Journal articles on the topic 'Peptides antimicrobien'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Peptides antimicrobien.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hwang, Peter M., and Hans J. Vogel. "Structure-function relationships of antimicrobial peptides." Biochemistry and Cell Biology 76, no. 2-3 (1998): 235–46. http://dx.doi.org/10.1139/o98-026.
Full textBechinger, B., and S. U. Gorr. "Antimicrobial Peptides: Mechanisms of Action and Resistance." Journal of Dental Research 96, no. 3 (2016): 254–60. http://dx.doi.org/10.1177/0022034516679973.
Full textGasu, Edward Ntim, Hubert Senanu Ahor, and Lawrence Sheringham Borquaye. "Peptide Extract from Olivancillaria hiatula Exhibits Broad-Spectrum Antibacterial Activity." BioMed Research International 2018 (December 23, 2018): 1–11. http://dx.doi.org/10.1155/2018/6010572.
Full textBachrach, Gilad, Hamutal Altman, Paul E. Kolenbrander, et al. "Resistance of Porphyromonas gingivalis ATCC 33277 to Direct Killing by Antimicrobial Peptides Is Protease Independent." Antimicrobial Agents and Chemotherapy 52, no. 2 (2007): 638–42. http://dx.doi.org/10.1128/aac.01271-07.
Full textLópez-García, Belén, Luis González-Candelas, Enrique Pérez-Payá, and Jose F. Marcos. "Identification and Characterization of a Hexapeptide with Activity Against Phytopathogenic Fungi That Cause Postharvest Decay in Fruits." Molecular Plant-Microbe Interactions® 13, no. 8 (2000): 837–46. http://dx.doi.org/10.1094/mpmi.2000.13.8.837.
Full textTani, Naoki, Kohei Kazuma, Yukio Ohtsuka, et al. "Mass Spectrometry Analysis and Biological Characterization of the Predatory Ant Odontomachus monticola Venom and Venom Sac Components." Toxins 11, no. 1 (2019): 50. http://dx.doi.org/10.3390/toxins11010050.
Full textNagarajan, Deepesh, Tushar Nagarajan, Neha Nanajkar, and Nagasuma Chandra. "A Uniform In Vitro Efficacy Dataset to Guide Antimicrobial Peptide Design." Data 4, no. 1 (2019): 27. http://dx.doi.org/10.3390/data4010027.
Full textZorin, Evgeny A., Marina S. Kliukova, Olga A. Kulaeva, Alexey M. Afonin, Igor A. Tikhonovich, and Vladimir A. Zhukov. "Identification of sequences encoding for ncr-peptides and defensins in the ‘meta-assembly’ of transcriptome of pea (pisum sativum l.) Nitrogen-fixing nodules." Ecological genetics 17, no. 3 (2019): 39–46. http://dx.doi.org/10.17816/ecogen17339-46.
Full textMichalek, Matthias, Bruno Vincent, Rainer Podschun, Joachim Grötzinger, Burkhard Bechinger, and Sascha Jung. "Hydramacin-1 in Action: Scrutinizing the Barnacle Model." Antimicrobial Agents and Chemotherapy 57, no. 7 (2013): 2955–66. http://dx.doi.org/10.1128/aac.02498-12.
Full textJenssen, Håvard, Pamela Hamill, and Robert E. W. Hancock. "Peptide Antimicrobial Agents." Clinical Microbiology Reviews 19, no. 3 (2006): 491–511. http://dx.doi.org/10.1128/cmr.00056-05.
Full textGrishin, Sergei Y., Pavel A. Domnin, Sergey V. Kravchenko, et al. "Is It Possible to Create Antimicrobial Peptides Based on the Amyloidogenic Sequence of Ribosomal S1 Protein of P. aeruginosa?" International Journal of Molecular Sciences 22, no. 18 (2021): 9776. http://dx.doi.org/10.3390/ijms22189776.
Full textBall, S. L., G. P. Siou, J. A. Wilson, A. Howard, B. H. Hirst, and J. Hall. "Expression and immunolocalisation of antimicrobial peptides within human palatine tonsils." Journal of Laryngology & Otology 121, no. 10 (2007): 973–78. http://dx.doi.org/10.1017/s0022215107006184.
Full textKraszewska, Joanna, Michael C. Beckett, Tharappel C. James, and Ursula Bond. "Comparative Analysis of the Antimicrobial Activities of Plant Defensin-Like and Ultrashort Peptides against Food-Spoiling Bacteria." Applied and Environmental Microbiology 82, no. 14 (2016): 4288–98. http://dx.doi.org/10.1128/aem.00558-16.
