Journal articles on the topic 'Peierls potential'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Peierls potential.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Schoeck, G., and W. Püschl. "Dissociated dislocations in the Peierls potential." Materials Science and Engineering: A 189, no. 1-2 (1994): 61–67. http://dx.doi.org/10.1016/0921-5093(94)90401-4.
Full textMoreno-Gobbi, Ariel, Gustavo Paolini, and Fredy R. Zypman. "Peierls Potential for dislocations in fcc metals." Computational Materials Science 11, no. 3 (1998): 145–49. http://dx.doi.org/10.1016/s0927-0256(97)00212-7.
Full textFEDCHENIA, IGOR I. "MESOSCOPIC FOUNDATION OF LIFE-TO-FAILURE CURVE FOR CYCLIC FATIGUE IN THE LONG LIFE LIMIT." Fluctuation and Noise Letters 11, no. 01 (2012): 1240008. http://dx.doi.org/10.1142/s0219477512400081.
Full textDmitriev, S. V. "Discrete systems free of the Peierls–Nabarro potential." Journal of Non-Crystalline Solids 354, no. 35-39 (2008): 4121–25. http://dx.doi.org/10.1016/j.jnoncrysol.2008.06.019.
Full textPetukhov, B. V. "Dislocation tunnelling in the Peierls-Nabarro potential relief." Materials Science and Engineering: A 319-321 (December 2001): 130–32. http://dx.doi.org/10.1016/s0921-5093(01)00986-8.
Full textLeoni, F., and S. Zapperi. "Grain boundary diffusion in a Peierls–Nabarro potential." Journal of Statistical Mechanics: Theory and Experiment 2007, no. 12 (2007): P12004. http://dx.doi.org/10.1088/1742-5468/2007/12/p12004.
Full textBebikhov, Yu V., and S. V. Dmitriev. "Peierls-Nabarro potential for kinks in nonlinear chains." IOP Conference Series: Materials Science and Engineering 1008 (January 27, 2021): 012066. http://dx.doi.org/10.1088/1757-899x/1008/1/012066.
Full textKoizumi, H., H. O. K. Kirchner, and T. Suzuki. "Construction of the Peierls–Nabarro potential of a dislocation from interatomic potentials." Philosophical Magazine 86, no. 25-26 (2006): 3835–46. http://dx.doi.org/10.1080/14786430500469077.
Full textKoizumi, Hirokazu, Helmut O. K. Kirchner, and Takayoshi Suzuki. "Nucleation of trapezoidal kink pairs on a Peierls potential." Philosophical Magazine A 69, no. 4 (1994): 805–20. http://dx.doi.org/10.1080/01418619408242521.
Full textKivshar, Yuri S., and David K. Campbell. "Peierls-Nabarro potential barrier for highly localized nonlinear modes." Physical Review E 48, no. 4 (1993): 3077–81. http://dx.doi.org/10.1103/physreve.48.3077.
Full textAl Khawaja, U., S. M. Al-Marzoug, and H. Bahlouli. "Peierls–Nabarro potential profile of discrete nonlinear Schrödinger equation." Communications in Nonlinear Science and Numerical Simulation 46 (May 2017): 74–80. http://dx.doi.org/10.1016/j.cnsns.2016.10.019.
Full textKirman, Marina, Artem Talantsev, and Roman Morgunov. "Peierls “Washboard” Controls Dynamics of the Domain Walls in Molecular Ferrimagnets." Solid State Phenomena 233-234 (July 2015): 55–59. http://dx.doi.org/10.4028/www.scientific.net/ssp.233-234.55.
Full textDmitriev, S. V., P. G. Kevrekidis, A. A. Sukhorukov, N. Yoshikawa, and S. Takeno. "Discrete nonlinear Schrödinger equations free of the Peierls–Nabarro potential." Physics Letters A 356, no. 4-5 (2006): 324–32. http://dx.doi.org/10.1016/j.physleta.2006.03.056.
