Academic literature on the topic 'Pedestrian footbridges'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pedestrian footbridges.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Pedestrian footbridges"

1

Claff, Daniel E. "Pedestrian-induced lateral excitation of footbridges." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:52927335-c9ae-4579-8c0c-d66e9b0074af.

Full text
Abstract:
This thesis investigates human-structure interactions between pedestrians and oscillating footbridges via experimental kinematic and kinetic tests. The first aspect was to improve and validate a simple frontal plane gait model, the Inverted Pendulum Model (IPM), based on kinematic and kinetic gait data for stable ground walking. Next, test subjects were recorded while crossing a laterally swaying footbridge in order to examine kinematic and kinetic walking patterns and assess the model's accuracy at predicting unstable gait. Participants were recorded walking over force plates in a gait laboratory so their normal ground forces could be compared to each other and the IPM. High inter-subject variability and low intra-subject variability were observed. The IPM did not reproduce transient components of the ground forces. An analysis of the IPM's inherent assumptions revealed that some were inappropriate. A Modified Inverted Pendulum Model (MIPM) is proposed, eliminating some of the IPM's assumptions. For all samples examined, the correlation between the real ground forces and the MIPM was higher than that of the IPM. Custom-designed force plates were installed into a novel laboratory footbridge rig. The footbridge was excited naturally by the participants' walking and the participants responded naturally to the swaying of the bridge. The participants' step widths could be predicted by the phase of the structure at the previous heel strike. At high structural amplitudes, CoP and ground force patterns were dominated by the motion of the structure. Centre of Mass (CoM) motion was found to be 'fixed-in-space' with patterns dissimilar to those anticipated by the IPM. The MIPM was typically better than the IPM at predicting ground forces on the moving base. Finally, a spherical model was compared to the two-dimensional MIPM. The model exhibited few discrepancies to the spherical kinematic data, but the predicted medial-lateral ground forces were significantly different to the force plate data.
APA, Harvard, Vancouver, ISO, and other styles
2

Zäll, Emma. "Modelling Pedestrian-Induced Vertical Vibrations of Footbridges." Thesis, Umeå universitet, Institutionen för fysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-101831.

Full text
Abstract:
A pedestrian crowd walking on a footbridge causes the footbridge to vibrate. These vibrations become an issue of serviceability and can give rise to discomfort for the pedestrians, whereby they should, to as large extent as possible, be prevented. Currently, there is a lack of reliable models to describe a dynamic load on a footbridge, due to a walking crowd. Therefore, there is a need for such models. Lately, a great amount of research has been carried out on the subject pedestrian-induced vibrations of footbridges, though most of it with focus on lateral vibrations. Conversely, this project has been performed aiming to accurately model pedestrian-induced vertical vibrations of a general footbridge. For that purpose, starting from an existing model, a somewhat improved model, comprising three sub-model, has been developed. The sub-models are: one model of the pedestrian crowd walking along the footbridge, one model describing the load from the pedestrian footstep and one model describing the interaction between the pedestrians and the footbridge. In order to get statistically reliable results, numerous simulations of the pedestrian-induced vertical vibrations of a specific footbridge have been performed, using the developed model. Averaging the results over the simulations, we could conclude that the model gives an average error of 7 %, compared to experimental data. The measured quantity giving these results was the absolute maximum value of the acceleration at the midpoint of the footbridge. The achieved dynamical response of the footbridge is qualitatively satisfying, while the quantitative error is larger than we hoped for, whereby we conclude that further improvement of the model is needed before we are able to accurately model pedestrian-induced vertical vibrations of footbridges.<br>När en folksamling går över en gångbro uppstår vibrationer i gångbron. Dessa vibrationer påverkar brons användbarhet och kan ge upphov till obehagskänsla hos fotgängarna, vilket gör att vibrationerna i största möjliga utsträckning bör motverkas. I nuläget saknas pålitliga modeller för att beskriva den dynamiska last en gångbro utsätts för när en folksamling går över den. Således föreligger ett behov att utveckla en sådan modell. Under de senaste decennierna har mycket forskning utförts inom området människoinducerade vibrationer i gångbroar. Dock har merparten av denna forskning berört endast laterala vibrationer. Detta projekt däremot, har genomförts med syftet att, med ett noggrant resultat, modellera människoinducerade vertikala vibrationer i en generell gångbro. För att uppnå detta har jag utgått från en befintlig modell och från den utvecklat en ny modell bestående av tre delmodeller. De tre delmodellerna är: en modell som beskriver hur folksamlingen rör sig över gångbron, en modell som beskriver den kraft det mänskliga fotsteget uträttar på gångbron och en modell som beskriver interaktionen mellan fotgängarna och gångbron. För att uppnå statistiskt tillförlitliga resultat har modellen som utvecklats i detta projekt använts för att utföra åtskilliga simuleringar av människoinducerade vertikala vibrationer i en specifik gångbro. Om vi medelvärdesbildar resultaten över simuleringarna framgår det att modellen som utvecklats ger ett resultat som avviker med 7 % från experimentellt data. Detta gäller för den maximala accelerationen vid gångbrons mittpunkt. Den resulterande dynamiska responsen ser kvalitativt sett bra ut, medan den kvantitativa avvikelsen är större än vi hoppats på. Därför drar vi slutsatsen att vidare förbättringar av modellen behövs för att den ska kunna användas till att på ett noggrant sätt modellera människoinducerade vertikala vibrationer i gångbroar.
APA, Harvard, Vancouver, ISO, and other styles
3

FAN, YINA, and FANGZHOU LIU. "Dynamic Analysis of Long Span Footbridges." Thesis, KTH, Bro- och stålbyggnad, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-169183.

Full text
Abstract:
A footbridge in Slussen is planned to be built and will connect the area of Gamla Stan with Sodermalm. As an increasing number of footbridges with large span tend to become more flexible and light these days, the corresponding dynamic problems due to decreased stiffness and mass draw much more attention. Specifically speaking, reduced stiffness and mass lead to smaller natural frequencies, which make the structure more sensitive to pedestrian-induced loading, especially in lateral direction. Fortunately, in this master thesis, only the vibration in vertical direction is focused due to that the footbridge in Slussen project uses enough lateral bracings to make sure that the safety of lateral vibration is kept at an acceptable level. In order to analyze dynamic response of the footbridge, the real footbridge structure is converted into a FE model by the commercial software LUSAS. In this thesis, four different kinds of critical standards are introduced, which are Sétra [8], Swedish standard Bro 2004 [9], ISO 10137 [5] and Eurocode respectively. By comparing these four criteria, Sétra and Eurocode are finally chosen to be the standard and guidelines for this project. They give the basic theories about how to model the pedestrian loading and provide critical values to check the accelerations in both vertical and lateral direction. By using FE software LUSAS, natural frequencies of the footbridge and the corresponding mode shapes can be calculated directly. Then, according to these results and relevant theories introduced by Sétra, the pedestrian loading can be modeled and the acceleration response of any specific mode can be obtained as well. Finally, based on the worst case with excessive acceleration, the methods to reduce dynamic response will be presented. Commonly, there are two ways to reduce acceleration response. One method is to increase the stiffness of the structure. However, the increased stiffness is always accompanied with increased mass of the structure. Because of this reason, the other way that installing dampers is widely used in recent years. In this thesis, the tuned mass dampers (TMDs) are introduced in detail as well as the information about the design principles of it. With important parameters known, TMDs can be added to the model to check how the accelerations can be reduced.
APA, Harvard, Vancouver, ISO, and other styles
4

Pimentel, Roberto Leal. "Vibrational performance of pedestrian bridges due to human-induced loads." Thesis, University of Sheffield, 1997. http://etheses.whiterose.ac.uk/3447/.

Full text
Abstract:
The vibrational performance of footbridges due to human-induced loads has been investigated, based on modal and pedestrian tests carried out on three prototype footbridges. Analyses using calibrated finite element models of these structures were also conducted. All test structures presented natural frequencies within the range of excitations produced by pedestrians and were therefore suitable for investigating the applicability of some current guidelines for vibration performance. In addition, the inclusion of a footbridge made of glass reinforced plastic in the test programme enabled the performance of this new type of footbridge construction to be investigated. The techniques of ambient excitation, impulse response using an instrumented hammer, and free-vibration decay were employed to obtain the modal properties of the test structures. The practicalities of using these techniques are discussed and improvements in their application are suggested. Very good agreement was obtained between the experimental and the numerical results. The calibrated numerical models were employed to investigate ways of removing the natural frequencies of the structures from the common range of pedestrian excitation, thereby improving their vibration performance. The handrails were identified as a potential way to increase the stiffness and thus the natural frequencies of a structure. In addition, use of a catenary shape or pre-camber in combination with horizontal restraint at the bearings were also shown to be useful for increasing natural frequencies since beneficial axial effects are introduced. In the case of the glass reinforced plastic footbridge, it was shown that a selective distribution of mass that could be conveniently added within the cells of the deck was the best strategy for frequency tuning. Guidelines for vibration performance are suggested, focusing on the definition of the pedestrian load and frequency ranges of interest, acceptability limits to vibration, treatment of multi-frequency component vibrations and vandal loading.
APA, Harvard, Vancouver, ISO, and other styles
5

Huang, Ming-Hui. "Dynamic characteristics of slender suspension footbridges." Queensland University of Technology, 2006. http://eprints.qut.edu.au/16450/.

Full text
Abstract:
Due to the emergence of new materials and advanced engineering technology, slender footbridges are increasingly becoming popular to satisfy the modern transportation needs and the aesthetical requirements of society. These structures however are always &quotlively" with low stiffness, low mass, low damping and low natural frequencies. As a consequence, they are prone to vibration induced by human activities and can suffer severe vibration serviceability problems, particularly in the lateral direction. This phenomenon has been evidenced by the excessive lateral vibration of many footbridges worldwide such as the Millennium Bridge in London and the T-Bridge in Japan. Unfortunately, present bridge design codes worldwide do not provide sufficient guidelines and information to address such vibrations problems and to ensure safety and serviceability due to the lack of knowledge on the dynamic performance of such slender vibration sensitive bridge structures. A conceptual study has been carried out to comprehensively investigate the dynamic characteristics of slender suspension footbridges under human-induced dynamic loads and a footbridge model in full size with pre-tensioned reverse profiled cables in the vertical and horizontal planes has been proposed for this purpose. A similar physical suspension bridge model was designed and constructed in the laboratory, and experimental testings have been carried out to calibrate the computer simulations. The synchronous excitation induced by walking has been modelled as crowd walking dynamic loads which consist of dynamic vertical force, dynamic lateral force and static vertical force. The dynamic behaviour under synchronous excitation is simulated by resonant vibration at the pacing rate which coincides with a natural frequency of the footbridge structure. Two structural analysis software packages, Microstran and SAP2000 have been employed in the extensive numerical analysis. Research results show that the structural stiffness and vibration properties of suspension footbridges with pre-tensioned reverse profiled cables can be adjusted by choosing different structural parameters such as cable sag, cable section and pretensions in the reverse profiled cables. Slender suspension footbridges always have four main kinds of vibration modes: lateral, torsional, vertical and longitudinal modes. The lateral and torsional modes are often combined together and become two kinds of coupled modes: coupled lateral-torsional modes and coupled torsionallateral modes. Such kind of slender footbridges also have different dynamic performance in the lateral and vertical directions, and damping has only a small effect on the lateral vibration but significant effect on the vertical one. The fundamental coupled lateral-torsional mode and vertical mode are easily excited when crowd walking dynamic loads are distributed on full bridge deck. When the crowd walking dynamic loads are distributed eccentrically on half width of the deck, the fundamental coupled torsional-lateral mode can be excited and large lateral deflection can be induced. Higher order vertical modes and coupled lateral-torsional modes can also be excited by groups of walking pedestrians under certain conditions. It is found that the coupling coefficient introduced in this thesis to describe the coupling of a coupled mode, is an important factor which has significant effect on the lateral dynamic performance of slender suspension footbridges. The coupling coefficient, however, is influenced by many structural parameters such as cable configuration, cable section, cable sag, bridge span and pre-tensions, etc. In general, a large dynamic amplification factor is expected when the fundamental mode of a footbridge structure is the coupled lateral-torsional mode with a small coupling coefficient. The research findings of this thesis are useful in understanding the complex dynamic behaviour of slender and vibration sensitive suspension footbridges under humaninduced dynamic loads. They are also helpful in developing design guidance and techniques to improve the dynamic performance of such slender vibration sensitive footbridges and similar structures and hence to ensure their safety and serviceability.
APA, Harvard, Vancouver, ISO, and other styles
6

Garmendia, Purroy Javier. "Serviceability assessment of footbridges when subjected to vibrations induced by running pedestrians." Thesis, KTH, Bro- och stålbyggnad, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210930.

Full text
Abstract:
Vibration serviceability in the design of footbridges is gathering enormous prominence as comfort restrictions get enhanced. Comfort verifications are often becoming critical when considering human induced dynamic loading on lightweight structures, which are increasing in slenderness and flexibility. The aim of this work was to build up understanding about the running load effects on the response of footbridges and proving that it could imply a critical load case that would require verification. Additionally, the accuracy of potential models to estimate the structural response was evaluated. Finally, aiming for a practical application, this work provides a step forward towards the possibility of adopting a simplified design methodology to be included in the future guidelines and an insight into the potential effects of a marathon event. While the walking load case is a well-studied phenomenon, not much attention has been paid to the running induced excitation. Guidelines motivate that there is no need for verification and exceptionally, some get to suggest a time domain load model definition. The interaction phenomena as well as the effects of groups of runners in the dynamic response of the structure remain still unknown. Limiting the work to the vertical component of the response and force and based on a large set of additional assumptions, experimental and numerical analyses were performed. Three footbridges were tested and subjected to tests involving different motion forms; jumping, walking and running. On the other hand, the time domain load models available in the literature were applied accounting for the spatial displacement of each of the pedestrians along the footbridge. In the most advanced of the models, aiming to account for interaction effects, the subjects were modelled as independent mechanical systems. The results derived from the experimental study helped characterizing the running load effect on the footbridge's response and proved that there may be structures in which running could comprise a critical load case. Furthermore, the numerical analyses allowed to verify the accuracy of the suggested models and the improvement that the human structure interaction effects involve. The analyses resulted in complementary sets of conclusions that built up understanding about the running load effects on footbridges; such as the sensitivity of the estimated response to the structure's modal properties and the influence of the parameters that characterize the running motion. Finally, the suggested simplified design methodology was able to estimate, with a very reasonable error for the current case study, the calculated response by the most accurate of the models. To sum up, this work serves as a motivation to include the running load case in the guidelines and establishes a starting point for further research and simplified design methodologies based on the strategy and models suggested in this work.
APA, Harvard, Vancouver, ISO, and other styles
7

Husebo, Jon F. "The search for a sculptural paradigm: the design of a pedestrian bridge." Thesis, Virginia Polytechnic Institute and State University, 1992. http://hdl.handle.net/10919/53321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Výborný, Martin. "Lávka přes řeku Úpu v Trutnově." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2015. http://www.nusl.cz/ntk/nusl-227860.

Full text
Abstract:
The goal of this thesis was to design a steel structure of a footbridge for pedestrians and cyclists over the river Úpa in Trutnov spanning 20m. Also, it was calculated with a crossing of 3,5t vehicle. Preliminary design was carried for two variants. Variant B is truss structure, structure of Variant A is carried by prestressed cable and is further developed. Main structural beams of variant A are designed to be a shape of parabole with the middle beam connected by arbitrary profiled vertical beams to supporting prestressed high yield cable. For the design of structure, SLS was the main factor so elastic check is performed for ULS.
APA, Harvard, Vancouver, ISO, and other styles
9

Hallak, Neilson John Peter. "Numerical and experimental dynamic analyses of the Vega Pedestrian bridge including seasonal effects." Thesis, KTH, Bro- och stålbyggnad, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255536.

Full text
Abstract:
As timber structures become increasingly relevant and sought after – since they enable improvements in building time while reducing a structure’s life cycle impacts – streamlining their design can have meaningful economic and environmental implications. For timber footbridges, its design is frequently governed by serviceability criteria linked to excessive vibrations. To address this in design, it is necessary to correctly characterize the structure’s dynamic properties and understand what the leading parameters in its behaviour are. This thesis studied an existing timber arch footbridge, aiming to evaluate its dynamic behaviour both with experimental measurements and with theoretical models. The influence of temperature change over different seasons was considered, particularly around its effect on the asphalt layer – whose stiffness is highly correlated to temperature. The experimental results showed high correlation between temperature and natural frequencies: a variation of +21°C reduced the natural frequency for the 1st transverse mode of the deck by as much as 30.6% while the 1st vertical mode was reduced by 17.7% (variation of 0.029Hz/°C). The damping ratio was also measured, though a definitive correlation between its value and temperature was not identified. This change in behaviour cannot be explained by the influence of the asphalt layer alone however, as there is a high degree of uncertainty around many other components of the bridge and their interactions, such as the connections. Thus, to fully characterize the influence of each component with changing temperature, further experimental tests would have to be performed, or simpler structures with fewer connections should be considered. In designing a new structure, considering the asphalt layer as an added mass is a straightforward way to treat this material at the most critical condition (i.e. no contribution to stiffness). This strategy lead to sufficiently similar results between the computational model and the experimental results at warm temperatures. The asphalt stiffness could perhaps be considered for the 1st transverse mode of the deck, since it is in this mode that the asphalt layer plays its largest contribution.
APA, Harvard, Vancouver, ISO, and other styles
10

Rotmeyer, Juliana Adele. "Publicness of elevated public space in Central, Hong Kong: an inquiry into the publicness of elevated pedestrian walkway systems asplaces and non-places." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B47300292.

Full text
Abstract:
The transformation of Hong Kong into a high-density city has created a unique three-dimensional urban fabric defined through networks of urban activity and infrastructure within tight spatial constraints of mountainous slopes and the island shoreline. In Hong Kong urban development, the government performs a dual role both as landlord and as administrator determining the development agenda. With limited space available for development high land price policies have restricted land supplies and priority is given to ‘economic space’ rather than ‘life space’. This has created a city of mobility based on consumption where privatized public spaces such as shopping malls, corporate plazas and elevated walkways are linked primarily to promote shopping. Public spaces are increasingly managed by private parties, and the degree of publicness of such spaces is often not clearly distinguishable to their potential users. Due to Hong Kong’s population density of approximately 33,000 persons/km2, practices of everyday life are increasingly limited by multiple restrictions controlling the use of spaces that only seem to be public. The district of Central, Hong Kong features an urban network of both publicly and privately maintained elevated pedestrian walkways that provide a secondary circulation space. Designed according to commercial priorities, the walkway system in Central typically links privately owned second floor lobbies with similar owners to promote consumption. Although these regulated spaces are required to allow public access 24 hours a day, pedestrian connectivity seems merely an after thought. In such private public spaces, pedestrians move between consumption nodes through a maze of displays and windows filled with luxury consumer goods. This study takes focus on the walkways in Central thus investigating publicness specifically within the context of Hong Kong's high-density urban fabric, then within a wider context of elevated pedestrian walkway systems in Asian Pacific cities. To this end, this thesis employs an empirical case study methodology consisting of a series of observational studies. Each of these studies publicness transcribed through observations of use, users and use patterns. This study identifies a distinction that underlies the discussion of publicness: that of non-place as opposed to place. The distinction of space and place relates to whether users establish personal relationships to the spaces they use and has drawn much critical attention in urban studies over the past several decades. Places typically provide the stage for social practices. The relationship between place and mobility at an elevated level has however, not been studied in detail yet. As mobile urban populations pass through places more than we dwell in them, a new type of space has emerged to facilitate a ‘frictionless passage’, or non-place. Within this realm of non-place pedestrians pass through zones of movement like passengers experiencing a lack of relationship or disconnectivity with a space. This leads to the question whether elevated pedestrian walkways consisting of spatial flows, movement and transitional zones are only capable of performing as non-places? Can relationships develop between the walkways and their users, making them more than non-places, but places? A case study forms the main part of this thesis and specifically focuses on observing aspect of movement and circulation within Central that determine perceptions of publicness. Findings resulting from this study provide an understanding of the ambiguous nature of spaces in Central. From a background study of elevated pedestrian walkways in six Asian Pacific cities, indicators of publicness are established that provide a framework to distinguish characteristics of elevated pedestrian walkways. In Central, gatherings among domestic helpers are found to contribute to the success of the elevated pedestrian walkway system into urban context. Results of this study indicate that elevated pedestrian walkways can be both places and non-places depending on the publicness of space and suggest how a transition of publicness can occur within such spaces.<br>published_or_final_version<br>Architecture<br>Doctoral<br>Doctor of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography