Dissertations / Theses on the topic 'Peptide antimicrobiens'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Peptide antimicrobiens.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Cheng, Didier. "Étude comparative des peptides antimicrobiens et des peptides pénétrants." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS294.
Full textRecently, therapeutic peptides has particularly retained attention of pharmaceutical industries because of their diversified biological activity and their high specificity. Among them, there are noticeably antimicrobial peptides (AMPs), which can straightly kill microorganisms such as pathogenic bacteria and fungi by disrupting prokaryote cell membranes and induce minimal bacterial resistance unlike commonly used antibiotics. Contrastingly, cell-penetrating peptides (CPPs) are distinguished by their ability to cross eukaryote cell membranes without causing any damages, a property that can be used for intracellular drug delivery. Despite their differences, AMPs and CPPs are both membranotropic peptides which are similar in many aspects considering that they might share similar sizes, polycationic charges and secondary structures such as α-helical structure. This project proposes to determine the parameters that might confer AMP versus CPP properties to a peptide sequence. To achieve this purpose, short sequences inspired from a natural AMP were slightly modified by amino acid substitution to promote cell penetration have been designed and synthesized in order to study their antimicrobial activities and uptake potency in mammalian cells. New peptides varying in size, charge and hydrophobicity were obtained. The study demonstrated that antimicrobial and cell-penetration activities can respectively be induced by a small increase in hydrophobicity and global charge from a non-active peptide
Petit, Vanessa. "Peptides antimicrobiens de procaryotes et d'eucaryotes : des structures aux mécanismes d'action." Paris 6, 2009. http://www.theses.fr/2009PA066291.
Full textDuquesne, Sophie. "Peptides antimicrobiens des entérobactériesEtude de la voie de maturation et du mécanisme d'import de la microcine J25, peptide antimicrobien inhibiteur de l'ARN polymérase." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2007. http://tel.archives-ouvertes.fr/tel-00193192.
Full textDuquesne, Sophie. "Peptides antimicrobiens des entérobactéries : étude de la voie de maturation et du mécanisme d'import de la microcine J25, peptide antimicrobien inhibiteur de l ARN polymérase." Paris 6, 2007. http://www.theses.fr/2007PA066072.
Full textThomas, Xavier. "Peptides antimicrobiens des entérobactéries : la microcine E492 est un peptide-sidérophore qui parasite les voies d'import du fer." Paris 6, 2005. http://www.theses.fr/2005PA066075.
Full textBlond, Alain. "Les microcines C51 et J25, peptides antimicrobiens d'Entérobactéries : études structurales par RMN et modélisation moléculaire : relations structure/activité." Paris 6, 2002. http://www.theses.fr/2002PA066040.
Full textShyam, Radhe. "Cationic amphipathic peptoid oligomers as antimicrobial peptide mimics." Thesis, Université Clermont Auvergne (2017-2020), 2018. http://www.theses.fr/2018CLFAC048/document.
Full textLiving organisms produce antimicrobial peptides (AMPs) to protect themselves against microbes.The growing problem of antimicrobial resistance calls for new therapeutic strategies and the natural AMPs have shown ground-breaking potential to address that issue. They show broad-spectrum activity and their main mechanism of action by bacterial cell membrane disruption implies low emergence of resistance which makes them potent candidates for replacing conventional antibiotics. Nevertheless, few hurdles are impeding their use, notably poor bioavailability profile. Some of these limitations can be overcome by developing peptidomimetics of AMPs which exhibit antibacterial activities together with enhanced therapeutic potential. Peptoids (i.e. N-alkyl glycine oligomers) adopting cationic amphipathic helical structures are mostly competent AMP mimetics. From a conformational point of view, peptoids are fundamentally more flexible than peptides primarily due to the cis/trans isomerism of N,N-disubstituted amides but studies in this area have shown that cis amide conformation can be controlled by careful choice of side-chain to set a PolyProline I-type helical structure of peptoids. In this thesis, the genesis of novel amphipathic cationic peptoids carrying cis-directing tert-butyl and/or triazolium-type side-chains and their untapped potential to act against bacteria will be discussed comprehensively. First, the solutionphase synthesis of tert-butyl-based oligomers was developed. Second, novel method of solid-phase submonomer synthesis was optimised to access 1,2,3-triazolium-based oligomers. Then, the synthesised cationic oligomers were evaluated for their antibacterial potential, followed by antibiofilm activity and cell selectivity assays. In the end, to have insights on the mode of action of amphipathic peptoids, microscopy was carried out
Vanhoye, Damien. "Analyse évolutive, moléculaire et fonctionnelle des peptides antimicrobiens des amphibiens." Paris 6, 2004. http://www.theses.fr/2004PA066326.
Full textMutschler, Angela. "Nouveaux concepts de revêtements antimicrobiens à base de peptides naturels et polypeptides appliqués aux dispositifs médicaux." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAE025/document.
Full textNowadays, about half of hospital-acquired infections are due to medical devices implantation. In this context, we have developed two types of antimicrobial coatings adapted to the biomedical field. The first one is based on peptide composed of an anchoring sequence, an antimicrobial sequence and a pathogen-specific cleavage site and grafted on the substrate. The antimicrobial site will be released only in the presence of the pathogen through the use of the cleavage site. Despite of the success of peptide grafting, some parameters must be optimized in order to obtain an antimicrobial effect. The second antimicrobial coating concept is based on the layer-by-layer technique by using poly(L-arginine) (PAR) and hyaluronic acid (HA). The effect of the size of PAR chains on the antimicrobial character of the coating was investigated and it is proven that only films composed with PAR of 30 residues present an antibacterial effect. Moreover HA is the only polyanion leading to such antimicrobial multilayer. It is also demonstrated that this antimicrobial properties is maintained when other cationic homopolypeptides are used in association with HA in layer-by-layer films
Chiumento, Steve. "Les bactériocines RumC, une nouvelle famille de peptides antimicrobiens comme alternative aux antibiotiques conventionnels." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAV018/document.
Full textAntibiotics are drugs that have changed the way we approach bacterial infections and have become one of the symbols of modern medicine. However, their widespread use has led to the emergence of multiresistant bacterial strains. This problem is undoubtedly one of the major challenges facing today's medicine. Knowing that bacteria evolve at a faster rate than the discovery of new antibiotics, it is urgent to find alternative approaches. It has been shown that these same bacteria are capable of secreting antimicrobial peptides, the bacteriocins. These macromolecules have a high structural diversity and are very effective in combating a large number of pathogenic strains in a specific way. Bacteriocins have immense potential in the agro-food and pharmaceutical sectors. Our project focuses on the bacteriocins RumCs produced by a strain derived from Ruminococcus gnavus, a strict anaerobic bacterium of the human intestinal microbiota. The work presented in this manuscript concerns the development of a heterologous expression and maturation system in E. coli of the bacteriocin RumC1. The biochemical characterization of the RumC1 peptide shows that the RumCs bacteriocins belong to the family of sactipeptides for which the biosynthesis step involves a radical-SAM enzyme. The sactipeptides have in their peptide sequences one or more thioether bridges between a cysteine and the alpha carbon of a partner amino acid. RumC1 contains 4 thioether bridges which gives it an original structure in double hairpin. The biological activity of RumC1 shows that this peptide is effective against a broad spectrum of Gram-positive bacteria including resistant pathogens such as S.aureus and E. faecalis. In these studies, we did not note any significant toxicity of RumC1 on different human cell lines nor observed resistance phenomena. Current work aims to define the mode of action of RumC1 and to evaluate the biological activity of RumC1 in an in vivo context of infection in mice
Przybylski, Rémi. "Stratégie de production, de fractionnement et de valorisation du peptide antimicrobien α137-141 à partir de l’hémoglobine et du cruor bovins." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10028/document.
Full textBovine cruor, a slaughterhouse by-product, is mainly composed by hemoglobin which is a rich source of antimicrobial peptides obtained by pepsic hydrolysis. The goal of this thesis is to valorize cruor by producing, separating and applying an antimicrobial peptide (α137-141) as a natural preservative on meat. Cruor hydrolysis showed the same enzymatic mechanism zipper and the same peptide production as observed during purified hemoglobin hydrolysis with the used parameters (pH 3.5, 23°C, E/S = 1/11). Hydrolysis produced rapidly the α137-141 and was carried out at high hemoglobin concentrations (1, 2, 5 and 8% w/v). Several hydrolysis degrees (DH) were investigated on the selective α137-141 separation by electrodialysis with ultrafiltration membranes (EDUF). The results showed that the most appropriated DH was of 5% to enrich fractions in α137-141. After that, the increase of α137-141 purity was studied by pH controlling. The best control was at pH 9 with a α137-141 purity increase of 75-folds. Then, the increase of feed peptide concentration (from 1 to 8% w/v) was studied on the α137-141 recovery to obtain the best by-product valorization. The 8% feed peptide concentration allowed a recovered concentration increase of 4-folds. This fraction was applied on meat as preservative and showed powerful antimicrobial effects against bacteria, yeasts and molds during 14 days under 4°C and a reduction of lipid oxidation to protect meat against rancidity. These effects were close to those of butylated hydroxytoluene (BHT), known to protect food, and showed that the fractions enrich in α137-141 by EDUF would be promising and natural preservative to protect meat and its derivatives
Tagounits, Arezki. "Caractérisation physicochimique des complexes plasmide-peptide cationique et leur internalisation dans diverses lignées cellulaires tumorales humaines." Paris 13, 2011. http://www.theses.fr/2011PA132042.
Full textBy the use of several physicochemical and biological methods, we have analyzed the capability of three minimalist cationic peptides, belonging to LK and LR families (where L : leucine, K : lysine, R : arginine), to interact with plasmids, and to facilitate their internalization in different human tumour cells. The complexation of three peptides, two 15-mers (LK15 and LR15) and a 19-mer (LK19) with plasmids has been proven by electrophoresis as a function of the peptide-plasmid charge ratio. The isoelectric points were determined by zeta potential easurments, and the size of particles formed in solution was estimated by light scattering. Circular dichroism and Raman spectra could provide information on the secondary structure of each partner as well as on the interaction sites. On the other hand, we have shown that the internalization efficiency depends on the used peptide and increases in the order: LK15 < LK19 < LR15. The effect of other parameters such as charge ratio, plasmid size, and cell lines, was discussed. The relevant factor to be mentioned is the low toxicity of the 15-mer peptides. In vitro results reveal several ways of endocytosis and the major role played by glycosaminoglycans
Guesdon, William. "La cellule épithéliale intestinale dans l'induction des réponses immunitaires au cours de l'infection par cryptosporidium parvum : rôle des peptides antimicrobiens et des microARN." Thesis, Tours, 2014. http://www.theses.fr/2014TOUR4045.
Full textThe aim of my thesis was to study in the mouse model, the intestinal epithelial cell (IEC) response during neonatal Cryptosporidium parvum infection with a focus on microRNAs (miR) and antimicrobial peptides (AMP) response. C. parvum is a protozoan parasite that affects preferentially newborn, young or immunocompromised adult and completes its life cycle only in IECs. In a first part, we studied the expression of miRs in IEC during C. parvum infection. We compared the responses between in vitro infected IEC and IECs purified from infected neonatal mice and observed a decrease of miR-181d-5p expression. This reduced expression of miR-181d-5p was associated with an upregulation of the mRNA coding for two putative targets OPG and BCL2 which are anti-apoptotic agents that may favor parasite survival in IEC. This functional relation between miR-181d-5p and OPG was next demonstrated by using reporter dual-luciferase assay. In a second part of my thesis, we characterized the AMP expression profile and studied their role during C. parvum infection in neonates. We showed that infection up-regulates a broad expression of AMP except for CCL20 and CRAMP cathelicidin for which mRNA expression was decreased. We next choose to focus our work on these two molecules and reported that administration of CCL20 and CRAMP to infected neonatal mice significantly reduced the number of parasites in the intestine through a direct killing activity on free stages of the parasite. As the decreased expression of these two AMPs during infection seems to favor the development of the parasite, this could be an escape mechanism developed by C. parvum that may occur through the modulation of miR
Sonthi, Molruedee. "Structure, polymorphisme et régulation de l'expression de la mytimycine, peptide antifongique de la moule Mytilus." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20105/document.
Full textAntimicrobial peptides are crucial elements of the innate immune mechanisms developed to fight microorganisms. Among them are antifungal peptides from which one, named mytimycin (MytM), had been partially reported in the blue mussel, Mytilus edulis. The purposes of this thesis were to fully characterize MytM in M. edulis and M. galloprovincialis and to understand how this peptide participates in mussel immunity. Results showed (i) the diversity of MytM mRNA and translated amino acid sequences according to geographic origin of mussels, probably resulting from adaptation to their environments; (ii) that 2 different MytM genes are simultaneously present in the genome of the same individual mussel; (iii) that expression level of MytM gene depends on the nature of the challenge, suggesting specific recognition processes; and (iv) MytM expression level was different from one mussel to another. In conclusion, MytM appeared to play a prominent and specific role in mussels. The advancement of our works added new data to the knowledge of innate immunity in invertebrates
Tambadou, Fatoumata. "Étude de la production de peptides non-ribosomiques chez des souches de Paenibacillus." Thesis, La Rochelle, 2014. http://www.theses.fr/2014LAROS019/document.
Full textColistin is a cationic cyclic polypeptide antibiotic belonging to the polymyxin family and targeting bacterial membranes. It is produced by Paenibacillus polymyxa through a Nonribosomal Peptide Synthetase (NRPS) mechanism. In the context of cystic fibrosis (CF), colistin is used for the treatment of lung infections caused by multiresistant Gram-negative bacteria including Pseudomonas aeruginosa. Unfortunately, this molecule is also known for its strong side effects. So far, genetic systems controlling the production of polymyxins were little known. In this study we characterized by High-resolution LC-MS the antimicrobial molecules, including colistins, of a new Paenibacillus. A genomic library of this strain was constructed and screened to identify genes involved in the production of these antibiotics. A degenerated PCR screening was performed and allowed to select four clones in the genomic library. In silico study allowed to identify a new NRPS gene cluster responsible for the biosynthesis of colistin variants. In the future, this work might allow the harnessing of the production of colistin derived structures, more active and/or showing fewer side effects. In parallel, a second investigation was performed in order to find new NRPS genes in a collection of one hundred intertidal mudflat bacterial isolates. This work has allowed the identification of new sequences and the characterization of a new antimicrobial producing strain
Fischer, Natalie. "The role of acetylation in the regulation of antimicrobial peptide gene expression in the human intestine." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066276/document.
Full textAntimicrobial peptides (AMPs) are conserved molecules of the innate immune system and actively kill a wide variety of microorganisms. In the intestine AMPs secreted by the epithelium protect against pathogens and support homeostasis with the microbiota. Their importance becomes clear, as their expression has been correlated with susceptibility to infection and a multitude of severe pathologies. Some AMPs are expressed constitutively, while others are inducible. The regulation of inducible AMPs expression is widely undiscovered. The role of chromatin remodeling and histone modifications, as an additional regulatory level to transcription factor activation, in the expression of inducible genes is becoming more and more clear. The aim of this work was to investigate the (epi)genetic mechanisms, which are involved in the regulation of AMPs gene expression in the intestine. By the use of specific inhibitors of chromatin modifying enzymes, in an in vitro model of intestinal epithelial cells challenged with Escherichia coli strains, we discovered the importance of acetylation in the regulation of these genes. Inhibition of histone deacetylase enzymes significantly enhanced the bacteria-induced expression of the beta-defensin-2 and other AMPs, while the expression of the interleukin 8 and other inflammatory genes was not influenced. Furthermore, we detailed the molecular mechanism, especially involvement of the transcription factor NF-κB and the histone acetyltransferase p300 in this observation. This discovery presents a mechanism of (epi)genetic enhancement of AMPs expression, dissociated from the pro-inflammatory response
Andrault, Pierre-Marie. "Rôle des cathepsines à cystéine dans la régulation du peptide antimicrobien LL-37 lors de pathologies inflammatoire chroniques pulmonaires." Thesis, Tours, 2015. http://www.theses.fr/2015TOUR4035/document.
Full textDuring chronic inflammatory lung diseases like cystic fibrosis or COPD, proteases/antiproteases imbalance leads to pulmonary tissue degradation and compromise antimicrobial barrier. Cysteine cathepsins are involved in the proteolytic inactivation of several lung antimicrobial peptides (AMPs) such as SLPI, lactoferrin and β- defensins -2 and -3 during emphysema or cystic fibrosis. During this thesis, we studied the ability of cathepsins B, K, L and S to degrade LL-37, which is an important AMP in lung immunity. Only cathepsins K and S degrade readily LL-37 and inactivate its antimicrobial property. Conversely, LL-37 is a competitive inhibitor of cathepsin L. Beside, lung expression of human cathepsin S is significantly increased in smokers with or without COPD compared to non-smokers. Cigarette smoke that is a major source of oxidative stress significantly increases the expression and activity of cathepsin S. Despite an unfavorable oxidative environment, cathepsin S retains its proteolytic activity toward LL-37 and thus could participate to COPD exacerbation
Zaet, Abdurraouf. "An alternative to conventional antibiotics : a new antimicrobial peptide derived from chromogranin A." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAE004/document.
Full textAntimicrobial peptides (AMPs) represent important components of innate immunity. They are present in most multicellular organisms and constitute the first line of defense against infections. They exhibit a large spectrum of activities, a non-toxicity against host cells and synergistic effects with conventional antibiotics. Therefore, they can be as excellent candidates in the development of new antibiotics to fight pathogens resistance. Concerning to AMPs derived from chromogranin A (CgA), Cateslytin (Ctl) represents a new antibiotic, which displays direct antimicrobial activities and immunomodulatory properties. In my thesis, I aimed to characterize the epipeptide D-Ctl, where all (L-conformation) residues were replaced by (D-conformation) residues. Firstly, antimicrobial assays were performed, cells viability, immune assays, and the stability in bacterial supernatant was tested. The efficiency of D-Ctl was compared with L-Ctl against bacterial strains, then MICs were determined and compared with combinations in presence of classical antibiotics in order to show synergistic or/and additive effect. Moreover, D-Ctl does not trigger resistance in E. coli. Also, cytotoxicity assays were performed on several types of cell line and PBMCs. Inflammatory effects were tested too. Then, bacterial model E. coli MDR was used for physicochemical analysis such as epifluorescence microscopy, ATR-FTIR spectroscopy and atomic force microscopy. Finally, D-Ctl patent has been deposited in 2016 under the number EP 16306539.4 “New D-configured cateslytin peptide”. To conclude: D-Ctl is able to rapidly kill a broad spectrum of microorganisms, and it could potentiate the antimicrobial effect of several antibiotics
Rippa, Sonia. "Interactions peptaïbols/plantes : étude de l'effet de l'alaméthicine, toxine ou éliciteur de réactions de défense, chez la plante modèle Arabidopsis thaliana." Compiègne, 2007. http://www.theses.fr/2007COMP1688.
Full textPeptaibols are helicoidal amphipathic peptides produced by soil fungi. They form pores allowing the passage of ions through plasmic membranes. Recent work highlighted their elicitor properties in plants. We studied the effect of the peptaibol alamethicin on Arabidopsis thaliana. Moderate concentrations of alamethicin induce physiological effects belonging to the plant hypersensitive response. Higher concentrations are toxic and quickly induce a characteristic ribosomal RNA cleavage. The properties of alamethicin in plants are probably related to its interaction with the plasmic membrane, to the presence of a-aminoisobutyric acid in its sequence and to its resistance to plant proteases. The use of a fluorescent analogue of alamethicin might suggest the existence of a secondary intracellular target
Van, Zoggel Johanna. "Dermaseptine B2 : un peptide antimicrobien issue des sécrétions de peau de Phyllomedusa bicolore avec des activités antitumorales et angiostatiques." Thesis, Paris Est, 2010. http://www.theses.fr/2010PEST0051.
Full textThe skin secretions of neotropical and South American frogs contains large amounts of a widerange of biological active molecules. Commonly studied are peptides with antimicrobialactivities. In this study we have postulated that the skin secretions from the South Americanfrog Phyllomedusa bicolor contain molecules with antitumor and angiostatic activities. Twowell known cationic alpha helical antimicrobial peptides of the dermaseptin (Drs) family wereidentified to have these activities: Drs B2 and Drs B3. Both peptides inhibited proliferationand colony formation of various tumor cell lines, and the proliferation and capillary formationof endothelial cell in vitro. Furthermore, Drs B2 inhibited tumor growth in a PC3 xenograftmodel in vivo.Research on the mechanism of action of Drs B2 on tumor cells PC3 demonstrated a rapidincreasing amount of cytosolic LDH, no activation of caspase-3, -9 or -8, and no changes inmitochondrial membrane potential. These data together indicate that Drs B2 does not act byapoptosis but possibly could fix to the tumor cell surface, disrupt the cellular plasmamembrane leading to its death by necrosis.In conclusion, Drs B2 could be an new interesting and promising pharmacological leadermolecule for the treatment of cancer. Its antitumor and angiostatic activities, especially itsselective targeting of tumoral cells with micro molar concentrations propose Drs B2 as anpotential candidate for the development of a new efficient targeting therapy against cancer
Nagant, Carole. "Contribution à la recherche de nouveaux agents antibactériens actifs sur les biofilms de P. aeruginosa." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209472.
Full textDans la première partie de notre travail, nous avons caractérisé différentes souches de P. aeruginosa, comprenant des souches de référence et des souches cliniques isolées des expectorations de patients atteints de mucoviscidose. Les propriétés d’adhésion, de développement des biofilms, de mobilité, de production de rhamnolipides, l’activité protéolytique et la production d’acylhomosérine lactones se sont avérées très différentes au sein des souches. De plus, les caractéristiques phénotypiques des souches ne constituaient pas une valeur prédictive de la sensibilité des bactéries à un antibiotique, soulignant la nécessité d’étudier un panel large de souches pour caractériser l’effet d’un agent antimicrobien.
Dans la lutte pour combattre les infections et l’apparition de souches multirésistantes, de nouvelles stratégies thérapeutiques sont développées. Les céragenines sont une famille de molécules synthétisées dans le but de mimer la structure amphipatique des peptides antimicrobiens responsable de leur activité bactéricide importante. Contrairement à ces derniers, les céragenines maintiennent leur activité dans des conditions physiologiques.
Dans la deuxième partie de ce travail, nous avons étudié l’effet d’un composé antimicrobien appartenant à la famille des céragenines, le CSA-13, sur les différentes souches de P. aeruginosa. Nous avons confirmé le potentiel bactéricide du CSA-13 sur des cultures planctoniques de P. aeruginosa. Nous avons démontré qu’une concentration très faible et non cytotoxique de CSA-13 (10 fois inférieure à la CMI), inhibait la formation d’un biofilm de 3 souches de P. aeruginosa sur les 8 testées. L’étude du potentiel zêta des souches nous a permis de proposer un mécanisme basé sur des interactions électrostatiques pour expliquer l’action préventive du CSA-13 sur le développement du biofilm. Une concentration plus importante de CSA-13 a éradiqué l’entièreté d’un biofilm âgé de 24 h pour 7 des 8 souches étudiées. Six souches ont été évaluées dans un biofilm mature et toutes ont répondu au composé avec des concentrations croissantes ou un temps d’exposition du composé au biofilm plus important. Aucune résistance au CSA-13 n’est apparue durant le traitement. L’usage de la microscopie confocale à balayage laser a confirmé la rapidité et l’efficacité d’action du CSA-13 sur un biofilm robuste et complexe de P. aeruginosa par visualisation dans le temps et dans l’espace de l’effet du CSA-13 sur le biofilm. L’ensemble des observations de ce travail nous a permis de conclure que 7 sur les 8 souches de P. aeruginosa étaient sensibles au CSA-13, soit à un stade initial de la formation du biofilm, soit après maturation du biofilm. Ces résultats soulignent le potentiel thérapeutique important, envers tous les stades de formation et de développement du biofilm, de composés à structure amphiphile comme le CSA-13, avec une face cationique favorisant les interactions avec les membranes bactériennes chargées négativement et une face hydrophobe contribuant à la perturbation de ces membranes.
Le traitement de référence actuel envers les infections à P. aeruginosa, chez les patients souffrant de mucoviscidose, consiste en l’administration par inhalation de tobramycine commercialisée sous le médicament TOBI®. Nous avons investigué l’intérêt d’une administration combinée de l’aminoglycoside avec le CSA-13. Un bénéfice évident de la combinaison de CSA-13 et de tobramycine est apparu dans cette étude aussi bien sur biofilm jeune que mature. Dans certaines conditions, le CSA-13 semblait même prévenir la résistance à la tobramycine. Il sera cependant indispensable de concevoir des expériences in vivo pour confirmer l’intérêt du CSA-13 ou d’une co-administration de CSA-13 et de la tobramycine dans le traitement d’infections chroniques à P. aeruginosa chez des patients atteints de mucoviscidose.
Nos études in vitro sur cellules eucaryotes humaines ont mis en évidence une toxicité membranaire et mitochondriale provoquée par le CSA-13 lors de l’administration de concentrations importantes. L’association du CSA-13 avec l’acide pluronique F-127 a permis de réduire significativement la toxicité du composé sur les membranes. Cependant, l’association n’a pas diminué les effets délétères exercés par le CSA-13 sur l’activité mitochondriale. Les études devront donc se poursuivre afin d’affiner la compréhension du mécanisme d’action des céragenines et de pouvoir déceler des dérivés moins toxiques. L’évaluation de l’activité in vivo du composé devrait nous éclairer quant à la fenêtre thérapeutique utilisable en clinique.
\
Doctorat en Sciences biomédicales et pharmaceutiques
info:eu-repo/semantics/nonPublished
Benmoussa, Khaddouj. "Impact du peptide antimicrobien issu du venin de la fourmi Tetramorium bicarinatum P17 sur la polarisation et l'acquisition des fonctions antifongiques des macrophages humains vis-à-vis de Candida albicans." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30379/document.
Full textCationic antimicrobial peptides (AMPs) are evolutionary small and amphipatic conserved molecules which are involved in the immune defense of a wide range of organisms, including bacteria, insects, plants and vertebrates. Beside their direct microbicidal activity against pathogens, most of them are known to exert immunomodulatory functions on innate and adaptive immune cells. Here we evaluated the immunomodulatory properties of an original cationic AMP, named P17, discovered and isolated by our team from the ant Tetramorium bicarinatum venom. We have focused on its efficiency to modulate human monocyte-derived macrophages (h-MDM) differentiation and its capacity to provide them an antifungal activity against the main opportunistic yeast Candida albicans (C. albicans). We showed that P17 directed h-MDM polarization toward an alternative phenotype characterized by mannose (MR) and dectin-1 C-type lectin receptors (CLRs) upregulation. Interestingly, we demonstrated that this upregulation of MR and Dectin-1 in P17-treated h-MDM requires AA mobilization and leukotriene B4 (LTB4) synthesis, essential for PPAR activation. We also demonstrated that this AA metabolite led to the PPARƴ nuclear receptor activation which is a key factor of macrophages alternative activation and the associated CLRs expression. In this study, we observed that P17-activated h-MDM exhibited an improved capacity to eliminate C. albicans. Indeed, these P17-polarized macrophages displayed an increased ability to recognize and phacocyte yeasts. Furthermore, the study of microbicidal mechanisms leading to C. albicans clearance revealed that P17-activated h-MDM produced reactive oxygen species (ROS) and inflammasome-dependant IL-1ß in high amounts. These mechanisms induction in P17-polarized h-MDM was dependent on the LTB4/ PPARƴ/Dectin-1-MR axis. Finally, these data were supported by in vivo experiments demonstrating that P17-treated mice infected with C. albicans developed less severe gastrointestinal infection related to a higher efficiency of their macrophages to engulf C. albicans, to produce ROS and to kill yeasts. Altogether, these results identify P17 as an original activator of the fungicidal response of macrophages that acts downstream the pathway leading to CLRs expression through PPARƴ activation
Abbassi, Feten. "Caractérisation structurale et fonctionnelle des temporines-SH : de nouveaux peptides antimicrobiens isolés chez l'espèce de grenouille nord-africaine Pelophylax saharica." Paris 6, 2009. http://www.theses.fr/2009PA066702.
Full textHORA, Gabriel Costa Alverni da. "Simulações computacionais do peptídeo híbrido Plantaricina-Pediocina em membranas fosfolipídicas puras e binárias compostas por POPC: POPG." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/18337.
Full textMade available in DSpace on 2017-02-16T14:50:28Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Thesis_Gabriel_digital.final.pdf: 10412972 bytes, checksum: ec85b3671bb5bbcd735ea9e83436b08f (MD5) Previous issue date: 2016-04-01
CNPq
Peptídeos antimicrobianos são componentes importantes do sistema de defesa de diversos organismos contra possíveis invasores. Em geral, são pequenos (até 100 aminoácidos), catiônicos e anfipáticos. Eles têm despertado o interesse da comunidade científica por sua capacidade de atuação contra micróbios, que não conseguem desenvolver resistência a esses peptídeos. Ou seja, eles emergem como complemento e/ou alternativa ao uso dos antibióticos convencionais. Este trabalho desenvolveu um modelo computacional de um peptídeo híbrido de pediocina A (N-terminal) e plantaricina 149a (C-terminal), dois peptídeos bactericidas. Dados experimentais obtidos pelo grupo da prof. Dra. Rosângela Itri do IFUSP foram utilizados para modelagem e comparação dos resultados. Foram feitas simulações de MD do peptídeo interagindo com membranas puras e mistas de POPC e POPG utilizando os parâmetros do campo de força GROMOS 53A6 e 54A7. As simulações com uma unidade do peptídeo revelaram a atualização 54A7 era a mais adequado para modelagem desses sistemas. Os mapas de estrutura secundária mostraram que o peptídeo adquire configuração mais ordenada quando interage com membranas com maior quantidade de POPG em sua composição. As simulações com duas unidades do peptídeo sugeririam que o peptídeo interage e penetra na camada de POPG através da região Cterminal. Na simulação com membrana de POPC, nenhuma das porções terminais ficou estável no interior da membrana. O efeito do aumento da concentração de peptídeos foi examinado colocando cinco e dez unidades do peptídeo para interagir com as membranas. Na membrana de POPC, os peptídeos não formam um único aglomerado e causam pouca perturbação na bicamada. Já na membrana de POPG, o efeito da interação do aglomerado de peptídeos é acentuado, provocando grandes deformações na bicamada lipídica, praticamente a destruindo. Esse fenômeno sugere um possível mecanismo carpete para ação do peptídeo sobre a membrana fosfolipídica de bactérias.
Antimicrobial peptides are important components of defense system in various organizations against possible invaders. They are generally small (100 aminoacids), cationic and amphipathic. They have stimulated the interest of the scientific community for its ability to act against microbes that cannot develop resistance to these peptides. That is, they emerge as complement and/or alternative to the use of conventional antibiotics. This study developed a computational model of a hybrid peptide pediocin A (Nterminal) and plantaricin 149a (C-terminal), two bactericidal peptides. Experimental data obtained by the group of prof. Dr. Rosângela Itri (IFUSP) were used for modeling and compare the results. MD simulations were made of the peptide interacting with pure and mixed POPC and POPG membranes. These simulations were performed using the parameters of the force field GROMOS 53A6 and 54A7. Simulations with a single copy of the peptide revealed that the force field 54A7 was the most appropriate for modeling these systems. The secondary structure maps showed that the peptide acquires a more ordered configuration when interacting with membranes with higher amounts of POPG in its composition. The simulations with two copies of the peptide suggest that the peptide interacts and penetrates the POPG layer via the C-terminal part. In the simulation with POPC membrane, none of the end portions remained stable within the membrane. The effect of increasing the peptide concentration of was examined by placing five and ten copies of the peptide to interact with the membranes. In the POPC membrane, the peptides do not form a single cluster and they cause little disturbance in the bilayer. In the POPG membrane, the interaction of peptides cluster is enhanced, causing large deformation and practically destroying the lipid bilayer. This phenomenon suggests a possible carpet mechanism of action of the peptide on the phospholipid membrane of bacteria.
Rolland, Jean-Luc. "Aspects moléculaires et biochimiques des stylicines, peptides multifonctionnels identifiés chez la crevette bleue du Pacifique Litopenaeus stylirostris (Crustacea, Decapoda)." Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20049.
Full textThe work reported here was motivated by the economical importance of the pacific blue shrimp Litopenaeus stylirostris farming where high mortality rates are due to bacterial and viral diseases. It consists in the characterisation of two original peptides, the first members of a new multifunctional family of peptides from peneide shrimps, the stylicines. Those two peptides, named stylicines 1 and 2, are negatively charged (pI < 6.0), and characterised by a proline-rich N-terminal region and a C-terminal region containing 13 cysteine residues. Stylicines are synthesized by heamocytes where they are stored within small cytoplasmic granules. To understand the role of these peptides in the immune response of shrimps to a vibrio infection, their recombinant forms were produced in E. coli BL21 (DE3) plysS, purified and characterised. The two rstylicines display biological anti-proliferative and blood clotting activities. Only rstylicine 1 displays antimicrobial activities: antifungal against Fusarium oxysporum (MIC<2.5µM) and bacteriostatic against Gram (−) bacteria, Vibrio sp. (MIC<80µM). Moreover this peptide displays an LPS-binding activity (dissociation constant (Kd) of 9.6×10−8 M) and agglutinate Vibrio. penaeicida "in vitro". Finally, the presence of sequences coding for modified forms of stylicine 1 in some shrimp's genome may be in relation with their lower ability to survive infections
Lopes, José Luiz de Souza. "Plantaricina 149 e análogos: atividade antimicrobiana, estudos estruturais e mecanismos de ação." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-22032010-085931/.
Full textAntimicrobial peptides are seen as promising alternatives to be employed in pharmaceutical industry for controlling infections caused by microorganisms, and also in food industry, where they can play roles as natural food preservatives. Plantaricina149 is a member of this group, constituted of 22 amino acid residues, cationic in nature and presenting inhibitory activity against some pathogenic bacteria. In this work, different Plantaricina149 analog peptides were synthesized to investigate their action against microorganisms (bacteria and fungi), with the aim of correlating these studies with the lytic action of the peptide on several membrane models (phospholipid monolayers and vesicles). The Plantaricina149 interaction with these systems was monitored by circular dichroism and fluorescence spectroscopies, surface tension assays, calorimetry and surface plasmon resonance, and showed to be highly specific to phospholipid surfaces that present negative charge density, such as the bacteria cell membrane. The initial peptide-phospholipids electrostatic interaction is extremely important, and it is capable of inducing a helical structure in the peptide C-terminal region, while the Nterminal region contributes with the hydrophobic interactions needed to the peptide penetration in the phospholipid layers and to the disruption of them. Similarly, the Plantaricina149 antimicrobial activity has also proved to be a result of the interactions from the two regions of the molecule, and it was strongly affected by the removal or modification of the peptide N-terminal region. Promoting the deletion of this region has left the peptide only with a bacteriostatic action against Staphylococcus aureus and Pseudomonas aeruginosa, removing its bactericide ability.
Atindehou, Ménonvè. "Caractérisation structurale et biologique de nouveaux agents antibactériens naturels actifs dans les infections intestinales : des peptides de la chromogranine A et des principes actifs de Chromolaena odorata." Phd thesis, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-00856585.
Full textSchmitt, Paulina. "Diversité moléculaire des effecteurs antimicrobiens chez l'huître creuse Crassostrea gigas : mise en évidence et rôle dans la réponse antimicrobienne." Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20158/document.
Full textThis work contributed to the knowledge of the molecular bases of oyster immunity by the characterization of the diversity of three antimicrobials of C. gigas and the understanding of the role played by their diversity in the oyster antimicrobial response. Phylogenetic analyses of two antimicrobial peptides (AMPs), Cg-Defensins (Cg-Defs) and Cg-Proline rich peptide (Cg-Prp), and one Bactericidal Permeability Increasing protein, Cg-BPI, led us to the identification of a high diversity for both AMPs. Further analyses showed that this diversity is generated by gene duplication, allelic recombination and directional selection pressures, suggesting their functional diversification. The biological meaning of AMP diversity was investigated for the three major variants of Cg-Defs, which revealed a strong but variable potency against Gram-positive bacteria. We evidenced that oyster defensins kill S. aureus through binding to the cell wall precursor lipid II, resulting in the inhibition of peptidoglycan biosynthesis. Finally, transcript expression and localization of oyster antimicrobials after a pathogenic infection evidenced a complex network in their expression profiles in hemocyte populations and oyster tissues, suggesting a potential interplay between antimicrobials as a result of their colocalization. Indeed, the combination of oyster antimicrobials produced strong synergistic activities that enlarged their antimicrobial spectra. Thus, the diversity of oyster antimicrobials may provide significant means in acquiring functional divergence, probably concerned in the evolutionary arms race between hosts and their pathogens.From our data, it would provide oysters with a higher protection against the potential pathogens from their environment
Defer, Diane. "Recherche d'activités antimicrobiennes chez des mollusques marins : purification et caractérisation partielle de peptides antimicrobiens isolés à partir de l'hémolymphe de Crassostrea gigas et de bactéries associées." Lorient, 2009. http://www.theses.fr/2009LORIS152.
Full textThe chemical communication systems constitute an essential element in the establishment of intra- or inter-species relationships in marine environment, weaving a dense network of relations between individuals, in ecosystem. The invertebrates lacking of an immune system and usually sessile produce this type of bioactive metabolites playing a crucial role in the answer to the environmental pressures like the predation and the defence against potentially pathogens organisms. The aim of this work was to identify antimicrobial peptides in commercially bivalve and gastropod marine molluscs. Thus, the search for antimicrobial molecules from peptidic nature was undertaken in acid extracts of bivalve molluscs Cerastoderma edule, Ruditapes philippinarum, Ostrea edulis, and gastropods Crepidula fornicata, Buccinum undatum and Littorina littorea and from Crassostrea gigas hemolymph. The extracts were pre-purified by Solid Phase Extraction C18 (SPE) and elution was ensured by three successive steps of 10%, 40% and 80% of ACN-0. 1% TFA. The antibacterial activities were assayed by determination of the CMI against a panel of target bacteria including Gram+ and Gram- bacteria. In parallel, antiviral activities were assayed in vitro against Herpes simplex virus type 1 and Vero cells by cell viability. The species C. Edule, L. Littorea and C. Gigas proved to be the most effective and non cytotoxic species. A partial characterization of the activity detected in these species allowed determining the protenaceous nature of the active molecules. The purification of antimicrobial peptides realised on the C. Gigas hemolymph led us to the identification of a peptide which structure lets foresee a bacterial origin. The hypothese of an association between C. Gigas and bacteria led us from non axenic oysters culture to search for antagonist bacteria in C. Gigas hemolymph and has conduced to isolate 2 Vibrio spp. And 3 Pseudoalteromonas spp. The Pseudoalteromonas spp. HCg 5 strain, allowed to partially characterized an active compound. Whole of these results suggests that the bacteria associated with the immune system could play an essential function of defence in bivalves
López, Marcos Alejandro Sulca. "Desenvolvimento de novos peptídeos antimicrobianos a partir de proteínas dos venenos das serpentes peruana Bothrops pictus e Bothriopsis oligolepis." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-11042017-083735/.
Full textResistance to antibiotics obtained by pathogenic microorganisms is a global health problem, so the search for new antimicrobial agents has been encouraged. Knowing that many protein fragments and analogues are bioactive peptides, the aim of this work was to develop new antimicrobial peptides (AMPs) based on the amino acid sequences and 3D structures of proteins apparently involved in the antimicrobial activity of snake venoms very little or not studied so far. The first steps taken were: a) selection of a phospholipase A2 (PLA2) present in the venom from a Peruvian Bothrops sp. belonging to the family Viperidae, whose amino acid sequence was known, to model by homology its 3D structure; b) detection of antimicrobial activity in venoms from other Peruvian Viperidae Bothrops and Bothriopsis snakes, selection of an active venom, fractionation of it for isolation of proteins possibly involved in the antimicrobial activity, trypsinization of the isolated proteins, sequencing of the tryptic fragments for protein identification, location of such fragments in the amino acid sequences and 3D structures of proteins directly related in class, function and natural source to the isolated proteins. Then, peptide fragments from the chosen PLA2 (item a) and from the isolated proteins (item b) that presented structural features found in the known AMPs were selected and/or their analogues were designed. Finally, synthesis, purification and characterization of the peptides with AMP potential, (viii) verification on whether or not they display antimicrobial activity. The 3D-structure models of Bothrops pictus PLA2 and four amidated peptides (PLA2-1 to -4) derived from it were obtained, being PLA2-1 active against Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa as well as the yeasts Candida albicans, Candida krusei and Candida parapsilosis (MICs de 6.25-200 µmol.mL-1). Among the three Peruvian snake venoms tested Bothrops taeniatta, Bothrops barnetti and Bothriopsis oligolepis, the last two inhibited the growth of S. aureus (MICs 0.78-50 µmol.mL-1) and B. oligolepis presented a wide spectrum of bacterial action. Sequential fractionation followed by S. aureus growth inhibition assays of the main fractions led to active relatively homogeneous ones. Their trypsinization and sequencing of the tryptic fragments indicated that they contained metalloproteinases type III, serine-proteinase or lectins type CTL. Enzymatic activity and blood coagulation assays confirmed the nature of the isolated proteins. From the three amidated peptides (Bo-Ser1, Bo-Met1 e Bo-Lec1) derived from them, Bo-Met1 showed to be active against C. albicans, C. krusei e C. parapsilosis (MIC 6,25 - 200 µmol.mL-1). In summary, for the first time, it was demonstrated that: a) the venoms of the Peruvian snakes B. barnetti and B. oligolepis display antimicrobial activity, being the last of wide spectrum of action, b) the proteins isolated from B. oligolepis snake venom, including a serine-peptidase, are involved in the antimicrobial activity of the B. oligolepis snake venom, c) the amino acid sequences and 3D structures of acidic PLA2 and of other proteins found in the venoms of the Peruvian B. pictus e Bothriopsis oligolepis snakes can be used as safe and natural sources for the development of new AMPs potent against microorganisms of clinical and scientific interest.
Almeida, Richardson Alves de. "Peptídeos antimicrobianos de Hypsiboas cinerascens (Spix, 1824)." Universidade Federal do Amazonas, 2011. http://tede.ufam.edu.br/handle/handle/4452.
Full textApproved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-07-20T12:48:38Z (GMT) No. of bitstreams: 1 Dissertação- Richardson Alves de Almeida.pdf: 16503565 bytes, checksum: ae56b25c886cb0202de3c9e6c34ca1bc (MD5)
Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-07-20T12:53:34Z (GMT) No. of bitstreams: 1 Dissertação- Richardson Alves de Almeida.pdf: 16503565 bytes, checksum: ae56b25c886cb0202de3c9e6c34ca1bc (MD5)
Made available in DSpace on 2015-07-20T12:53:34Z (GMT). No. of bitstreams: 1 Dissertação- Richardson Alves de Almeida.pdf: 16503565 bytes, checksum: ae56b25c886cb0202de3c9e6c34ca1bc (MD5) Previous issue date: 2011-03-30
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Amphibian skin secretions are rich sources of biologically active substances with various physiological functions and defense, most of low molecular weight, as biogenic amines, alkaloids, steroids, peptides and proteins of high molecular weight. The genus Hypsiboas, belonging to the family Hylidae from class of amphibians, presents as promissing supplier of peptides with biological potential. Peptides identified of species Hypsiboas are analogous to the known antimicrobial peptides. This work was realized a systematic study of the skin secretion of Hypsiboas cinerascens obtained by stimulation, where it was possible to identify a new peptide with wide antimicrobial activity, named cinerascetina. Its sequence was identified by techniques of high performance liquid chromatography (HPLC) and mass spectrometry (MALDI-TOFTOF) and confirmed by genetic sequencing, and was also possible identified six new peptides with possible antimicrobial activity.
Secreções de pele de anfíbios são fontes ricas de substâncias biologicamente ativas com diversas funções fisiológicas e de defesa, a maioria de baixa massa molecular como as aminas biogênicas, alcaloides, esteroides, peptídeos e proteínas de massa molecular elevada. O gênero Hypsiboas, pertencente à família Hylidae da classe dos anfíbios, apresenta-se como promissor fornecedor de peptídeos com potencial biológico. Peptídeos identificados de espécies de Hypsiboas apresentaram analógia a peptídeos antimicrobianos conhecidos. Neste trabalho foi realizado um estudo sistemático da secreção da cutânea de Hypsiboas cinerascens obtida por estimulação, onde foi possível identificar um novo peptídeo com ampla atividade antimicrobiana, o qual foi denominado de Cinerascetina. Sua sequência foi identificada por técnicas de cromatografia liquida de alta eficiência (CLAE) e espectrometria de massa (MALDITOF- TOF) e confirmada por técnica de sequenciamento genético, sendo que através desse estudo de sequenciamento genético, também foi possível identificar seis novos peptídeos com possível atividade antimicrobiana.
Ruiz, Cesar Manuel Remuzgo. "Estudos de síntese, relação estrutura-atividade e modo de ação de peptídeos antimicrobianos ricos em glicina." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-18072016-110317/.
Full textProteins and peptides with high content of glycine have been found in animais and plants. Some of them display antimicrobial activity. As little is known about their chemical synthesis, structure, structure-activity relationship and mode of action, we studied such topics using shepherin I (Shep I) and fragments of acanthoscurrin (acantho) as targets. Concerning to Shep I (67.9% of Gly, 28.6% of His, six direct repeats of the motif GGH and one Tyr), we synthesized, purified, characterized and tested Shep I, its analogues truncated at the N- and/or C-terminal portions and the amidated analogues Shep la, Shep I (3-28)a and Shep I (6-28)a. The last three analogues and Shep I were equally active against C. albicans (MIC: 12.5 µM) strains, but not against C. tropicalis and S. cerevisiae strains. Cterminal amidation made Shef I (3-28)a more active against those fungai strains. Anticandidal activities of Shep la and truncated analogues were inhibited in high ionic strength solutions, but enhanced at 10 µM ZnCI (2 to 8-fold). At 62.5 µM (5 MIC), Shep la killed C. albicans MDM8 in 30 mino It caused low hemolysis in phosphate buffered saline and isotonic glucose phosphate buffer (100 µM: 18%). Confocal microscopy and flow cytometry analyses revealed that Shep I modified with carboxyfluorescein (FAM-Shep la) was rapidly internalized into C. albicans MDM8 cells, process not affected by ionic strength and showed to be energy and temperature-dependent. As to the fragments of acantho (a protein with 132 amino acids, 73% of Gly, and three repeats of 26 amino acids), we studied solid-phase syntheses of the N- and C-terminal portions, acantho (1-22) and acantho (101-132), respectively, and of the repetitive portion, acantho (23-48). A theoretical prediction did not indicate high aggregation potential for acantho, but solid-phase syntheses were troublesome: repetitive incomplete aminoacylations took place even at 60°C using different strategies, resins, coupling reagents, solvents and chaotropic salts, suggesting aggregation of the growing peptide chains. Change to CLEAR amide resin allowed obtaining acantho (113-132) . Attempt using convergent solid phase synthesis was not successful. Raman spectra of the growingpeptidyl-resins revealed pleated β-sheet structures. Only the combination of CLEAR amide resin, 60°C, 20% DMSO/NMP, Fmoc-(Fmoc-Hmb)Gly-OH and LiCl allowed the total synthesis of acantho (101-132). The use of CLEAR acid resin also allowed obtaining the fragments acantho (23-48) and acantho (10-22), the last one during the attempt of the synthesis of acantho (1-22). The synthesis yields were extremely low and, again, the Raman spectra of the growing peptide-resins indicated the occurrence of pleated β-sheet structures. Altogether, the results indicated that Shep l (3-28)a mimics the fungicidal activity of Shep l, Shep la is a potent anticandidacidal peptide that has an intracellular target, FAM Shep la may be internalized into the fungai cells via endocytosis, Shep la has the potential to act as a drug for topical use and acantho fragments are typical difficult sequences.
Junior, Pedro Ismael da Silva. "Sistema imune em aracnídeos: estrutura química e atividade biológica de peptídeos antimicrobianos da hemolinfa da aranha Acanthoscurria gomesiana." Universidade de São Paulo, 2000. http://www.teses.usp.br/teses/disponiveis/42/42135/tde-28032001-160342/.
Full textAntimicrobial peptides are important components of the vertebrates and invertebrates immune system. In this work we purified and characterized four molecules from Acanthoscurria gomesiana spider hemolimph: 1) theraphosinin, a 4,052.5 Da peptide purified from plasma with anti-Micrococcus luteus activity. It does not show similarity with any other invertebrate immune peptides. From the hemocytes three peptides have been purified: 2) mygalomorphin, a peptide with 415.9 Da, which shows anti-Escherichia coli activity. This activity is inhibited by catalase, therefore it may be, related to the H2O2 production; 3) gomesin, a peptide with 2,270.4 Da, that shows high similarity with tachyplesins and protegrins. It have large activity spectrum against bacteria, yeast, fungi and Leishmania; 4) acanthoscurrin, a glycine-rich peptide that shows two isoforms of 10,132.4 and 10,249.1 Da. This peptide has activity against E. coli and Candida albicans and shows high similarity with antifungal proteins of insects and plants defense proteins.
Oliveras, Rovira Àngel. "Síntesi de lipopèptids i de pèptids conjugats derivats de BP100. Caracterització estructural de lipopèptids lineals i cíclics." Doctoral thesis, Universitat de Girona, 2020. http://hdl.handle.net/10803/671194.
Full textActualment, es calcula que, aproximadament, un terç de la producció agrícola es perd a causa dels danys provocats per les plagues, resultant en un impacte econòmic molt important. Al voltant d’un terç d’aquestes pèrdues són provocades per fitopatògens. Avui en dia, la solució a aquests problemes es centra en l’ús de pesticides, fonamentalment derivats de coure, antibiòtics o fungicides; tanmateix, tot i ser eficaços, són altament contaminants. A més, els antibiòtics no estan permesos en molts països, perquè un ús abusiu provoca l’aparició ràpida de soques bacterianes resistents. La manca de tractaments no contaminants i efectius per al control de malalties de plantes ha motivat la recerca de nous compostos. Els pèptids antimicrobians són una de les alternatives més prometedores als pesticides tradicionals, perquè mostren una activitat biològica elevada. Per aquest motiu, en aquesta tesi doctoral es va plantejar el disseny, la síntesi i la caracterització de derivats de BP100
Raja, Zahid. "Caractérisation fonctionnelle de peptides antimicrobiens de peau d'amphibien." Paris 6, 2013. http://www.theses.fr/2013PA066829.
Full textImran, Muhammad. "Enrobages actifs contenants des peptides antimicrobiens nano-vectorisés." Thesis, Vandoeuvre-les-Nancy, INPL, 2011. http://www.theses.fr/2011INPL026N/document.
Full textFood nanotechnology has the potential to improve food safety and bio-security, food processing, food packaging and functional ingredients. Nano-encapsulation of active agents is an innovative concept to protect them against possible denaturation during processing and storage. The overall objective of the present work was to optimize and develop fluorescent labeling and encapsulation of nisin for molecular transfer study in different packaging based on biopolymers and in the food. Nanoencapsulation of nisin in different nanoliposomes by using continuous cell disruption system (CCDS) has provided an innovative method for nano-delivery systems fabrication. Incorporation of nisin in nano-emulsion form (encapsulated and free) can possibly be an effective approach to control pathogen without compromising the basic physico-chemical attributes of composite HPMC coatings. The fluorescently labeled nisin Z prepared had a molecular weight of 3717.3 Da. Confocal microscopic studies demonstrated the interaction of nisin with the bacterial membranes at the cell-division sites as possible mechanism of action against food borne pathogen. HPMC, CTS, SC and PLA packaging bio-membranes act as a reservoir and progressively release nisin to sustain a constant inhibitory effect. Choice of biopolymer is significant in providing requisite bioavailability of antimicrobial compounds at exterior surface and inside the food system. Based on the present study results, the emerging revolution concerning food safety through packaging possibly will rely on « 3-BIOs » blend with nanotechnology, which refers to Bioactive, Biodegradable and Bio-nanocomposite
Gomes, von Borowski Rafael. "Obtention et évaluation de l’activité antibiofilm de peptides et peptidomimétiques issus de Capsicum baccatum var. pendulum (Solanaceae)." Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1B005.
Full textBiofilm confers to bacteria many benefits due to the production of a matrix that improves their resistance and tolerance to antibiotics. Staphylococcus epidermidis is one of the most important clinical bacteria, able to form biofilm on medical devices such as pacemakers, urinary catheters and prostheses. In this context, peptides have been proposed as an important alternative as a treatment or as anti-infective surface agents. This study focuses on the identification of new antibiofilm natural and synthetic peptides from the Capsicum baccatum var. pendulum pepper. As a result, a lead peptide responsible for the antibiofilm activity against S. epidermidis was selected and extensively studied. It acts by a new mechanism of action that we call "matrix anti-assembly" (MAA). In the first chapter, we explore the link between peptides, pathogenic biofilms and the antibiofilm activity. Chapter 2 consists of the main experimental results of this thesis. It describes the antibiofilm characterization of the lead peptide acting by the AAM new mechanism of action, independent of cell regulation. Cytotoxicity tests are also presented. These results allowed us to patent this peptide, referenced in Chapter 3. The last chapter presents the possible use of antibiofilm peptidomimetics as a perspective. The strategy is to create small peptide-like molecules. These peptidomimetics retain the inherent capabilities of the lead peptide, but are more resistant to proteases and / or more active
O biofilme apresenta vários benefícios às bactérias devido à existência de uma matriz que confere resistência e tolerância aos antibioticos. O Staphylococcus epidermidis é uma das bactérias com maior relevância clínica devido à sua capacidade de formar biofilmes em dispositivos médicos, tais como, marca-passos, cateteres urinários e próteses. Neste contexto, os peptídeos têm sido propostos como uma alternativa importante, tanto como tratamento, quanto como agentes anti-infecciosos de superfície. Este estudo consiste na identificação de novos peptídeos naturais e sintéticos, derivados da pimenta Capsicum baccatum var. pendulum, com atividade antibiofilme. Por conseguinte, foi selecionado e estudado extensivamente um peptídeo de referência que apresentou a melhor atividade antibiofilme contra S. epidermidis. Este peptídeo atua através de um novo mecanismo de ação que descrevemos e chamamos de "anti-montagem de matriz" (AMM). No primeiro capítulo deste trabalho foi abordado a ligação entre peptídeos, biofilmes patogênicos e a atividade antibiofilme. O Capítulo 2 consiste nos principais resultados experimentais desta tese como a caracterização da atividade antibiofilme do peptídeo de referência, que age através do novo mecanismo de ação AMM independente da regulação celular e os testes de citotoxicidade. Esses resultados nos permitiram patentear o peptídeo em questão, referenciado no Capítulo 3. Finalmente, o último capítulo descreve o possível uso de peptidomiméticos antibiofilme como uma perspectiva. A estratégia é criar pequenas moléculas semelhantes ao peptídeo de referência. Estes peptidomiméticos mantêm as capacidades inerentes ao peptídeo principal, porém são mais resistentes a proteases e / ou mais ativos
Pérez-Peinado, Clara 1991. "Hitchhiking with Nature : exploring snake venom peptides to fight cancer and superbugs." Doctoral thesis, Universitat Pompeu Fabra, 2020. http://hdl.handle.net/10803/668411.
Full textEsta tesis aborda el descubrimiento y optimización de péptidos antimicrobianos y antitumorales eficientes, selectivos, rentables y resistentes a la proteólisis. Con este fin, inicialmente identificamos nuevas catelicidinas en la glándula venenosa de diferentes víboras de América del Sur, denominadas vipericidinas. En particular la crotalicidina (Ctn), un péptido helicoidal de 34 residuos aislado del veneno de la serpiente Crotalus durissus terrificus destacó por sus propiedades antimicrobianas y antitumorales, así como su fragmento Ctn[15-34], que mostró una selectividad y estabilidad en suero mejoradas y una reducción de tamaño considerable. Los mecanismos de acción de ambos péptidos contra Escherichia coli y una línea celular de leucemia fueron investigados. También se investigó en profundidad la inusual estabilidad en suero de Ctn[15-34], con el fin de conocer sus determinantes estructurales y las posibles interacciones con proteínas del suero. En conjunto, esta tesis propone dos nuevos péptidos bioactivos como posibles candidatos para combatir infecciones bacterianas y la leucemia, además de proporcionar un conjunto de metodologías útiles en el descubrimiento, optimización y caracterización de moléculas bioactivas a partir de fuentes naturales.
Sarkis, Joe. "Mécanismes Moléculaires impliqués dans les Myopathies: Analyses des interactions Dystrophine-Lipides." Phd thesis, Université Rennes 1, 2011. http://tel.archives-ouvertes.fr/tel-00678400.
Full textAslam, Rizwan. "Les peptides antimicrobiens dérivés de la chromogranine A et Staphylococcus aureus : de l'analyse de l'interaction hôte-pathogène au développement de revêtement de polymère antimicrobien." Phd thesis, Université de Strasbourg, 2013. http://tel.archives-ouvertes.fr/tel-01059511.
Full textTzou, Phoebe. "Expression et fonction des peptides antimicrobiens chez la drosophile." Paris 11, 2002. http://www.theses.fr/2002PA112023.
Full textThe widespread distribution of antimicrobial peptides throughout the animal and plant kingdoms suggests that they have served a fundamental role in the successful evolution of multi-cellular organisms. In Drosophila, seven classes of antimicrobial peptides with different spectra of activities have been identified. These antimicrobial peptides are made in the fat body, an analog of mammalian liver, and are secreted into the hemolymph where they counter microbial agents. This transcriptionally regulated antimicrobial response is governed by two distinct signaling cascades, the Toll and Imd pathways, that share similarities with the signaling cascades that regulate NF- kB in the innate immune response in mammals. During my thesis, l have analyzed the expression profile and function of the seven antimicrobial peptides during immune response in Drosophila. Using GFP reporter transgenes, we have first analyzed the pattern of expression of the seven antimicrobial peptide genes. Our data show that antimicrobial peptide gene is expressed in surface epithelia in a tissue-specific manner. We also show that Imd pathway plays a critical role in the activation of this local response to infection. This local antimicrobial response has also been found in vertebrates and plants, suggesting a critical role of antimicrobial peptides in limiting local infection. The second part of my thesis addresses the in vivo function of antimicrobial peptides in Drosophila. We have expressed antimicrobial peptide genes via the control of UAS/GAL4 system in imd; Toll double-mutants that do not express any known endogenous antimicrobial peptide gene. Our results show that constitutive expression of a single peptide, in some cases, is sufficient to rescue the imd; Toll susceptibility to microbial infection. This work has provided the first evidence for the functional relevance of antimicrobial peptides in resisting infection in Drosophila adults
Souza, Danival José De. "Comportement social et réponses immunitaires chez la fourmi Camponotus fellah : implications de la bactérie endosymbiote Blochmannia." Thesis, Tours, 2008. http://www.theses.fr/2008TOUR4007/document.
Full textThe colonial lifestyle has ecological and evolutionary advantages, but it increases the risks of pathogen transmission. To minimize this problem, social insects have developed several behavioural and physiological defence mechanisms, including using protection provided by other organisms. Bees and ants utilize antimicrobial substances of vegetable origin and ants harbour antibiotics-producing bacteria to control parasites. Ants are insects that cannot live without their nestmates with which they maintain many interactions, such as grooming and trophallaxis. In the first part of this thesis, we studied the behavioural alterations in workers of the ant Camponotus fellah after mounting an immune response. We hypothesized that if social interactions and physiological immune responses are expensive, individual workers should be forced to choose where to invest energy. In fact, after mounting an immune response, the workers increased their trophallaxis rate and no sign of avoidance by nestmates was observed. This result highlights the importance of social relations for individual cure and prophylactic mechanisms. In the second part, we studied the primary endosymbiont of C. fellah, a bacterium of Blochmannia genus. This bacterium plays a role in ant nutrition, a function already demonstrated in other Camponotus species. We considered the possibility that the importance of this association is not exclusively nutritional. The bacterium might improve the host immune system and increase the development rate of incipient colonies. Indeed, it might be involved in colony odour formation. The first step was to describe formally this new bacterium with molecular biology techniques. Next, we showed that it improves the host immune response by increasing the encapsulation rate against foreign particles. It increases host larvae production and the number of adult workers. Though we did not find a relation between the number of bacteria and the amount of cuticular hydrocarbons, when the bacteria was eliminated with antibiotics, cuticular hydrocarbons were overproduced, which could be interpreted as a stress response. This work highlights new functions of Blochmannia endosymbionts in their association with the ants. The bacterium likely contributed to the ecological success of Camponotus ants, a globally widespread genus
Sarrouj, Hiba. "DNP/solid state NMR probehead for the investigation of oriented membranes." Phd thesis, Université de Strasbourg, 2014. http://tel.archives-ouvertes.fr/tel-01038015.
Full textSilva, Alessandra Vaso Rodrigues da [UNESP]. "Prospecção das interações mastoparano-membrana em proteolipossomos como modelo para o desenvolvimento racional de novos agentes antimicrobianos." Universidade Estadual Paulista (UNESP), 2009. http://hdl.handle.net/11449/87736.
Full textNeste trabalho estudou-se a estrutura, função e mecanismo de ação do peptídeo antibacteriano Protonectarina-MP (isolado de veneno da vespa social Protonectarina sylveirae) tendo seu resíduo C-terminal nas formas ácida (-OH) e amidada (-NH2). Os peptídeos foram sintetizados, utilizando-se a estratégia Fmoc, purificados por cromatografia líquida de alta performance. O monitoramento do material sintético foi feito por espectrometria de massas ESI-MS e por seqüenciamento através de Química Degradativa de Edman. A estrutura secundária foi investigada pelo uso de espectroscopia de dicroísmo circular e modelagem molecular. Atividade lítica (extravasamento) e interação do resíduo de triptofano em vesículas foram investigadas pelo uso de espectrômetro de fluorescência. Foram realizados ensaios sobre as interações desses peptídeos em meio de vesículas zwitteriônicas e aniônica, formando complexos proteolipossomos que foram submetidos à troca isotópica H/D monitorada por espectrometria de massas ESI-MS e MS/MS. Além disso, foram realizados ensaios biológicos de atividade hemolítica, de desgranulação de mastócito, de liberação da enzima citoplasmática Lactato Desidrogenase e de atividade antimicrobianas. Os dados de CD revelam uma tendência dos peptídeos se estruturarem em hélice-α em ambiente hidrofóbico e em ambiente de membranas. Porém, o mesmo não pode ser observado em meio aquoso. Os modelos obtidos para ambos os peptídeos por modelagem molecular mostram uma estruturação em hélice-α anfipática. Nos ensaios de atividade lítica em vesículas, os peptídeos apresentaram um processo com cooperatividade positiva, com curvas de dose-resposta que mostram uma dependência sigmoidal com a concentração do peptídeo. Os resultados da fluorescência do triptofanos mostram um deslocamento da emissão para a região de onda do azul para o peptídeo...
In the present work was studied the structure, function and mechanism of action of the antibacterial peptide Protonectarina-MP (isolated from venom of social wasp Protonectarina sylveirae) with its carboxyamidation (-NH2) and carboxyl-free (-OH) Cterminal forms. The peptides were manually synthesized on-solid phase by using Fmoc strategy and purified under HPLC. The homogeneity of the synthetic material was analyzed by ESI mass spectrometry and Edman Degradation Chemistry. The secondary structure was investigated through circular dichroism (CD) spectroscopy and molecular modeling. Lytic activity and peptides interaction with the membranes was also investigated through tryptophan emission, by fluorescence spectrometry. The interaction of peptides with zwitterionic and anionic vesicles was investigated through the combination of H/D exchange and ESI-mass spectrometry. Some biological activities, like: mast cell degranulation, release of cytoplasmic enzyme lactate dehydrogenase, hemolysis and antibiosis were investigated for both peptides. The CD spectra revealed that the peptides in hydrophobic environments or in presence of biological membranes have the tendency to form helix conformations; however, organized structures were not observed in aqueous or buffer solutions. The models obtained by molecular modeling show that both peptides form an amphipathic α-helix. The peptides presented a positive cooperative process in the lytic activity of vesicles, with dose-response curves presenting a sigmoidal dependence with the peptide concentration. The results of the fluorescence of tryptophans showed a shift of the emission wavelength to the blue region of the peptide Protonectarina-MP (-NH2), which was not observed for its analogue presenting the C-terminal residue in free acid form. This is indicating a greater interaction of the amidated peptide in membranes, when compared to the peptide... (Complete abstract click electronic access below)
Poulin, Nicolas. "Synthèse et caractérisation d'analogues de peptides antimicrobiens riches en arginines." Master's thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/27730.
Full textSimon, Gaëlle, and Gaëlle Simon. "Évaluation du potentiel antimicrobien de composés inspirés de peptides." Master's thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/37223.
Full textTableau d'honneur de la Faculté des études supérieures et postdoctorales, 2019-2020
Alors que les options de traitement s’épuisent devant la problématique pandémique de résistance microbienne, il est d’une pertinence tout à fait actuelle de multiplier les stratégies pour traiter les maladies infectieuses. Ces travaux portent sur l’investigation du potentiel antimicrobien de peptides et de dérivés peptidiques inspirés par des métabolites bioactifs. Les effets de trois familles de molécules synthétiques comportant des groupements non-naturels ont été étudiés dans un contexte de microbiologie buccale. Le biofilm dentaire, dense et polymicrobien, est un excellent modèle pour le développement de nouveaux antimicrobiens. À la recherche de composés pouvant inhiber la formation du biofilm bactérien, interrompre les processus infectieux ou désorganiser les membranes bactériennes, l’évaluation de l’activité de dipeptides cycliques, de pipérazines et de courts peptides cationiques a été effectuée. L’investigation a été conduite pour chaque famille de molécules de façon à définir le spectre d’action, en révéler le mécanisme et établir une relation entre la structure et l’activité qui prenne en considération les contraintes structurelles et la stéréochimie.
Alors que les options de traitement s’épuisent devant la problématique pandémique de résistance microbienne, il est d’une pertinence tout à fait actuelle de multiplier les stratégies pour traiter les maladies infectieuses. Ces travaux portent sur l’investigation du potentiel antimicrobien de peptides et de dérivés peptidiques inspirés par des métabolites bioactifs. Les effets de trois familles de molécules synthétiques comportant des groupements non-naturels ont été étudiés dans un contexte de microbiologie buccale. Le biofilm dentaire, dense et polymicrobien, est un excellent modèle pour le développement de nouveaux antimicrobiens. À la recherche de composés pouvant inhiber la formation du biofilm bactérien, interrompre les processus infectieux ou désorganiser les membranes bactériennes, l’évaluation de l’activité de dipeptides cycliques, de pipérazines et de courts peptides cationiques a été effectuée. L’investigation a été conduite pour chaque famille de molécules de façon à définir le spectre d’action, en révéler le mécanisme et établir une relation entre la structure et l’activité qui prenne en considération les contraintes structurelles et la stéréochimie.
Laurencin, Mathieu. "Peptides et pseudopeptides auto-assembleurs à activité antimicrobienne." Rennes 1, 2008. http://www.theses.fr/2008REN1S142.
Full textAntibiotic resistance of pathogens against conventional antibiotics increases at a rate which exceeds by far the speed of the development of new drugs. The antimicrobial peptides, both synthetic and from natural sources, have raised interest as potential useful drugs in the future. The use of peptides is however limited by a fast elimination in biological environment connected to their rapid degradation by proteases. The object of this work concerns the synthesis of no proteinogenic monomers, the aza-β3-aminoacids, in the goal to incorporate them into antimicrobial peptidic sequences. Aza-β3-aminoacid are analogues of α-aminoacids, which differ from β3-aminoacids by the presence of an extra nitrogen atom, with a non-fixed configuration, which carries the side chain. The introduction of these monomeric units within antimicrobial peptides gives access to antimicrobial pseudopeptides with an extended life cycle. The modification of a cuttlefish neuropeptide presenting antibacterial activities allowed us to obtain a peptidic analogue and two pseudopeptidic analogues more active than the natural peptide. On the other hand, we developed a peptide and a series of cyclopseudopeptides hybrids de novo which possess comparable activities to some common antibiotics. Now, we try to explain the mechanism of action of our peptides and pseudopeptides which act on the microbial membranes. The results, obtained by circular dichroism, light scattering and NMR, bring to light a phenomenon of auto-association which would play an essential role in the biological activity
Defer, Diane, Professeur Nathalie Bourgougnon, and Mcf Yannick Fleury. "Recherche d'activités antimicrobiennes chez des mollusques marins. Purification et caractérisation partielle de peptides antimicrobiens isolés à partir de l'hémolymphe de Crassostrea gigas et de bactéries associées." Phd thesis, Université de Bretagne Sud, 2009. http://tel.archives-ouvertes.fr/tel-00485008.
Full textTheolier, Jérémie. "Approches biochimiques et bioinformatiques pour l'identification de peptides antimicrobiens d'origine laitière." Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/29768/29768.pdf.
Full textBruno, Renato. "Identification, caractérisation et fonctions des peptides antimicrobiens chez les vers extrémophiles." Thesis, Lille 1, 2020. http://www.theses.fr/2020LIL1R036.
Full textThere is a growing interest and demand of new compounds such as antimicrobial peptides (AMPs) during the last decades because of emerging Multi Drugs Resistant bacteria.AMPs are in the first line of innate immune defence of all organisms: they provide a rapid response to a broad spectrum of invading microorganisms (bacteria, fungi, viruses and parasites) and an alternative way to eliminate them (mostly by bacterial membrane disruption) with slow development of bacterial resistance, representing a potential class of new drugs. They also contribute to symbiostasis in vertebrates and invertebrates by controlling, shaping, and confining the symbiotic microflora in specific anatomical compartments (gut, bacteriomes, skin).Most of them (about 75%) come from animals among which only 2% of them belong to marine organisms. Marine AMPs are unique and structurally diverse presumably because they have evolved under the pressure of highly varying physicochemical conditions and high density of bacteria notably proteobacteria, the bacterial family generating the most problematic drug resistances in human at the present time.The recent discovery of abundant and well-adapted worms in several extreme marine environments (polar, hydrothermal, abyssal, polluted, etc.), in co-occurrence with a large number and variety of bacteria, provided the opportunity to study an interesting source of unknown molecules with high antimicrobial potential.In this context, the goal of this PhD was to expand the current knowledge on marine worms AMPs from extreme environments, analyzing how the external factors of worms habitat affect the structure and bioactivity of the peptides. The first chapter gives an overview on the state of the art about the different structures and functions of AMPs in worms (annelids and nematodes), to highlight the wide diversity and originality of their primary structures, that presumably mimics the highly diverse life styles and ecology of worms.The second chapter of this thesis describes the search of new groups of AMPs from three species of marine meiobenthic nematodes inhabiting the anoxic sediments. Biochemical purification and identification of novel AMPs produced by these tiny species were investigated, providing evidences that two of the three Oncholaimidae nematodes sp. constitute interesting sources of small sized antibiotics. The limitations of applying biochemical method to such small animals, not raised in the lab with an unexpectedly random distribution were also discussed. The third chapter examines the unique case of three members of BRICHOS-AMP family, polaricin, arenicin and alvinellacin from polychaetes living highly distinct habitats (polar, temperate and hot chimneys of hydrothermal vents respectively). We studied their adaptation to varying abiotic (thermal and pH variations) and biotic factors (environmental bacterial communities), providing a clear evidence of the adaptation of the biological activities to the environmental bacteria and the influence of the temperatures and the pH on the natural selection of AMPs. Because the number of disulfide bridges of the AMPs increases with the harshness of the worm habitat, we performed the same study with the AMPs devoid of disulfide bonds, showing their involvement in the thermal and pH stability of the peptides. Finally, roles of BRICHOS domain from alvinellacin precursor were investigated. We recombinantly produced it and provide evidences of a chaperone-like function in the external immunity of worms, helping them to face extreme habitats.From this thesis, we can conclude that extreme marine nematodes and annelids constitute valuable sources of promising bioactive substances, possessing peculiar characteristics (such as uncommon structure, pH- and thermo-tolerance). Moreover, they represent a remarkably attractive model to study AMPs evolution, as actors of worm’s immune defence in extreme and fluctuating environmental conditions