERS indicated that such a design had the potential to save more than $10,000 per week of drilling operations with significantly lower emissions, quieter operation, and smaller size well pad.
APA, Harvard, Vancouver, ISO, and other styles
43

"A Qualitative Study of EMaaS Performance in California Schools." Master's thesis, 2020. http://hdl.handle.net/2286/R.I.57366.

Full text
Abstract:
abstract: In recent years, many school districts, community colleges, and universities in California have implemented energy management-as-a-service (EMaaS). The purpose of this study was to analyzes how EMaaS has been realized in California schools, including how performance expectations and service guarantees have been met, how value is created and captured, and which trends are emerging in the pay-for-performance models. This study used a qualitative research design to identify patterns in the collected data and allow theories to be drawn from the emergent categories and themes. Ten in-depth interviews were conducted with a diverse pool of facility managers, energy practitioners, superintendents, and associate superintendents working with EMaaS. Four themes emerged (1) peak shaving overperformance, (2) low risk/reward, (3) performance exactly as expected, and (4) hope in future flexibility. This study reveals medium to high levels of performance satisfaction from the customers of cloud-enabled and battery-based EMaaS in California schools. Value has been captured primarily through peak shaving and intelligent bill management. Large campuses with higher peaks are especially good at delivering energy savings, and in some instances without pairing batteries and solar. Where demand response participation is permitted by the utility companies, the quality of demand response performance is mixed, with performance being exactly as expected to slightly less than expected. The EMaaS business model is positioned to help California schools implement and achieve many of their future sustainability goals in a cost-effective way.
Dissertation/Thesis
Masters Thesis Construction Management 2020
APA, Harvard, Vancouver, ISO, and other styles
44

Nordlund, Edvard, and Emil Lind. "Determining the Technical Potential of Demand Response on the Åland Islands." Thesis, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-451184.

Full text
Abstract:
With increasing intermittency from renewable energy production, such as solar and wind power, the need of increased flexibility is quickly arising. The Åland Islands have an energy transition agenda to reach the goal of having a 100 % renewable energy system. Since there is no possibility of hydro power acting as regulatory power on Åland, reaching the goal is a challenging task. Increasing flexibility can be achieved by either implementing energy storage in the system or by matching the demand with the production.  Therefore the purpose of this study was to estimate and evaluate the technical potential of demand response (DR) on Åland, both for 2019 and for a scenario in 2030 where the domestic production of wind and solar have increased. Six areas of interests were identified; electric heating, refrigeration processes, lighting, ventilation and air conditioning, electric vehicles and industries. The import from Sweden to Åland was examined since high import coincides with either low domestic renewable production or high consumption and therefore indicates when flexibility is most required. The results show that the technical potential of DR on Åland can lower the maximum electricity import from Sweden by 18 % in 2019. 4.3 % of the total import can be moved to times when there is less stress on the grid. Electric heating is the biggest contributor, and can by itself lower the import with three fourths of the total reduction. The domestic renewable production in 2019 is too low for DR to have an effect on self-sufficiency. For 2030 the self-sufficiency and utilization of domestic renewable production could be increased with 4.2-9.9 % and 5.4-12 % respectively when using DR, depending on if vehicle-to-grid is implemented on a large scale or not. The cost of DR is still unclear, and it varies between the different resources. However, electric heating seems to be a less expensive alternative to batteries, while providing a similar service.
APA, Harvard, Vancouver, ISO, and other styles
45

Elton, Kurtis. "Irritations from Shaving Peaks: Barriers to the Implementation of Residential Seasonal Water Rates in Southwestern Ontario." Thesis, 2009. http://hdl.handle.net/10012/4669.

Full text
Abstract:
The water soft path (WSP) has been formulated as a progressive paradigm in water management. The WSP has four main principles: water should be viewed as a service; ecological sustainability is of utmost importance; water quantity and quality should be conserved; and planning should be done from the future backwards, not projected from the present. It may be possible to use conservation-based water pricing programs, especially at the residential level, in order to incrementally implement the WSP. Moreover, the implementation of residential seasonal water rates has been suggested as a method to curb peak demand in municipal water systems, thereby deferring infrastructure expansion. The purpose of this thesis is to answer the question: what are the barriers to implementing residential seasonal water rates in the Region of Waterloo? This question is addressed using a variety of data sources, with the majority of the information coming from academic and non-academic literature, and from interviews with water professionals and local councillors. The results provide a descriptive case study concerning the barriers to implementing seasonal water rates in one particular region of southwestern Ontario, but the conclusions can be generalized to describe some of the barriers to the implementation of seasonal water rates in Ontario. Results suggest that some barriers are more severe than others, and that the more serious ones may be addressed by: expounding the potential for seasonal water rates to curb peak demand; carefully designing a rate study to be administered with non-price programs; and implementing the designed rate structure as a pilot study. It is suggested that the implementation of seasonal water rates can be used as an incremental step towards the adoption of WSP principles, but not without first envisioning a desirable future.
APA, Harvard, Vancouver, ISO, and other styles
46

Bahrami, Asl Babak. "Futuristic Air Compressor System Design and Operation by Using Artificial Intelligence." Thesis, 2018. http://hdl.handle.net/1805/17932.

Full text
Abstract:
Indiana University-Purdue University Indianapolis (IUPUI)
The compressed air system is widely used throughout the industry. Air compressors are one of the most costly systems to operate in industrial plants in terms of energy consumption. Therefore, it becomes one of the primary targets when it comes to electrical energy and load management practices. Load forecasting is the first step in developing energy management systems both on the supply and user side. A comprehensive literature review has been conducted, and there was a need to study if predicting compressed air system’s load is a possibility. System’s load profile will be valuable to the industry practitioners as well as related software providers in developing better practice and tools for load management and look-ahead scheduling programs. Feed forward neural networks (FFNN) and long short-term memory (LSTM) techniques have been used to perform 15 minutes ahead prediction. Three cases of different sizes and control methods have been studied. The results proved the possibility of the forecast. In this study two control methods have been developed by using the prediction. The first control method is designed for variable speed driven air compressors. The goal was to decrease the maximum electrical load for the air compressor by using the system's full operational capabilities and the air receiver tank. This goal has been achieved by optimizing the system operation and developing a practical control method. The results can be used to decrease the maximum electrical load consumed by the system as well as assuring the sufficient air for the users during the peak compressed air demand by users. This method can also prevent backup or secondary systems from running during the peak compressed air demand which can result in more energy and demand savings. Load management plays a pivotal role and developing maximum load reduction methods by users can result in more sustainability as well as the cost reduction for developing sustainable energy production sources. The last part of this research is concentrated on reducing the energy consumed by load/unload controlled air compressors. Two novel control methods have been introduced. One method uses the prediction as input, and the other one doesn't require prediction. Both of them resulted in energy consumption reduction by increasing the off period with the same compressed air output or in other words without sacrificing the required compressed air needed for production.
2019-12-05
APA, Harvard, Vancouver, ISO, and other styles
47

(5931020), Babak Bahrami Asl. "FUTURISTIC AIR COMPRESSOR SYSTEM DESIGN AND OPERATION BY USING ARTIFICIAL INTELLIGENCE." Thesis, 2020.

Find full text
Abstract:
The compressed air system is widely used throughout the industry. Air compressors are one of the most costly systems to operate in industrial plants in therms of energy consumption. Therefore, it becomes one of the primary target when it comes to electrical energy and load management practices. Load forecasting is the first step in developing energy management systems both on the supply and user side. A comprehensive literature review has been conducted, and there was a need to study if predicting compressed air system’s load is a possibility.

System’s load profile will be valuable to the industry practitioners as well as related software providers in developing better practice and tools for load management and look-ahead scheduling programs. Feed forward neural networks (FFNN) and long short-term memory (LSTM) techniques have been used to perform 15 minutes ahead prediction. Three cases of different sizes and control methods have been studied. The results proved the possibility of the forecast. In this study two control methods have been developed by using the prediction. The first control method is designed for variable speed driven air compressors. The goal was to decrease the maximum electrical load for the air compressor by using the system's full operational capabilities and the air receiver tank. This goal has been achieved by optimizing the system operation and developing a practical control method. The results can be used to decrease the maximum electrical load consumed by the system as well as assuring the sufficient air for the users during the peak compressed air demand by users. This method can also prevent backup or secondary systems from running during the peak compressed air demand which can result in more energy and demand savings. Load management plays a pivotal role and developing maximum load reduction methods by users can result in more sustainability as well as the cost reduction for developing sustainable energy production sources. The last part of this research is concentrated on reducing the energy consumed by load/unload controlled air compressors. Two novel control methods have been introduced. One method uses the prediction as input, and the other one doesn't require prediction. Both of them resulted in energy consumption reduction by increasing the off period with the same compressed air output or in other words without sacrificing the required compressed air needed for production.

APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography