Academic literature on the topic 'Pearling instability'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pearling instability.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Pearling instability"

1

Chaïeb, Sahraoui, and Sergio Rica. "Spontaneous curvature-induced pearling instability." Physical Review E 58, no. 6 (December 1, 1998): 7733–37. http://dx.doi.org/10.1103/physreve.58.7733.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Boedec, G., M. Jaeger, and M. Leonetti. "Pearling instability of a cylindrical vesicle." Journal of Fluid Mechanics 743 (March 4, 2014): 262–79. http://dx.doi.org/10.1017/jfm.2014.34.

Full text
Abstract:
AbstractA cylindrical vesicle under tension can undergo a pearling instability, characterized by the growth of a sinusoidal perturbation which evolves towards a collection of quasi-spherical bulbs connected by thin tethers, like pearls on a necklace. This is reminiscent of the well-known Rayleigh–Plateau instability, where surface tension drives the amplification of sinusoidal perturbations of a cylinder of fluid. We calculate the growth rate of perturbations for a cylindrical vesicle under tension, considering the effect of both inner and outer fluids, with different viscosities. We show that this situation differs strongly from the classical Rayleigh–Plateau case in the sense that, first, the tension must be above a critical value for the instability to develop and, second, even in the strong tension limit, the surface preservation constraint imposed by the presence of the membrane leads to a different asymptotic behaviour. The results differ from previous studies on pearling due to the consideration of variations of tension, which are shown to enhance the pearling instability growth rate, and lower the wavenumber of the fastest growing mode.
APA, Harvard, Vancouver, ISO, and other styles
3

Bar-Ziv, Roy, Tsvi Tlusty, and Elisha Moses. "Critical Dynamics in the Pearling Instability of Membranes." Physical Review Letters 79, no. 6 (August 11, 1997): 1158–61. http://dx.doi.org/10.1103/physrevlett.79.1158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sinha, Kumari Priti, Siddharth Gadkari, and Rochish M. Thaokar. "Electric field induced pearling instability in cylindrical vesicles." Soft Matter 9, no. 30 (2013): 7274. http://dx.doi.org/10.1039/c3sm00052d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Goldstein, Raymond E., Philip Nelson, Thomas Powers, and Udo Seifert. "Front Progagation in the Pearling Instability of Tubular Vesicles." Journal de Physique II 6, no. 5 (May 1996): 767–96. http://dx.doi.org/10.1051/jp2:1996210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Coveas, J. L., S. T. Milner, and W. B. Russel. "Late Stages of the “Pearling" Instability in Lipid Bilayers." Journal de Physique II 7, no. 9 (September 1997): 1185–204. http://dx.doi.org/10.1051/jp2:1997180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nelson, Philip, Thomas Powers, and Udo Seifert. "Dynamical Theory of the Pearling Instability in Cylindrical Vesicles." Physical Review Letters 74, no. 17 (April 24, 1995): 3384–87. http://dx.doi.org/10.1103/physrevlett.74.3384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Narsimhan, Vivek, Andrew P. Spann, and Eric S. G. Shaqfeh. "Pearling, wrinkling, and buckling of vesicles in elongational flows." Journal of Fluid Mechanics 777 (July 15, 2015): 1–26. http://dx.doi.org/10.1017/jfm.2015.345.

Full text
Abstract:
Tubular vesicles in extensional flow can undergo ‘pearling’, i.e. the formation of beads in their central neck reminiscent of the Rayleigh–Plateau instability for droplets. In this paper, we perform boundary integral simulations to determine the conditions for the onset of this instability. Our simulations agree well with experiments, and we explore additional topics such as the role of the vesicle’s initial shape on the number of pearls formed. We also compare our simulations to simple physical models of pearling that have been presented in the literature, where the vesicle is approximated as an infinitely long cylinder with a constant surface tension and bending modulus. We present a complete linear stability analysis of this idealized problem, including the effects of non-axisymmetric deformations as well as surface viscosity. We demonstrate that, while such models capture the essential physics of pearling, they cannot capture the stability of these transitions accurately, since finite length effects and non-uniform surface tension effects are important. We close our paper with a brief discussion of vesicles in compressional flows. Unlike quasi-spherical vesicles, we find that tubular vesicles can transition to a wide variety of permanent, buckled states under compression. The idealized problem mentioned above gives the essential physics behind these instabilities, which to our knowledge has not been examined heretofore.
APA, Harvard, Vancouver, ISO, and other styles
9

Müller, T., K. H. Heinig, and B. Schmidt. "Template-directed self-assembly of buried nanowires and the pearling instability." Materials Science and Engineering: C 19, no. 1-2 (January 2002): 209–13. http://dx.doi.org/10.1016/s0928-4931(01)00465-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Koplik, J., T. S. Lo, M. Rauscher, and S. Dietrich. "Pearling instability of nanoscale fluid flow confined to a chemical channel." Physics of Fluids 18, no. 3 (March 2006): 032104. http://dx.doi.org/10.1063/1.2178786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Pearling instability"

1

Keiser, Armelle. "Dynamiques sur des surfaces texturées et imprégnées." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS601.

Full text
Abstract:
En s’appuyant sur des expériences canoniques revisitées, cette thèse caractérise la dynamique de gouttes, de bulles, et de films minces sur des surfaces biomimétiques texturées et imprégnées d’huile. En contact avec des liquides aqueux, ces surfaces présentent quatre phases distinctes (les textures solides, l’huile, le liquide déposé et l’air) donnant naissance à une multitude d’interfaces dont le rôle est prédominant dans les dynamiques observées. La friction visqueuse s’opposant au dévalement d’une goutte est caractérisée en fonction du rapport des viscosités de la goutte et de l’huile. Les résultats obtenus mettent en lumière le rôle essentiel du ménisque d’huile entourant le pied de la goutte. Par la suite, deux expériences mettant en jeu une ligne de contact en reculée sont étudiées. La première correspond au démouillage d’un film mince, la deuxième à l’instabilité de perlage. Dans ces deux cas, le comportement qualitatif correspond à celui reporté dans la littérature sur des surfaces solides. Cependant, une étude plus approfondie révèle que la présence de l’huile affecte significativement la dynamique. Les écoulements dans l’eau et dans l’huile doivent alors être pris en compte simultanément. Ces travaux mettent ainsi en lumière l’originalité de ces surfaces, partiellement solides et partiellement liquides
This thesis aims at characterizing drops, bubbles and thin films dynamics on biomimetic textured surfaces, impregnated with oil (known as LIS in the literature). When an aqueous liquid is deposited on such surfaces, the four phases at stake (oil, air, textures and deposited liquid) generate multiple interfaces, playing a crucial role in the various dynamics observed. The viscous friction opposing the motion of a drop on an inclined LIS at low capillary numbers is studied as a function of the oil/drop viscosity ratio. The results revealed the crucial role of the microscopic oil meniscus surrounding the foot of the drop. Then, two experiments focusing on the dynamics of a receding contact lines are studied: the dewetting of a thin aqueous film and the pearling instability. In both cases, the qualitative behavior is similar to the one reported in the literature on conventional solid surfaces. However, a deeper study reveals that the presence of oil changes quantitatively the dynamics. The flow in both the aqueous and the oil phases must then be taken into account simultaneously. The results obtained in this work highlight the originality of those surfaces, and shed new light on the very peculiar role of the oil meniscus surrounding the contact lines
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Pearling instability"

1

KOZULIC, Maxime, Mohsen MIRZAEI, Gilles GODARD, Denis LEBRUN, Olivier CRUMEYROLLE, and Marie-Charlotte RENOULT. "Video: 3D monitoring of a pearling instability." In 72th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2019. http://dx.doi.org/10.1103/aps.dfd.2019.gfm.v0034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Valchev, G. S., P. A. Djondjorov, V. M. Vassilev, and D. M. Dantchev. "Van der Waals interactions between planar substrate and tubular lipid membranes undergoing pearling instability." In APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 9th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’17. Author(s), 2017. http://dx.doi.org/10.1063/1.5007402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography