To see the other types of publications on this topic, follow the link: Pebbling.

Journal articles on the topic 'Pebbling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Pebbling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ye, Yongsheng, Fang Liu, and Caixia Shi. "The 2-Pebbling Property of the Middle Graph of Fan Graphs." Journal of Applied Mathematics 2014 (2014): 1–5. http://dx.doi.org/10.1155/2014/304514.

Full text
Abstract:
A pebbling move on a graphGconsists of taking two pebbles off one vertex and placing one pebble on an adjacent vertex. The pebbling number of a connected graphG, denoted byf(G), is the leastnsuch that any distribution ofnpebbles onGallows one pebble to be moved to any specified but arbitrary vertex by a sequence of pebbling moves. This paper determines the pebbling numbers and the 2-pebbling property of the middle graph of fan graphs.
APA, Harvard, Vancouver, ISO, and other styles
2

Bunde, David P., Erin W. Chambers, Daniel Cranston, Kevin Milans, and Douglas B. West. "Pebbling and optimal pebbling in graphs." Journal of Graph Theory 57, no. 3 (2008): 215–38. http://dx.doi.org/10.1002/jgt.20278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Yueqing, and Yongsheng Ye. "The 2-pebbling property of squares of paths and Graham’s conjecture." Open Mathematics 18, no. 1 (March 10, 2020): 87–92. http://dx.doi.org/10.1515/math-2020-0009.

Full text
Abstract:
Abstract A pebbling move on a graph G consists of taking two pebbles off one vertex and placing one pebble on an adjacent vertex. The pebbling number of a connected graph G, denoted by f(G), is the least n such that any distribution of n pebbles on G allows one pebble to be moved to any specified vertex by a sequence of pebbling moves. In this paper, we determine the 2-pebbling property of squares of paths and Graham’s conjecture on $\begin{array}{} P_{2n}^2 \end{array} $.
APA, Harvard, Vancouver, ISO, and other styles
4

Moews, David. "Pebbling graphs." Journal of Combinatorial Theory, Series B 55, no. 2 (July 1992): 244–52. http://dx.doi.org/10.1016/0095-8956(92)90043-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lourdusamy, A., and T. Mathivanan. "Herscovici’s conjecture on C2n × G." Discrete Mathematics, Algorithms and Applications 12, no. 05 (July 1, 2020): 2050071. http://dx.doi.org/10.1142/s1793830920500718.

Full text
Abstract:
The [Formula: see text]-pebbling number, [Formula: see text], of a connected graph [Formula: see text], is the smallest positive integer such that from every placement of [Formula: see text] pebbles, [Formula: see text] pebbles can be moved to any specified target vertex by a sequence of pebbling moves, each move taking two pebbles off a vertex and placing one on an adjacent vertex. A graph [Formula: see text] satisfies the [Formula: see text]-pebbling property if [Formula: see text] pebbles can be moved to any specified vertex when the total starting number of pebbles is [Formula: see text], where [Formula: see text] is the number of vertices with at least one pebble. We show that the cycle [Formula: see text] satisfies the [Formula: see text]-pebbling property. Herscovici conjectured that for any connected graphs [Formula: see text] and [Formula: see text], [Formula: see text]. We prove Herscovici’s conjecture is true, when [Formula: see text] is an even cycle and for variety of graphs [Formula: see text] which satisfy the [Formula: see text]-pebbling property.
APA, Harvard, Vancouver, ISO, and other styles
6

Cusack, Charles A., Airat Bekmetjev, and Mark Powers. "Two-pebbling and odd-two-pebbling are not equivalent." Discrete Mathematics 342, no. 3 (March 2019): 777–83. http://dx.doi.org/10.1016/j.disc.2018.10.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gao, Ze-Tu, and Jian-Hua Yin. "The optimal pebbling of spindle graphs." Open Mathematics 17, no. 1 (November 13, 2019): 582–87. http://dx.doi.org/10.1515/math-2019-0094.

Full text
Abstract:
Abstract Given a distribution of pebbles on the vertices of a connected graph G, a pebbling move on G consists of taking two pebbles off one vertex and placing one on an adjacent vertex. The optimal pebbling number of G, denoted by πopt(G), is the smallest number m such that for some distribution of m pebbles on G, one pebble can be moved to any vertex of G by a sequence of pebbling moves. Let Pk be the path on k vertices. Snevily defined the n–k spindle graph as follows: take n copies of Pk and two extra vertices x and y, and then join the left endpoint (respectively, the right endpoint) of each Pk to x (respectively, y), the resulting graph is denoted by S(n, k), and called the n–k spindle graph. In this paper, we determine the optimal pebbling number for spindle graphs.
APA, Harvard, Vancouver, ISO, and other styles
8

Chung, Fan, Ron Graham, John Morrison, and Andrew Odlyzko. "Pebbling a Chessboard." American Mathematical Monthly 102, no. 2 (February 1995): 113. http://dx.doi.org/10.2307/2975345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chung, Fan, Ron Graham, John Morrison, and Andrew Odlyzko. "Pebbling a Chessboard." American Mathematical Monthly 102, no. 2 (February 1995): 113–23. http://dx.doi.org/10.1080/00029890.1995.11990546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kirousis, Lefteris M., and Christos H. Papadimitriou. "Searching and pebbling." Theoretical Computer Science 47 (1986): 205–18. http://dx.doi.org/10.1016/0304-3975(86)90146-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Chung, Fan R. K. "Pebbling in Hypercubes." SIAM Journal on Discrete Mathematics 2, no. 4 (November 1989): 467–72. http://dx.doi.org/10.1137/0402041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Chan, Melody, and Anant P. Godbole. "Improved pebbling bounds." Discrete Mathematics 308, no. 11 (June 2008): 2301–6. http://dx.doi.org/10.1016/j.disc.2006.06.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hurlbert, Glenn. "General graph pebbling." Discrete Applied Mathematics 161, no. 9 (June 2013): 1221–31. http://dx.doi.org/10.1016/j.dam.2012.03.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gao, Ze-Tu, and Jian-Hua Yin. "On thet-pebbling number and the2t-pebbling property of graphs." Discrete Applied Mathematics 161, no. 7-8 (May 2013): 999–1005. http://dx.doi.org/10.1016/j.dam.2012.12.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Pleanmani, Nopparat. "Graham’s pebbling conjecture holds for the product of a graph and a sufficiently large complete bipartite graph." Discrete Mathematics, Algorithms and Applications 11, no. 06 (December 2019): 1950068. http://dx.doi.org/10.1142/s179383091950068x.

Full text
Abstract:
A graph pebbling is a network optimization model for the transmission of consumable resources. A pebbling move on a connected graph [Formula: see text] is the process of removing two pebbles from a vertex and placing one of them on an adjacent vertex after configuration of a fixed number of pebbles on the vertex set of [Formula: see text]. The pebbling number of [Formula: see text], denoted by [Formula: see text], is defined to be the least number of pebbles to guarantee that for any configuration of pebbles on [Formula: see text] and arbitrary vertex [Formula: see text], there is a sequence of pebbling movement that places at least one pebble on [Formula: see text]. For connected graphs [Formula: see text] and [Formula: see text], Graham’s conjecture asserted that [Formula: see text]. In this paper, we show that such conjecture holds when [Formula: see text] is a complete bipartite graph with sufficiently large order in terms of [Formula: see text] and the order of [Formula: see text].
APA, Harvard, Vancouver, ISO, and other styles
16

Czygrinow, Andrzej, and Glenn H. Hurlbert. "On the pebbling threshold of paths and the pebbling threshold spectrum." Discrete Mathematics 308, no. 15 (August 2008): 3297–307. http://dx.doi.org/10.1016/j.disc.2007.06.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kim, Ju-Young, and Sun-Ah Kim. "PEBBLING EXPONENTS OF PATHS." Honam Mathematical Journal 32, no. 4 (December 25, 2010): 769–76. http://dx.doi.org/10.5831/hmj.2010.32.4.769.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Lourdusamy, A., and S. Saratha Nellainayaki. "DETOUR PEBBLING IN GRAPHS." Advances in Mathematics: Scientific Journal 9, no. 12 (December 6, 2020): 10583–89. http://dx.doi.org/10.37418/amsj.9.12.44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Alcón, Liliana, Marisa Gutierrez, and Glenn Hurlbert. "Pebbling in 2-Paths." Electronic Notes in Discrete Mathematics 50 (December 2015): 145–50. http://dx.doi.org/10.1016/j.endm.2015.07.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wang, Stephen S. "Pebbling and Graham's Conjecture." Discrete Mathematics 226, no. 1-3 (January 2001): 431–38. http://dx.doi.org/10.1016/s0012-365x(00)00177-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Alcón, Liliana, Marisa Gutierrez, and Glenn Hurlbert. "Pebbling in Split Graphs." SIAM Journal on Discrete Mathematics 28, no. 3 (January 2014): 1449–66. http://dx.doi.org/10.1137/130914607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Muntz, Jessica, Sivaram Narayan, Noah Streib, and Kelly Van Ochten. "Optimal pebbling of graphs." Discrete Mathematics 307, no. 17-18 (August 2007): 2315–21. http://dx.doi.org/10.1016/j.disc.2006.11.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Herscovici, D. S., B. D. Hester, and G. H. Hurlbert. "t-Pebbling and Extensions." Graphs and Combinatorics 29, no. 4 (March 24, 2012): 955–75. http://dx.doi.org/10.1007/s00373-012-1152-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Xue, Chenxiao, and Carl Yerger. "Optimal Pebbling on Grids." Graphs and Combinatorics 32, no. 3 (August 9, 2015): 1229–47. http://dx.doi.org/10.1007/s00373-015-1615-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Tamilselvi, B. "Pebbling Graphs of Various Diameter." IOSR Journal of Mathematics 10, no. 5 (2014): 24–38. http://dx.doi.org/10.9790/5728-10552438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

S, Ms Sreedevi, and Dr M. S. Anilkumar. "Pebbling In Watkins Snark Graph." International Journal of Research in Advent Technology 7, no. 2 (March 10, 2019): 247–52. http://dx.doi.org/10.32622/ijrat.72201964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hurlbert, Glenn. "On the Pebbling Threshold Spectrum." Electronic Notes in Discrete Mathematics 10 (November 2001): 146–50. http://dx.doi.org/10.1016/s1571-0653(04)00381-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Moews, David. "Optimally pebbling hypercubes and powers." Discrete Mathematics 190, no. 1-3 (August 1998): 271–76. http://dx.doi.org/10.1016/s0012-365x(98)00154-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Knessl, C. "Geometrical optics and chessboard pebbling." Applied Mathematics Letters 14, no. 3 (April 2001): 365–73. http://dx.doi.org/10.1016/s0893-9659(00)00163-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Lourdusamy, A., and S. Somasundaram. "Pebbling C5× C5using linear programming." Journal of Discrete Mathematical Sciences and Cryptography 4, no. 1 (April 2001): 1–15. http://dx.doi.org/10.1080/09720529.2001.10697915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Postle, Luke. "Pebbling Graphs of Fixed Diameter." Journal of Graph Theory 75, no. 4 (February 21, 2013): 302–10. http://dx.doi.org/10.1002/jgt.21736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Milans, Kevin, and Bryan Clark. "The Complexity of Graph Pebbling." SIAM Journal on Discrete Mathematics 20, no. 3 (January 2006): 769–98. http://dx.doi.org/10.1137/050636218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Czygrinow, Andrzej, and Glenn Hurlbert. "Girth, Pebbling, and Grid Thresholds." SIAM Journal on Discrete Mathematics 20, no. 1 (January 2006): 1–10. http://dx.doi.org/10.1137/s0895480102416374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Feng, Rongquan, and Ju Young Kim. "Pebbling numbers of some graphs." Science in China Series A: Mathematics 45, no. 4 (April 2002): 470–78. http://dx.doi.org/10.1007/bf02872335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Czygrinow, Andrzej, Glenn Hurlbert, H. A. Kierstead, and William T. Trotter. "A Note on Graph Pebbling." Graphs and Combinatorics 18, no. 2 (May 1, 2002): 219–25. http://dx.doi.org/10.1007/s003730200015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Herscovici, David S., Benjamin D. Hester, and Glenn H. Hurlbert. "Generalizations of Graham’s pebbling conjecture." Discrete Mathematics 312, no. 15 (August 2012): 2286–93. http://dx.doi.org/10.1016/j.disc.2012.03.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Gao, Ze-Tu, and Jian-Hua Yin. "Thet-pebbling number ofC5□C5." Discrete Mathematics 313, no. 23 (December 2013): 2778–91. http://dx.doi.org/10.1016/j.disc.2013.08.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Alcón, Liliana, Marisa Gutierrez, and Glenn Hurlbert. "Pebbling in semi-2-trees." Discrete Mathematics 340, no. 7 (July 2017): 1467–80. http://dx.doi.org/10.1016/j.disc.2017.02.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Srinivasan, Sakunthala, and Vimala Shanmugavel. "Adjacency energy of pebbling graphs." Journal of Physics: Conference Series 1850, no. 1 (May 1, 2021): 012089. http://dx.doi.org/10.1088/1742-6596/1850/1/012089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Herscovici, David S., and Aparna W. Higgins. "The pebbling number of C5 × C5." Discrete Mathematics 187, no. 1-3 (June 1998): 123–35. http://dx.doi.org/10.1016/s0012-365x(97)00229-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Bekmetjev, Airat, and Charles A. Cusack. "Pebbling Algorithms in Diameter Two Graphs." SIAM Journal on Discrete Mathematics 23, no. 2 (January 2009): 634–46. http://dx.doi.org/10.1137/080724277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ružička, Peter, and Juraj Waczulík. "Pebbling dynamic graphs in minimal space." RAIRO - Theoretical Informatics and Applications 28, no. 6 (1994): 557–65. http://dx.doi.org/10.1051/ita/1994280605571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lourdusamy, A., and C. Muthulakshmi. "Generalizedt-pebbling number of a graph." Journal of Discrete Mathematical Sciences and Cryptography 12, no. 1 (February 2009): 109–20. http://dx.doi.org/10.1080/09720529.2009.10698222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

冯, 荣权, and 珠英 金. "几类图的pebbling数." Science in China Series A-Mathematics (in Chinese) 32, no. 3 (March 1, 2002): 197–204. http://dx.doi.org/10.1360/za2002-32-3-197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Crull, Betsy, Tammy Cundiff, Paul Feltman, Glenn H. Hurlbert, Lara Pudwell, Zsuzsanna Szaniszlo, and Zsolt Tuza. "The cover pebbling number of graphs." Discrete Mathematics 296, no. 1 (June 2005): 15–23. http://dx.doi.org/10.1016/j.disc.2005.03.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Shiue, Chin-Lin. "Capacity restricted optimal pebbling in graphs." Discrete Applied Mathematics 260 (May 2019): 284–88. http://dx.doi.org/10.1016/j.dam.2019.01.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Cusack, Charles A., Aaron Green, Airat Bekmetjev, and Mark Powers. "Graph pebbling algorithms and Lemke graphs." Discrete Applied Mathematics 262 (June 2019): 72–82. http://dx.doi.org/10.1016/j.dam.2019.02.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Shiue, Chin-Lin. "Distance restricted optimal pebbling in cycles." Discrete Applied Mathematics 279 (May 2020): 125–33. http://dx.doi.org/10.1016/j.dam.2019.10.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Fellner, Andreas, and Bruno Woltzenlogel Paleo. "Greedy pebbling for proof space compression." International Journal on Software Tools for Technology Transfer 21, no. 1 (June 27, 2017): 71–86. http://dx.doi.org/10.1007/s10009-017-0459-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Gao, Ze-Tu, and Jian-Hua Yin. "Lemke graphs and Graham’s pebbling conjecture." Discrete Mathematics 340, no. 9 (September 2017): 2318–32. http://dx.doi.org/10.1016/j.disc.2016.09.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography