Journal articles on the topic 'Peptide antimicrobiens'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Peptide antimicrobiens.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Browne, Katrina, Sudip Chakraborty, Renxun Chen, Mark DP Willcox, David StClair Black, William R. Walsh, and Naresh Kumar. "A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides." International Journal of Molecular Sciences 21, no. 19 (September 24, 2020): 7047. http://dx.doi.org/10.3390/ijms21197047.
Full textSchröder, J. M. "Peptides épithéliaux antimicrobiens." Annales de Dermatologie et de Vénéréologie 131, no. 4 (April 2004): 411–16. http://dx.doi.org/10.1016/s0151-9638(04)93629-0.
Full textRuijne, Fleur, and Oscar P. Kuipers. "Combinatorial biosynthesis for the generation of new-to-nature peptide antimicrobials." Biochemical Society Transactions 49, no. 1 (January 13, 2021): 203–15. http://dx.doi.org/10.1042/bst20200425.
Full textFleeman, Renee M., Luis A. Macias, Jennifer S. Brodbelt, and Bryan W. Davies. "Defining principles that influence antimicrobial peptide activity against capsulatedKlebsiella pneumoniae." Proceedings of the National Academy of Sciences 117, no. 44 (October 21, 2020): 27620–26. http://dx.doi.org/10.1073/pnas.2007036117.
Full textSchröder, Jens-Michael, and Jürgen Harder. "Peptides antimicrobiens naturels cutanés." médecine/sciences 22, no. 2 (February 2006): 153–57. http://dx.doi.org/10.1051/medsci/2006222153.
Full textDong, Na, Chensi Wang, Xinran Li, Yuming Guo, and Xiaoli Li. "Simplified Head-to-Tail Cyclic Polypeptides as Biomaterial-Associated Antimicrobials with Endotoxin Neutralizing and Anti-Inflammatory Capabilities." International Journal of Molecular Sciences 20, no. 23 (November 25, 2019): 5904. http://dx.doi.org/10.3390/ijms20235904.
Full textHaney, Evan F., Leonard T. Nguyen, David J. Schibli, and Hans J. Vogel. "Design of a novel tryptophan-rich membrane-active antimicrobial peptide from the membrane-proximal region of the HIV glycoprotein, gp41." Beilstein Journal of Organic Chemistry 8 (July 24, 2012): 1172–84. http://dx.doi.org/10.3762/bjoc.8.130.
Full textKraszewska, Joanna, Michael C. Beckett, Tharappel C. James, and Ursula Bond. "Comparative Analysis of the Antimicrobial Activities of Plant Defensin-Like and Ultrashort Peptides against Food-Spoiling Bacteria." Applied and Environmental Microbiology 82, no. 14 (May 6, 2016): 4288–98. http://dx.doi.org/10.1128/aem.00558-16.
Full textMałuch, Izabela, Oktawian Stachurski, Paulina Kosikowska-Adamus, Marta Makowska, Marta Bauer, Dariusz Wyrzykowski, Aleksandra Hać, et al. "Double-Headed Cationic Lipopeptides: An Emerging Class of Antimicrobials." International Journal of Molecular Sciences 21, no. 23 (November 25, 2020): 8944. http://dx.doi.org/10.3390/ijms21238944.
Full textShao, Changxuan, Weizhong Li, Peng Tan, Anshan Shan, Xiujing Dou, Deying Ma, and Chunyu Liu. "Symmetrical Modification of Minimized Dermaseptins to Extend the Spectrum of Antimicrobials with Endotoxin Neutralization Potency." International Journal of Molecular Sciences 20, no. 6 (March 20, 2019): 1417. http://dx.doi.org/10.3390/ijms20061417.
Full textEckert, Randal, Fengxia Qi, Daniel K. Yarbrough, Jian He, Maxwell H. Anderson, and Wenyuan Shi. "Adding Selectivity to Antimicrobial Peptides: Rational Design of a Multidomain Peptide against Pseudomonas spp." Antimicrobial Agents and Chemotherapy 50, no. 4 (April 2006): 1480–88. http://dx.doi.org/10.1128/aac.50.4.1480-1488.2006.
Full textTran, Phat, Jonathan Kopel, Joe A. Fralick, and Ted W. Reid. "The Use of an Organo-Selenium Peptide to Develop New Antimicrobials That Target a Specific Bacteria." Antibiotics 10, no. 6 (May 21, 2021): 611. http://dx.doi.org/10.3390/antibiotics10060611.
Full textNava Lara, Rodrigo, Longendri Aguilera-Mendoza, Carlos Brizuela, Antonio Peña, and Gabriel Del Rio. "Heterologous Machine Learning for the Identification of Antimicrobial Activity in Human-Targeted Drugs." Molecules 24, no. 7 (March 31, 2019): 1258. http://dx.doi.org/10.3390/molecules24071258.
Full textPonnappan, Nisha, Deepthi Poornima Budagavi, Bhoopesh Kumar Yadav, and Archana Chugh. "Membrane-Active Peptides from Marine Organisms—Antimicrobials, Cell-Penetrating Peptides and Peptide Toxins: Applications and Prospects." Probiotics and Antimicrobial Proteins 7, no. 1 (January 6, 2015): 75–89. http://dx.doi.org/10.1007/s12602-014-9182-2.
Full textBoparai, Jaspreet Kaur, and Pushpender Kumar Sharma. "Mini Review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications." Protein & Peptide Letters 27, no. 1 (December 10, 2019): 4–16. http://dx.doi.org/10.2174/0929866526666190822165812.
Full textTenea, Gabriela N. "Peptide Extracts from Native Lactic Acid Bacteria Generate Ghost Cells and Spheroplasts upon Interaction with Salmonella enterica, as Promising Food Antimicrobials." BioMed Research International 2020 (October 5, 2020): 1–11. http://dx.doi.org/10.1155/2020/6152356.
Full textNava Lara, Rodrigo A., Jesús A. Beltrán, Carlos A. Brizuela, and Gabriel Del Rio. "Relevant Features of Polypharmacologic Human-Target Antimicrobials Discovered by Machine-Learning Techniques." Pharmaceuticals 13, no. 9 (August 21, 2020): 204. http://dx.doi.org/10.3390/ph13090204.
Full textBulet, P. "Les peptides antimicrobiens de la drosophile." médecine/sciences 15, no. 1 (1999): 23. http://dx.doi.org/10.4267/10608/1192.
Full textPatrzykat, Aleksander, Jeffrey W. Gallant, Jung-Kil Seo, Jennifer Pytyck, and Susan E. Douglas. "Novel Antimicrobial Peptides Derived from Flatfish Genes." Antimicrobial Agents and Chemotherapy 47, no. 8 (August 2003): 2464–70. http://dx.doi.org/10.1128/aac.47.8.2464-2470.2003.
Full textFernández, Lucía, W. James Gooderham, Manjeet Bains, Joseph B. McPhee, Irith Wiegand, and Robert E. W. Hancock. "Adaptive Resistance to the “Last Hope” Antibiotics Polymyxin B and Colistin in Pseudomonas aeruginosa Is Mediated by the Novel Two-Component Regulatory System ParR-ParS." Antimicrobial Agents and Chemotherapy 54, no. 8 (June 14, 2010): 3372–82. http://dx.doi.org/10.1128/aac.00242-10.
Full textSilva, Osmar N., Marcelo D. T. Torres, Jicong Cao, Elaine S. F. Alves, Leticia V. Rodrigues, Jarbas M. Resende, Luciano M. Lião, et al. "Repurposing a peptide toxin from wasp venom into antiinfectives with dual antimicrobial and immunomodulatory properties." Proceedings of the National Academy of Sciences 117, no. 43 (October 12, 2020): 26936–45. http://dx.doi.org/10.1073/pnas.2012379117.
Full textKopeykin, P. M., M. S. Sukhareva, N. V. Lugovkina, and O. V. Shamova. "CHEMICAL SYNTHESIS AND ANALYSIS OF ANTIMICROBIAL AND HEMOLYTIC ACTIVITY OF STRUCTURAL ANALOGOUS OF A PEPTIDE PROTEGRIN 1." Medical academic journal 19, no. 1S (December 15, 2019): 169–70. http://dx.doi.org/10.17816/maj191s1169-170.
Full textIbrahim, Mariam, Alain Guillot, Francoise Wessner, Florence Algaron, Colette Besset, Pascal Courtin, Rozenn Gardan, and Véronique Monnet. "Control of the Transcription of a Short Gene Encoding a Cyclic Peptide in Streptococcus thermophilus: a New Quorum-Sensing System?" Journal of Bacteriology 189, no. 24 (October 5, 2007): 8844–54. http://dx.doi.org/10.1128/jb.01057-07.
Full textRaj, Periathamby Antony, Latha Rajkumar, and Andrew R. Dentino. "Novel molecules for intra-oral delivery of antimicrobials to prevent and treat oral infectious diseases." Biochemical Journal 409, no. 2 (December 21, 2007): 601–9. http://dx.doi.org/10.1042/bj20070810.
Full textMishra, Biswajit, Jayaram Lakshmaiah Narayana, Tamara Lushnikova, Yingxia Zhang, Radha M. Golla, D. Zarena, and Guangshun Wang. "Sequence Permutation Generates Peptides with Different Antimicrobial and Antibiofilm Activities." Pharmaceuticals 13, no. 10 (September 25, 2020): 271. http://dx.doi.org/10.3390/ph13100271.
Full textWalkenhorst, William F., J. Wolfgang Klein, Phuong Vo, and William C. Wimley. "pH Dependence of Microbe Sterilization by Cationic Antimicrobial Peptides." Antimicrobial Agents and Chemotherapy 57, no. 7 (May 6, 2013): 3312–20. http://dx.doi.org/10.1128/aac.00063-13.
Full textWu, Chih-Lung, Ju-Yun Hsueh, Bak-Sau Yip, Ya-Han Chih, Kuang-Li Peng, and Jya-Wei Cheng. "Antimicrobial Peptides Display Strong Synergy with Vancomycin Against Vancomycin-Resistant E. faecium, S. aureus, and Wild-Type E. coli." International Journal of Molecular Sciences 21, no. 13 (June 27, 2020): 4578. http://dx.doi.org/10.3390/ijms21134578.
Full textReymond, Jean-Louis. "Peptide Dendrimers: From Enzyme Models to Antimicrobials and Transfection Reagents." CHIMIA International Journal for Chemistry 75, no. 6 (June 30, 2021): 535–38. http://dx.doi.org/10.2533/chimia.2021.535.
Full textTaale, Essodolom, Aly Savadogo, Cheikna Zongo, François Tapsoba, Simplice D. Karou, and Alfred S. Traore. "Les peptides antimicrobiens d’origine microbienne: cas des bactériocines." International Journal of Biological and Chemical Sciences 10, no. 1 (August 8, 2016): 384. http://dx.doi.org/10.4314/ijbcs.v10i1.29.
Full textBasi-Chipalu, Shradha. "A Review: Lantibiotics, a Promising Antimicrobial Agent." Journal of Institute of Science and Technology 21, no. 1 (November 24, 2016): 119–28. http://dx.doi.org/10.3126/jist.v21i1.16063.
Full textdel Villar Pérez, Víctor Manuel, Alberto Barreras Serrano, Lourdes Carolina Pujol Manríquez, Luis Tinoco Gracia, Tonatiuh Melgarejo, and Alma Rossana Tamayo Sosa. "Expression of b-defensins LAP (lingual antimicrobial peptide) and TAP (antimicrobial peptide tracheal), and Psoriasin (S100A7), in bovine mammary gland with chronic mastitis by Staphylococcus aureus." Acta Universitaria 26, no. 4 (September 2016): 29–35. http://dx.doi.org/10.15174/au.2016.930.
Full textCunsolo, Vincenzo, Rosario Schicchi, Marco Chiaramonte, Luigi Inguglia, Vincenzo Arizza, Maria Grazia Cusimano, Domenico Schillaci, et al. "Identification of New Antimicrobial Peptides from Mediterranean Medical Plant Charybdis pancration (Steinh.) Speta." Antibiotics 9, no. 11 (October 28, 2020): 747. http://dx.doi.org/10.3390/antibiotics9110747.
Full textSpinello, Angelo, Maria Cusimano, Domenico Schillaci, Luigi Inguglia, Giampaolo Barone, and Vincenzo Arizza. "Antimicrobial and Antibiofilm Activity of a Recombinant Fragment of β-Thymosin of Sea Urchin Paracentrotus lividus." Marine Drugs 16, no. 10 (October 2, 2018): 366. http://dx.doi.org/10.3390/md16100366.
Full textVila-Farres, Xavier, John Chu, Daigo Inoyama, Melinda A. Ternei, Christophe Lemetre, Louis J. Cohen, Wooyoung Cho, et al. "Antimicrobials Inspired by Nonribosomal Peptide Synthetase Gene Clusters." Journal of the American Chemical Society 139, no. 4 (January 23, 2017): 1404–7. http://dx.doi.org/10.1021/jacs.6b11861.
Full textHazam, Prakash Kishore, Ruchika Goyal, and Vibin Ramakrishnan. "Peptide based antimicrobials: Design strategies and therapeutic potential." Progress in Biophysics and Molecular Biology 142 (March 2019): 10–22. http://dx.doi.org/10.1016/j.pbiomolbio.2018.08.006.
Full textYount, Nannette Y., and Michael R. Yeaman. "Peptide antimicrobials: cell wall as a bacterial target." Annals of the New York Academy of Sciences 1277, no. 1 (January 2013): 127–38. http://dx.doi.org/10.1111/nyas.12005.
Full textKourie, J. I., and A. A. Shorthouse. "Properties of cytotoxic peptide-formed ion channels." American Journal of Physiology-Cell Physiology 278, no. 6 (June 1, 2000): C1063—C1087. http://dx.doi.org/10.1152/ajpcell.2000.278.6.c1063.
Full textVossier, L., F. Leon, J. Coste, and C. Fournier-Wirth. "Production de peptides antimicrobiens naturels actifs par recyclage biologique." Transfusion Clinique et Biologique 20, no. 3 (June 2013): 309–10. http://dx.doi.org/10.1016/j.tracli.2013.03.061.
Full textNüsslein, Klaus, Lachelle Arnt, Jason Rennie, Cullen Owens, and Gregory N. Tew. "Broad-spectrum antibacterial activity by a novel abiogenic peptide mimic." Microbiology 152, no. 7 (July 1, 2006): 1913–18. http://dx.doi.org/10.1099/mic.0.28812-0.
Full textLocock, Katherine E. S. "Bioinspired Polymers: Antimicrobial Polymethacrylates." Australian Journal of Chemistry 69, no. 7 (2016): 717. http://dx.doi.org/10.1071/ch16047.
Full textKuppusamy, Willcox, Black, and Kumar. "Short Cationic Peptidomimetic Antimicrobials." Antibiotics 8, no. 2 (April 18, 2019): 44. http://dx.doi.org/10.3390/antibiotics8020044.
Full textvan Harten, Roel, Esther van Woudenbergh, Albert van Dijk, and Henk Haagsman. "Cathelicidins: Immunomodulatory Antimicrobials." Vaccines 6, no. 3 (September 14, 2018): 63. http://dx.doi.org/10.3390/vaccines6030063.
Full textRodríguez, J. M. "Revisión: Espectro antimicrobiano, estructura, propiedades y mode de acción de la nisina, una bacteriocina producida por Lactococcus lactis/Review: Antimicrobial spectrum, structure, properties and mode of action of nisin, a bacteriocin produced by Lactococcus lactis." Food Science and Technology International 2, no. 2 (April 1996): 61–68. http://dx.doi.org/10.1177/108201329600200202.
Full textRydlo, Tali, Shahar Rotem, and Amram Mor. "Antibacterial Properties of Dermaseptin S4 Derivatives under Extreme Incubation Conditions." Antimicrobial Agents and Chemotherapy 50, no. 2 (February 2006): 490–97. http://dx.doi.org/10.1128/aac.50.2.490-497.2006.
Full textGreen, R. Madison, and Kevin L. Bicker. "Evaluation of peptoid mimics of short, lipophilic peptide antimicrobials." International Journal of Antimicrobial Agents 56, no. 2 (August 2020): 106048. http://dx.doi.org/10.1016/j.ijantimicag.2020.106048.
Full textHashemi, Marjan, Augusta Mmuoegbulam, Brett Holden, Jordan Coburn, John Wilson, Maddison Taylor, Joseph Reiley, et al. "Susceptibility of Multidrug-Resistant Bacteria, Isolated from Water and Plants in Nigeria, to Ceragenins." International Journal of Environmental Research and Public Health 15, no. 12 (December 6, 2018): 2758. http://dx.doi.org/10.3390/ijerph15122758.
Full textDeslouches, Berthony, Kazi Islam, Jodi K. Craigo, Shruti M. Paranjape, Ronald C. Montelaro, and Timothy A. Mietzner. "Activity of the De Novo Engineered Antimicrobial Peptide WLBU2 against Pseudomonas aeruginosa in Human Serum and Whole Blood: Implications for Systemic Applications." Antimicrobial Agents and Chemotherapy 49, no. 8 (August 2005): 3208–16. http://dx.doi.org/10.1128/aac.49.8.3208-3216.2005.
Full textDrago-Serrano, Maria Elisa, Rafael Campos-Rodriguez, Julio Cesar Carrero, and Mireya de la Garza. "Lactoferrin and Peptide-derivatives: Antimicrobial Agents with Potential Use in Nonspecific Immunity Modulation." Current Pharmaceutical Design 24, no. 10 (May 28, 2018): 1067–78. http://dx.doi.org/10.2174/1381612824666180327155929.
Full textNicolas, P., A. Mor, and A. Delfour. "Les peptides de la défense antimicrobienne des vertébrés." médecine/sciences 8, no. 5 (1992): 423. http://dx.doi.org/10.4267/10608/3158.
Full textWeiman, Shannon. "Promising Antimicrobials: Synthetic Molecules Based on Defensin Peptides." Microbe Magazine 8, no. 1 (January 1, 2013): 9–10. http://dx.doi.org/10.1128/microbe.8.9.1.
Full text