Full textSchoeck, Gunther. "The core structure and Peierls potential of dislocations in Al." Materials Science and Engineering: A 558 (December 2012): 162–69. http://dx.doi.org/10.1016/j.msea.2012.07.106.
Full textNovoselov, K. S., A. K. Geim, S. V. Dubonos, E. W. Hill, and I. V. Grigorieva. "Subatomic movements of a domain wall in the Peierls potential." Nature 426, no. 6968 (2003): 812–16. http://dx.doi.org/10.1038/nature02180.
Full textIunin, Yu L., and V. I. Nikitenko. "Dislocation Kink Dynamics in Crystals with Deep Peierls Potential Relief." physica status solidi (a) 171, no. 1 (1999): 17–26. http://dx.doi.org/10.1002/(sici)1521-396x(199901)171:1<17::aid-pssa17>3.0.co;2-2.
Full textDmitriev, Sergey V., Alexander S. Semenov, Alexander V. Savin, Marat A. Ilgamov, and Dmitry V. Bachurin. "Rotobreather in a carbon nanotube bundle." Journal of Micromechanics and Molecular Physics 05, no. 03 (2020): 2050010. http://dx.doi.org/10.1142/s2424913020500101.
Full textSuchkov, S. V., and A. Khare. "Soliton collision in discrete PT-symmetric systems without Peierls-Nabarro potential." Letters on Materials 1, no. 4 (2011): 222–25. http://dx.doi.org/10.22226/2410-3535-2011-4-222-225.
Full textLiu, Jie, De-Gang Zhang, and Jin Yang. "Effects of Alternating Potential on the Dimerisation of Diatomic Peierls Systems." physica status solidi (b) 153, no. 2 (1989): K131—K133. http://dx.doi.org/10.1002/pssb.2221530244.
Full textEdagawa, Keiichi, Takayoshi Suzuki, and Shin Takeuchi. "Motion of a screw dislocation in a two-dimensional Peierls potential." Physical Review B 55, no. 10 (1997): 6180–87. http://dx.doi.org/10.1103/physrevb.55.6180.
Full textSuzuki, Takayoshi, Hirokazu Koizumi, and Helmut O. K. Kirchner. "Plastic flow stress of b.c.c. transition metals and the Peierls potential." Acta Metallurgica et Materialia 43, no. 6 (1995): 2177–87. http://dx.doi.org/10.1016/0956-7151(94)00451-x.
Full textMunakata, Toyonori, and Akito Igarashi. "Renormalized Kink and Peierls Potential in a Nonlinear Lattice –Statistical Mechanical Approach–." Journal of the Physical Society of Japan 58, no. 11 (1989): 4019–24. http://dx.doi.org/10.1143/jpsj.58.4019.
Full textZhang, Hongqun, Yuanhe Huang, and Ruozhuang Liu. "Deformation Potential Approach to the Estimation of the Peierls Phase Transition Temperature." physica status solidi (b) 178, no. 1 (1993): 151–55. http://dx.doi.org/10.1002/pssb.2221780114.
Full textMughal, A., D. Weaire, and S. Hutzler. "Peierls-Nabarro potential for a confined chain of hard spheres under compression." EPL (Europhysics Letters) 135, no. 2 (2021): 26002. http://dx.doi.org/10.1209/0295-5075/ac1a24.
Full textSuzuki, Takayoshi, and Hirokazu Koizumi. "Inertial motion and multi-kink pair formation of dislocations on the Peierls potential." Philosophical Magazine A 67, no. 5 (1993): 1153–60. http://dx.doi.org/10.1080/01418619308224764.
Full textRakhmatullina, Zh G., P. G. Kevrekidis, and S. V. Dmitriev. "Non-symmetric kinks in Klein-Gordon chains free of the Peierls-Nabarro potential." IOP Conference Series: Materials Science and Engineering 447 (November 21, 2018): 012057. http://dx.doi.org/10.1088/1757-899x/447/1/012057.
Full textDmitriev, S. V., P. G. Kevrekidis, and N. Yoshikawa. "Discrete Klein–Gordon models with static kinks free of the Peierls–Nabarro potential." Journal of Physics A: Mathematical and General 38, no. 35 (2005): 7617–27. http://dx.doi.org/10.1088/0305-4470/38/35/002.
Full textGbemou, Kodjovi, Jean Marc Raulot, Vincent Taupin, and Claude Fressengeas. "Continuous Modeling of Dislocation Cores Using a Mechanical Theory of Dislocation Fields." Materials Science Forum 879 (November 2016): 2456–62. http://dx.doi.org/10.4028/www.scientific.net/msf.879.2456.
Full textLe, Duc Anh, Anh Tuan Hoang, and Toan Thang Nguyen. "Charge Ordering under a Magnetic Field in the Extended Hubbard Model." Modern Physics Letters B 17, no. 20n21 (2003): 1103–10. http://dx.doi.org/10.1142/s0217984903006153.
Full textKireîtov, V. R. "The stationary translation-invariant Peierls equation of the theory of radiation transport in the space of termpered distributions and some properties of the Peierls potential. II." Siberian Mathematical Journal 38, no. 4 (1997): 699–714. http://dx.doi.org/10.1007/bf02674575.
Full textKireĭtov, V. R. "The stationary translation-invariant peierls equation of the theory of radiation transport in the space of tempered distributions and some properties of the Peierls potential. I." Siberian Mathematical Journal 38, no. 3 (1997): 455–70. http://dx.doi.org/10.1007/bf02683834.
Full textKERIMOV, AZER. "ON THE UNIQUENESS OF GIBBS STATES IN THE PIROGOV–SINAI THEORY." International Journal of Modern Physics B 20, no. 15 (2006): 2137–46. http://dx.doi.org/10.1142/s0217979206034534.
Full textPetukhov, B. V. "Tunneling Nucleation of Kink Pairs on Dislocations in the Peierls Potential Relief with Random Distortions." Low Temperature Physics 44, no. 9 (2018): 912–17. http://dx.doi.org/10.1063/1.5052676.
Full textFarber, B. Ya, S. Y. Yoon, K. P. D. Lagerlöf та A. H. Heuer. "Microplasticity during High Temperature Indentation and the Peierls Potential in Sapphire (α-Al2O3) Single Crystals". Physica Status Solidi (a) 137, № 2 (1993): 485–98. http://dx.doi.org/10.1002/pssa.2211370219.
Full textKosugi, T., and T. Kino. "A new internal friction peak and the problem of the Peierls potential in f.c.c. metals." Materials Science and Engineering: A 164, no. 1-2 (1993): 368–72. http://dx.doi.org/10.1016/0921-5093(93)90695-b.
Full textVentelon, Lisa, F. Willaime, E. Clouet, and D. Rodney. "Ab initio investigation of the Peierls potential of screw dislocations in bcc Fe and W." Acta Materialia 61, no. 11 (2013): 3973–85. http://dx.doi.org/10.1016/j.actamat.2013.03.012.
Full textПетухов, Б. В. "Механизм обусловленного динамической примесной подсистемой аномального поведения пластического течения материалов с высоким кристаллическим рельефом". Физика твердого тела 63, № 12 (2021): 2126. http://dx.doi.org/10.21883/ftt.2021.12.51674.157.
Full textAnglade, Pierre-Matthieu, Gérald Jomard, Gregory Robert, and Gilles Zérah. "Computation of the Peierls stress in tantalum with an extended-range modified embedded atom method potential." Journal of Physics: Condensed Matter 17, no. 12 (2005): 2003–18. http://dx.doi.org/10.1088/0953-8984/17/12/022.
Full textLETELIER, JORGE RICARDO. "VIBRONIC EXTENDED HÜCKEL THEORY AND THE FORCES IN MOLECULES." International Journal of Modern Physics C 10, no. 07 (1999): 1177–92. http://dx.doi.org/10.1142/s0129183199000966.
Full textBebikhov, Yuri V., Sergey V. Dmitriev, Sergey V. Suchkov, and Avinash Khare. "Effect of damping on kink ratchets in the Klein–Gordon lattice free of the Peierls–Nabarro potential." Physics Letters A 374, no. 13-14 (2010): 1477–80. http://dx.doi.org/10.1016/j.physleta.2010.01.044.
Full textFitzgerald, S. P. "Structure and dynamics of crowdion defects in bcc metals." Journal of Micromechanics and Molecular Physics 03, no. 03n04 (2018): 1840003. http://dx.doi.org/10.1142/s2424913018400039.
Full textChen, Shi, Jianjun Liu, Hongjie Luo, and Yanfeng Gao. "Calculation Evidence of Staged Mott and Peierls Transitions in VO2 Revealed by Mapping Reduced-Dimension Potential Energy Surface." Journal of Physical Chemistry Letters 6, no. 18 (2015): 3650–56. http://dx.doi.org/10.1021/acs.jpclett.5b01376.
Full textEdagawa, Keiichi, Takayoshi Suzuki, and Shin Takeuchi. "Thermally Activated Motion of a Screw Dislocation Overcoming the Peierls Potential for Prismatic Slip in an hcp Lattice." Japanese Journal of Applied Physics 37, Part 1, No. 7A (1998): 4086–91. http://dx.doi.org/10.1143/jjap.37.4086.
Full textVentelon, Lisa, та F. Willaime. "Core structure and Peierls potential of screw dislocations in α-Fe from first principles: cluster versus dipole approaches". Journal of Computer-Aided Materials Design 14, S1 (2007): 85–94. http://dx.doi.org/10.1007/s10820-007-9064-y.
Full textKireîtov, V. R. "The multivelocity Peierls potential in the problem of refining the classical fundamental acoustic potential near the source of sound in a homogeneous maxwellian gas." Siberian Mathematical Journal 40, no. 4 (1999): 704–25. http://dx.doi.org/10.1007/bf02675671.
Full textTakeuchi, Shin, Takayoshi Suzuki, and Hirokazu Koizumi. "Interpretation of Enhanced Plasticity in Superconducting Tantalum in Terms of Enhanced Quantum Tunneling of Dislocation Through the Peierls Potential." Journal of the Physical Society of Japan 69, no. 6 (2000): 1727–30. http://dx.doi.org/10.1143/jpsj.69.1727.
Full textPi, Z. P., Q. H. Fang, B. Liu, Y. Liu, and P. H. Wen. "Effect of a generalized shape Peierls potential and an external stress field on kink mechanism in a continuum model." International Journal of Plasticity 90 (March 2017): 267–85. http://dx.doi.org/10.1016/j.ijplas.2017.01.008.
Full textDIVAKARAN, P. P., and A. K. RAJAGOPAL. "QUANTUM THEORY OF LANDAU AND PEIERLS ELECTRONS FROM THE CENTRAL EXTENSIONS OF THEIR SYMMETRY GROUPS." International Journal of Modern Physics B 09, no. 03 (1995): 261–94. http://dx.doi.org/10.1142/s0217979295000136.
Full textКоршунова, А. Н., and A. N. Korshunova. "Two Types of Oscillations of the Holstein Polaron Uniformly Moving Along a Polynucleotide Chain in a Constant Electric Field." Mathematical Biology and Bioinformatics 14, no. 2 (2019): 447–87. http://dx.doi.org/10.17537/2019.14.447.
Full textKorshunova, A. N., and V. D. Lakhno. "Two Types of Oscillations of the Holstein Polaron Uniformly Moving Along a Polynucleotide Chain in a Constant Electric Field." Mathematical Biology and Bioinformatics 14, no. 2 (2019): 477–87. http://dx.doi.org/10.17537/2019.14.477.
Full text