Academic literature on the topic 'Peptides antimicrobien'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Peptides antimicrobien.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Peptides antimicrobien"

1

Hwang, Peter M., and Hans J. Vogel. "Structure-function relationships of antimicrobial peptides." Biochemistry and Cell Biology 76, no. 2-3 (1998): 235–46. http://dx.doi.org/10.1139/o98-026.

Full text
Abstract:
Antimicrobial peptides are ubiquitously produced throughout nature. Many of these relatively short peptides (6-50 residues) are lethal towards bacteria and fungi, yet they display minimal toxicity towards mammalian cells. All of the peptides are highly cationic and hydrophobic. It is widely believed that they act through nonspecific binding to biological membranes, even though the exact nature of these interactions is presently unclear. High-resolution nuclear magnetic resonance (NMR) has contributed greatly to knowledge in this field, providing insight about peptide structure in aqueous solut
APA, Harvard, Vancouver, ISO, and other styles
2

Bechinger, B., and S. U. Gorr. "Antimicrobial Peptides: Mechanisms of Action and Resistance." Journal of Dental Research 96, no. 3 (2016): 254–60. http://dx.doi.org/10.1177/0022034516679973.

Full text
Abstract:
More than 40 antimicrobial peptides and proteins (AMPs) are expressed in the oral cavity. These AMPs have been organized into 6 functional groups, 1 of which, cationic AMPs, has received extensive attention in recent years for their promise as potential antibiotics. The goal of this review is to describe recent advances in our understanding of the diverse mechanisms of action of cationic AMPs and the bacterial resistance against these peptides. The recently developed peptide GL13K is used as an example to illustrate many of the discussed concepts. Cationic AMPs typically exhibit an amphipathic
APA, Harvard, Vancouver, ISO, and other styles
3

Gasu, Edward Ntim, Hubert Senanu Ahor, and Lawrence Sheringham Borquaye. "Peptide Extract from Olivancillaria hiatula Exhibits Broad-Spectrum Antibacterial Activity." BioMed Research International 2018 (December 23, 2018): 1–11. http://dx.doi.org/10.1155/2018/6010572.

Full text
Abstract:
Increasing reports of infectious diseases worldwide have become a global concern in recent times. Depleted antibiotic pipelines, rapid and complex cases of antimicrobial resistance, and emergence and re-emergence of infectious disease have necessitated an urgent need for the development of new antimicrobial therapeutics, preferably with novel modes of action. Due to their distinct mode of action, antimicrobial peptides offer an interesting alternative to conventional antibiotics to deal with the problems enumerated. In this study, the antimicrobial potential of the peptide extract from the mar
APA, Harvard, Vancouver, ISO, and other styles
4

Bachrach, Gilad, Hamutal Altman, Paul E. Kolenbrander, et al. "Resistance of Porphyromonas gingivalis ATCC 33277 to Direct Killing by Antimicrobial Peptides Is Protease Independent." Antimicrobial Agents and Chemotherapy 52, no. 2 (2007): 638–42. http://dx.doi.org/10.1128/aac.01271-07.

Full text
Abstract:
ABSTRACT Antimicrobial peptides are short, positively charged, amphipathic peptides that possess a wide spectrum of antimicrobial activity and have an important role in the host's innate immunity. Lack of, or dysfunctions in, antimicrobial peptides have been correlated with infectious diseases, including periodontitis. Porphyromonas gingivalis, a gram-negative anaerobe and a major pathogen associated with periodontal diseases, is resistant to antimicrobial peptides of human and nonhuman origin, a feature that likely contributes to its virulence. Expressing a robust proteolytic activity, P. gin
APA, Harvard, Vancouver, ISO, and other styles
5

López-García, Belén, Luis González-Candelas, Enrique Pérez-Payá, and Jose F. Marcos. "Identification and Characterization of a Hexapeptide with Activity Against Phytopathogenic Fungi That Cause Postharvest Decay in Fruits." Molecular Plant-Microbe Interactions® 13, no. 8 (2000): 837–46. http://dx.doi.org/10.1094/mpmi.2000.13.8.837.

Full text
Abstract:
A hexapeptide of amino acid sequence Ac-Arg-Lys-Thr-Trp-Phe-Trp-NH 2 was demonstrated to have antimicrobial activity against selected phytopathogenic fungi that cause postharvest decay in fruits. The peptide synthesized with either all D- or all L-amino acids inhibited the in vitro growth of strains of Penicillium italicum, P. digitatum, and Botrytis cinerea, with MICs of 60 to 80 μM and 50% inhibitory concentration (IC50) of 30 to 40 μM. The inhibitory activity of the peptide was both sequence- and fungus-specific since (i) sequence-related peptides lacked activity (including one with five re
APA, Harvard, Vancouver, ISO, and other styles
6

Tani, Naoki, Kohei Kazuma, Yukio Ohtsuka, et al. "Mass Spectrometry Analysis and Biological Characterization of the Predatory Ant Odontomachus monticola Venom and Venom Sac Components." Toxins 11, no. 1 (2019): 50. http://dx.doi.org/10.3390/toxins11010050.

Full text
Abstract:
We previously identified 92 toxin-like peptides and proteins, including pilosulin-like peptides 1–6 from the predatory ant Odontomachus monticola, by transcriptome analysis. Here, to further characterize venom components, we analyzed the venom and venom sac extract by ESI-MS/MS with or without trypsin digestion and reducing agent. As the low-molecular-mass components, we found amino acids (leucine/isoleucine, phenylalanine, and tryptophan) and biogenic amines (histamine and tyramine) in the venom and venom sac extract. As the higher molecular mass components, we found peptides and proteins suc
APA, Harvard, Vancouver, ISO, and other styles
7

Nagarajan, Deepesh, Tushar Nagarajan, Neha Nanajkar, and Nagasuma Chandra. "A Uniform In Vitro Efficacy Dataset to Guide Antimicrobial Peptide Design." Data 4, no. 1 (2019): 27. http://dx.doi.org/10.3390/data4010027.

Full text
Abstract:
Antimicrobial peptides are ubiquitous molecules that form the innate immune system of organisms across all kingdoms of life. Despite their prevalence and early origins, they continue to remain potent natural antimicrobial agents. Antimicrobial peptides are therefore promising drug candidates in the face of overwhelming multi-drug resistance to conventional antibiotics. Over the past few decades, thousands of antimicrobial peptides have been characterized in vitro, and their efficacy data are now available in a multitude of public databases. Computational antimicrobial peptide design attempts t
APA, Harvard, Vancouver, ISO, and other styles
8

Zorin, Evgeny A., Marina S. Kliukova, Olga A. Kulaeva, Alexey M. Afonin, Igor A. Tikhonovich, and Vladimir A. Zhukov. "Identification of sequences encoding for ncr-peptides and defensins in the ‘meta-assembly’ of transcriptome of pea (pisum sativum l.) Nitrogen-fixing nodules." Ecological genetics 17, no. 3 (2019): 39–46. http://dx.doi.org/10.17816/ecogen17339-46.

Full text
Abstract:
Background. The active and careless applying of antibiotics in medicine and agriculture leads to the emergence of resistance to the existing antimicrobial drugs, which reduces the effectiveness of their use. One of the ways to solve this problem is the development of new antibiotics based on plant peptides with antimicrobial activity, for example plant defensins (which identified in all plants) and NCR peptides that are specifically synthesized in nodules of some leguminous plants.
 Materials and methods. In the present study, a meta-assembly of a transcriptome was constructed based on pu
APA, Harvard, Vancouver, ISO, and other styles
9

Michalek, Matthias, Bruno Vincent, Rainer Podschun, Joachim Grötzinger, Burkhard Bechinger, and Sascha Jung. "Hydramacin-1 in Action: Scrutinizing the Barnacle Model." Antimicrobial Agents and Chemotherapy 57, no. 7 (2013): 2955–66. http://dx.doi.org/10.1128/aac.02498-12.

Full text
Abstract:
ABSTRACTHydramacin-1 (HM1) from the metazoanHydraexerts antimicrobial activity against a wide range of bacterial strains. Notably, HM1 induces the aggregation of bacterial cells, accompanied by precipitation. To date, the proposed mechanism of peptide-lipid interaction, termed the barnacle model, has not been described on the molecular level. Here, we show by biochemical and biophysical techniques that the lipid-peptide interactions of HM1 are initiated by electrostatic and hydrophobic effects, in particular, by tryptophan and neighboring polar amino acid residues that cause an interfacial loc
APA, Harvard, Vancouver, ISO, and other styles
10

Jenssen, Håvard, Pamela Hamill, and Robert E. W. Hancock. "Peptide Antimicrobial Agents." Clinical Microbiology Reviews 19, no. 3 (2006): 491–511. http://dx.doi.org/10.1128/cmr.00056-05.

Full text
Abstract:
SUMMARY Antimicrobial host defense peptides are produced by all complex organisms as well as some microbes and have diverse and complex antimicrobial activities. Collectively these peptides demonstrate a broad range of antiviral and antibacterial activities and modes of action, and it is important to distinguish between direct microbicidal and indirect activities against such pathogens. The structural requirements of peptides for antiviral and antibacterial activities are evaluated in light of the diverse set of primary and secondary structures described for host defense peptides. Peptides wit
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Peptides antimicrobien"

1

Rolland, Jean-Luc. "Aspects moléculaires et biochimiques des stylicines, peptides multifonctionnels identifiés chez la crevette bleue du Pacifique Litopenaeus stylirostris (Crustacea, Decapoda)." Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20049.

Full text
Abstract:
Les travaux présentés dans ce mémoire ont été motivés par l'importance économique de l'élevage de la crevette bleue du pacifique Litopenaeus stylirostris dont les fortes mortalités sont principalement dues au développement de maladies bactériennes et virales. Ils ont consisté en la caractérisation des deux premiers membres d'une famille originale de peptides multifonctionnels présents chez les crevettes pénéides, les stylicines. Ces peptides, nommés stylicines 1 et 2, sont des peptides anioniques (pI < 6.0), formés d'une région amino-terminale riche en résidus de type proline et d'une régio
APA, Harvard, Vancouver, ISO, and other styles
2

Simon, Gaëlle, and Gaëlle Simon. "Évaluation du potentiel antimicrobien de composés inspirés de peptides." Master's thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/37223.

Full text
Abstract:
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2019-2020<br>Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2019-2020<br>Alors que les options de traitement s’épuisent devant la problématique pandémique de résistance microbienne, il est d’une pertinence tout à fait actuelle de multiplier les stratégies pour traiter les maladies infectieuses. Ces travaux portent sur l’investigation du potentiel antimicrobien de peptides et de dérivés peptidiques inspirés par des métabolites bioactifs. Les effets de trois familles de molécules synthétiques com
APA, Harvard, Vancouver, ISO, and other styles
3

Fillion, Matthieu. "Études spectroscopiques du mécanisme d'action de peptides synthétiques à potentiel antimicrobien." Doctoral thesis, Université Laval, 2017. http://hdl.handle.net/20.500.11794/27678.

Full text
Abstract:
Tableau d'honneur de la Faculté des études supérieures et postdorales, 2016-2017<br>Cette thèse porte sur l’élucidation du mode d’action de peptides synthétiques qui sont des analogues cationiques du peptide modèle 14-mère. À l’instar des peptides antimicrobiens naturels, ces peptides synthétiques induisent des perturbations membranaires et une meilleure connaissance de leur mode d’action s’avère un élément déterminant pour le design de nouveaux peptides synthétiques qui présenteront une activité antibactérienne maximale et une activité hémolytique moindre. Afin de mieux caractériser le rôle d
APA, Harvard, Vancouver, ISO, and other styles
4

Duquesne, Sophie. "Peptides antimicrobiens des entérobactériesEtude de la voie de maturation et du mécanisme d'import de la microcine J25, peptide antimicrobien inhibiteur de l'ARN polymérase." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2007. http://tel.archives-ouvertes.fr/tel-00193192.

Full text
Abstract:
La microcine J25 (MccJ25) est un peptide antibactérien inhibiteur de l'ARN polymérase, produit par Escherichia coli AY25 selon la voie ribosomique. Sa structure tridimensionnelle en forme de lasso résulte du clivage d'un précurseur, McjA, et de la formation sur le peptide C-terminal résultant, d'une liaison amide Gly1-Glu8. Nous avons d'abord étudié le mode d'import de MccJ25 dans les bactéries et avons montré in vivo et in vitro qu'elle parasite un transporteur du complexe fer/ferrichrome, FhuA. Ainsi, MccJ25 se lie à FhuA avec un Kd de 1.2 µM, pour former un complexe de stœchiométrie 2:1. La
APA, Harvard, Vancouver, ISO, and other styles
5

Duquesne, Sophie. "Peptides antimicrobiens des entérobactéries : étude de la voie de maturation et du mécanisme d'import de la microcine J25, peptide antimicrobien inhibiteur de l ARN polymérase." Paris 6, 2007. http://www.theses.fr/2007PA066072.

Full text
Abstract:
MccJ25 est un peptide antibactérien dont la structure tridimensionnelle en forme de lasso résulte du clivage de son précurseur McjA, et de la formation d’une liaison Gly1-Glu8 sur le peptide C-terminal résultant. L’étude du mode d’import bactérien de MccJ25 a montré qu’elle parasite un transporteur du complexe fer/ferrichrome, FhuA. MccJ25 se lie à FhuA avec un Kd de 1. 2 µM, pour former un complexe de stœchiométrie 2:1. La région Val11-Pro16 en épingle à cheveu  de MccJ25 est nécessaire à cette interaction. L’étude de la biosynthèse de MccJ25 a montré que les gènes mcjB et mcjC du cluster gé
APA, Harvard, Vancouver, ISO, and other styles
6

Andrault, Pierre-Marie. "Rôle des cathepsines à cystéine dans la régulation du peptide antimicrobien LL-37 lors de pathologies inflammatoire chroniques pulmonaires." Thesis, Tours, 2015. http://www.theses.fr/2015TOUR4035/document.

Full text
Abstract:
Lors de pathologies pulmonaires inflammatoires chroniques comme la mucoviscidose ou la BPCO, le déséquilibre de la balance protéases/antiprotéases aboutit à la dégradation du tissu pulmonaire et à l’inactivation des défenses antimicrobiennes. Les cathepsines à cystéine participent à l’inactivation protéolytique de peptides et protéines antimicrobiens (PAMs) pulmonaires comme le SLPI, la lactoferrine, et les β-défensines HBD-2 et -3 lors de l’emphysème ou de la mucoviscidose. Lors de cette thèse, nous avons étudié la capacité des cathepsines à cystéine B, K, L et S à hydrolyser le peptide LL-37
APA, Harvard, Vancouver, ISO, and other styles
7

Akaddar, Aziza. "Etude de l'effet d'un peptide antimicrobien, la Catestatine sur la croissance de Plasmodium, parasite du paludisme." Université Louis Pasteur (Strasbourg) (1971-2008), 2008. http://www.theses.fr/2008STR13199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vanhoye, Damien. "Analyse évolutive, moléculaire et fonctionnelle des peptides antimicrobiens des amphibiens." Paris 6, 2004. http://www.theses.fr/2004PA066326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Auvynet, Constance. "Des peptides immunomodulateurs aux peptides opioïdes de la peau de rainettes latino-américaines : ou l'originalité d'un modèle." Paris 6, 2007. http://www.theses.fr/2007PA066089.

Full text
Abstract:
La peau de grenouilles sécrète un grand nombre de peptides aux propriétés pharmacologiques remarquables. Ces peptides, produits en grande quantité, sont souvent similaires à ceux utilisés par les mammifères dans leur système nerveux central et endocrinien. Les peptides de grenouille représentent donc un modèle original pour l’étude de peptides similaires chez l’Homme. Nous avons mis en évidence la présence, dans la peau de Pachymedusa dacnicolor et Phyllomedusa sauvagei, de peptides ayant des propriétés immunomodulatrices sur les cellules immunitaires humaines ainsi que l’importance de la stru
APA, Harvard, Vancouver, ISO, and other styles
10

Gomes, von Borowski Rafael. "Obtention et évaluation de l’activité antibiofilm de peptides et peptidomimétiques issus de Capsicum baccatum var. pendulum (Solanaceae)." Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1B005.

Full text
Abstract:
Le biofilm confère aux bactéries de nombreux avantages en tant que matrice qui améliore leur résistance et tolérance aux antibiotiques. Staphylococcus epidermidis est l'une des bactéries cliniques les plus importantes en raison de sa capacité à former des biofilms sur des dispositifs médicaux, notamment les stimulateurs cardiaques, les cathéters urinaires et les prothèses. Dans ce contexte, les peptides ont été proposés comme une alternative importante, que ce soit en tant que traitement médicamenteux ou en tant qu’agents de surfaces anti-infectieux. Cette étude porte sur l’identification de n
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Peptides antimicrobien"

1

Phoenix, David A., Sarah R. Dennison, and Frederick Harris. Antimicrobial Peptides. Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527652853.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Harder, Jürgen, and Jens-M. Schröder, eds. Antimicrobial Peptides. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24199-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Giuliani, Andrea, and Andrea C. Rinaldi, eds. Antimicrobial Peptides. Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-594-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hansen, Paul R., ed. Antimicrobial Peptides. Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6737-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Matsuzaki, Katsumi, ed. Antimicrobial Peptides. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3588-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Drider, Djamel, and Sylvie Rebuffat, eds. Prokaryotic Antimicrobial Peptides. Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7692-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Antimicrobial peptides: Methods and protocols. Humana Press/Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hiemstra, Pieter S., and Sebastian A. J. Zaat, eds. Antimicrobial Peptides and Innate Immunity. Springer Basel, 2013. http://dx.doi.org/10.1007/978-3-0348-0541-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shafer, William M., ed. Antimicrobial Peptides and Human Disease. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-29916-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Drider, Djamel, and Sylvie Rebuffat. Prokaryotic antimicrobial peptides: From genes to applications. Springer Verlag, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Peptides antimicrobien"

1

Marcos, Jose F., and Paloma Manzanares. "Antimicrobial Peptides." In Antimicrobial Polymers. John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118150887.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chakraborti, Srinjoy, and Sanjay Ram. "Antimicrobial Peptides." In Management of Infections in the Immunocompromised Host. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77674-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ganz, T., and R. I. Lehrer. "Antimicrobial Peptides." In Handbook of Experimental Pharmacology. Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55742-2_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lata, Sneh, and Gajendra Raghava. "Antimicrobial Peptides." In Encyclopedia of Systems Biology. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_87.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jack, Ralph W., Gabriele Bierbaum, and Hans-Georg Sahl. "Antimicrobial Peptides." In Lantibiotics and Related Peptides. Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-08239-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Park, Andrew J., Jean-Phillip Okhovat, and Jenny Kim. "Antimicrobial Peptides." In Clinical and Basic Immunodermatology. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-29785-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sørensen, Ole E. "Antimicrobial Peptides in Cutaneous Wound Healing." In Antimicrobial Peptides. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24199-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zasloff, Michael. "Antimicrobial Peptides: Do They Have a Future as Therapeutics?" In Antimicrobial Peptides. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24199-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Garreis, Fabian, Martin Schicht, and Friedrich Paulsen. "Antimicrobial Peptides as Endogenous Antibacterials and Antivirals at the Ocular Surface." In Antimicrobial Peptides. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24199-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Seiler, Frederik, Robert Bals, and Christoph Beisswenger. "Function of Antimicrobial Peptides in Lung Innate Immunity." In Antimicrobial Peptides. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24199-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Peptides antimicrobien"

1

Soares, Jason W., and Charlene M. Mello. "Antimicrobial peptides: a review of how peptide structure impacts antimicrobial activity." In Optical Technologies for Industrial, Environmental, and Biological Sensing, edited by Bent S. Bennedsen, Yud-Ren Chen, George E. Meyer, Andre G. Senecal, and Shu-I. Tu. SPIE, 2004. http://dx.doi.org/10.1117/12.516171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Turánek, Jaroslav, Michaela Škrabalová, and Pavlína Knötigová. "Antimicrobial and anticancer peptides." In XIth Conference Biologically Active Peptides. Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2009. http://dx.doi.org/10.1135/css200911128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Čeřovský, Václav, Rudolf Ježek, Vladimír Fučík, and Jiřina Slaninová. "Antimicrobial peptides from the venom of Vespidae." In Xth Conference Biologically Active Peptides. Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2007. http://dx.doi.org/10.1135/css200709025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Doležílková, Ivana, Martina Macková, and Tomáš Macek. "Short peptides with antimicrobial activity from plants." In XIth Conference Biologically Active Peptides. Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2009. http://dx.doi.org/10.1135/css200911025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ehala, Sille, Petr Niederhafner, Václav Čeřovský, et al. "Analysis of antimicrobial peptides by capillary electrophoresis." In XIIth Conference Biologically Active Peptides. Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2011. http://dx.doi.org/10.1135/css201113037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chapuis, Hubert, Jiřina Slaninová, Lenka Monincová, Lucie Bednárová, and Václav Čeřovský. "Design of stable antimicrobial peptides through hydrocarbon stapling." In XIIth Conference Biologically Active Peptides. Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2011. http://dx.doi.org/10.1135/css201113019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Králová, Marta, Miloslav Šanda, Martina Macková, and Tomáš Macek. "Isolation of antimicrobial peptides and proteins from tomato." In XIIth Conference Biologically Active Peptides. Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2011. http://dx.doi.org/10.1135/css201113073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shevchenko, Irina, Tereza Neubauerová, Martina Macková, and Tomáš Macek. "Study of antimicrobial peptide induction in Brassica napus." In XIIth Conference Biologically Active Peptides. Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2011. http://dx.doi.org/10.1135/css201113127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Niederhafner, Petr, Martin Šafařík, Jan Ježek, et al. "Melectin analogues: the influence of dendrimerization on antimicrobial and hemolytic activity." In XIth Conference Biologically Active Peptides. Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2009. http://dx.doi.org/10.1135/css200911088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Čujová, Sabína, Lenka Monincová, Jiřina Slaninová, Lucie Bednárová, and Václav Čeřovský. "Antimicrobial peptides isolated from the venom of wild bee Panurgus calcaratus." In XIIth Conference Biologically Active Peptides. Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2011. http://dx.doi.org/10.1135/css201113027.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Peptides antimicrobien"

1

Vouros, Paul, and Terrance Black. Solid Phase Peptide Synthesis of Antimicrobial Peptides for cell Binding Studies: Characterization Using Mass Spectrometry. Defense Technical Information Center, 2002. http://dx.doi.org/10.21236/ada412571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Doherty, Laurel A., Morris Slutsky, and Jason W. Soares. Antimicrobial Peptides with Differential Bacterial Binding Characteristics. Defense Technical Information Center, 2013. http://dx.doi.org/10.21236/ada577726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mierswa, S. C., T. H. Lee, and M. C. Yung. Developing an engineered therapeutic microbe to release antimicrobial peptides (AMPs). Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1558856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yung, M. C. Engineering a therapeutic microbe for site-of-infection delivery of encapsulated antimicrobial peptides (AMPs). Office of Scientific and Technical Information (OSTI), 2019. http://dx.doi.org/10.2172/1573149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!