Full textStrandberg, Erik, Deniz Tiltak, Marco Ieronimo, Nathalie Kanithasen, Parvesh Wadhwani та Anne S. Ulrich. "Influence of C-terminal amidation on the antimicrobial and hemolytic activities of cationic α-helical peptides". Pure and Applied Chemistry 79, № 4 (2007): 717–28. http://dx.doi.org/10.1351/pac200779040717.
Full textSuryawanshi, Sunil Kumar, and Usha Chouhan. "COMPUTATIONAL APPROACHES FOR THE PREDICTION OF ANTIMICROBIAL POTENTIAL PEPTIDES FROM OCIMUM TENUIFLORUM." Asian Journal of Pharmaceutical and Clinical Research 11, no. 1 (2018): 398. http://dx.doi.org/10.22159/ajpcr.2017.v11i1.23008.
Full textSuryawanshi, Sunil Kumar, and Usha Chouhan. "COMPUTATIONAL APPROACHES FOR THE PREDICTION OF ANTIMICROBIAL POTENTIAL PEPTIDES FROM OCIMUM TENUIFLORUM." Asian Journal of Pharmaceutical and Clinical Research 11, no. 1 (2018): 398. http://dx.doi.org/10.22159/ajpcr.2018.v11i1.23008.
Full textJung, Sook-In, Jonathan S. Finkel, Norma V. Solis, et al. "Bcr1 Functions Downstream of Ssd1 To Mediate Antimicrobial Peptide Resistance in Candida albicans." Eukaryotic Cell 12, no. 3 (2013): 411–19. http://dx.doi.org/10.1128/ec.00285-12.
Full textBrowne, Katrina, Sudip Chakraborty, Renxun Chen, et al. "A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides." International Journal of Molecular Sciences 21, no. 19 (2020): 7047. http://dx.doi.org/10.3390/ijms21197047.
Full textHaney, Evan F., Leonard T. Nguyen, David J. Schibli, and Hans J. Vogel. "Design of a novel tryptophan-rich membrane-active antimicrobial peptide from the membrane-proximal region of the HIV glycoprotein, gp41." Beilstein Journal of Organic Chemistry 8 (July 24, 2012): 1172–84. http://dx.doi.org/10.3762/bjoc.8.130.
Full textLorenzón, E. N., G. F. Cespedes, E. F. Vicente, et al. "Effects of Dimerization on the Structure and Biological Activity of Antimicrobial Peptide Ctx-Ha." Antimicrobial Agents and Chemotherapy 56, no. 6 (2012): 3004–10. http://dx.doi.org/10.1128/aac.06262-11.
Full textXie, Zhipeng, Manchuriga Wang, and Yingxia Zhang. "Antimicrobial peptide database helps design novel antimicrobial peptides." Toxicon 158 (February 2019): S76. http://dx.doi.org/10.1016/j.toxicon.2018.10.259.
Full textFleeman, Renee M., Luis A. Macias, Jennifer S. Brodbelt, and Bryan W. Davies. "Defining principles that influence antimicrobial peptide activity against capsulatedKlebsiella pneumoniae." Proceedings of the National Academy of Sciences 117, no. 44 (2020): 27620–26. http://dx.doi.org/10.1073/pnas.2007036117.
Full textYeaman, Michael R., Kimberly D. Gank, Arnold S. Bayer, and Eric P. Brass. "Synthetic Peptides That Exert Antimicrobial Activities in Whole Blood and Blood-Derived Matrices." Antimicrobial Agents and Chemotherapy 46, no. 12 (2002): 3883–91. http://dx.doi.org/10.1128/aac.46.12.3883-3891.2002.
Full textCiociola, Tecla, Thelma A. Pertinhez, Laura Giovati, et al. "Dissecting the Structure-Function Relationship of a Fungicidal Peptide Derived from the Constant Region of Human Immunoglobulins." Antimicrobial Agents and Chemotherapy 60, no. 4 (2016): 2435–42. http://dx.doi.org/10.1128/aac.01753-15.
Full textRacheva, M., O. Romero, K. K. Julich-Gruner, A. S. Ulrich, C. Wischke, and A. Lendlein. "Purity of mushroom tyrosinase as a biocatalyst for biomaterial synthesis affects the stability of therapeutic peptides." MRS Proceedings 1718 (2015): 85–90. http://dx.doi.org/10.1557/opl.2015.260.
Full textGomes, Ana, Lucinda J. Bessa, Patrícia Correia, et al. "“Clicking” an Ionic Liquid to a Potent Antimicrobial Peptide: On the Route towards Improved Stability." International Journal of Molecular Sciences 21, no. 17 (2020): 6174. http://dx.doi.org/10.3390/ijms21176174.
Full textHitt, Samantha J., Barney M. Bishop, and Monique L. van Hoek. "Komodo-dragon cathelicidin-inspired peptides are antibacterial against carbapenem-resistant Klebsiella pneumoniae." Journal of Medical Microbiology 69, no. 11 (2020): 1262–72. http://dx.doi.org/10.1099/jmm.0.001260.
Full textAudrain, Bianca, Lionel Ferrières, Amira Zairi, et al. "Induction of the Cpx Envelope Stress Pathway Contributes to Escherichia coli Tolerance to Antimicrobial Peptides." Applied and Environmental Microbiology 79, no. 24 (2013): 7770–79. http://dx.doi.org/10.1128/aem.02593-13.
Full textWang, Guangshun. "Bioinformatic Analysis of 1000 Amphibian Antimicrobial Peptides Uncovers Multiple Length-Dependent Correlations for Peptide Design and Prediction." Antibiotics 9, no. 8 (2020): 491. http://dx.doi.org/10.3390/antibiotics9080491.
Full textHe, Dangui, Zhijian Cao, Ruhong Zhang, and Wenhua Li. "Molecular Cloning and Functional Identification of the Antimicrobial Peptide Gene Ctri9594 from the Venom of the Scorpion Chaerilus tricostatus." Antibiotics 10, no. 8 (2021): 896. http://dx.doi.org/10.3390/antibiotics10080896.
Full textWojciechowska, Monika, Joanna Miszkiewicz, and Joanna Trylska. "Conformational Changes of Anoplin, W-MreB1–9, and (KFF)3K Peptides near the Membranes." International Journal of Molecular Sciences 21, no. 24 (2020): 9672. http://dx.doi.org/10.3390/ijms21249672.
Full textCasciaro, Bruno, Floriana Cappiello, Maria Rosa Loffredo, Francesca Ghirga, and Maria Luisa Mangoni. "The Potential of Frog Skin Peptides for Anti-Infective Therapies: The Case of Esculentin-1a(1-21)NH2." Current Medicinal Chemistry 27, no. 9 (2020): 1405–19. http://dx.doi.org/10.2174/0929867326666190722095408.
Full textPini, Alessandro, Andrea Giuliani, Chiara Falciani, et al. "Antimicrobial Activity of Novel Dendrimeric Peptides Obtained by Phage Display Selection and Rational Modification." Antimicrobial Agents and Chemotherapy 49, no. 7 (2005): 2665–72. http://dx.doi.org/10.1128/aac.49.7.2665-2672.2005.
Full textAlmsned, Fahad. "Designing Antimicrobial Peptide: Current Status." Journal of Medical Science And clinical Research 05, no. 03 (2016): 19282–94. http://dx.doi.org/10.18535/jmscr/v5i3.153.
Full textOyston, P. C. F., M. A. Fox, S. J. Richards, and G. C. Clark. "Novel peptide therapeutics for treatment of infections." Journal of Medical Microbiology 58, no. 8 (2009): 977–87. http://dx.doi.org/10.1099/jmm.0.011122-0.
Full textZhang, Yong-lian, and Hsiao-Chang Chan. "S1h1-4 An epididymis-specific antimicrobial peptide has dual functions in sperm maturation(S1-h1 "Antimicrobial Peptides and Membrane Interactions",Symposia,Abstract,Meeting Program of EABS & BSJ 2006)." Seibutsu Butsuri 46, supplement2 (2006): S113. http://dx.doi.org/10.2142/biophys.46.s113_2.
Full textBagheri, Mojtaba, Michael Beyermann, and Margitta Dathe. "Immobilization Reduces the Activity of Surface-Bound Cationic Antimicrobial Peptides with No Influence upon the Activity Spectrum." Antimicrobial Agents and Chemotherapy 53, no. 3 (2008): 1132–41. http://dx.doi.org/10.1128/aac.01254-08.
Full textWu, Qihui, Hanzhong Ke, Dongli Li, Qi Wang, Jiansong Fang, and Jingwei Zhou. "Recent Progress in Machine Learning-based Prediction of Peptide Activity for Drug Discovery." Current Topics in Medicinal Chemistry 19, no. 1 (2019): 4–16. http://dx.doi.org/10.2174/1568026619666190122151634.
Full textDeslouches, Berthony, Shruti M. Phadke, Vanja Lazarevic, et al. "De Novo Generation of Cationic Antimicrobial Peptides: Influence of Length and Tryptophan Substitution on Antimicrobial Activity." Antimicrobial Agents and Chemotherapy 49, no. 1 (2005): 316–22. http://dx.doi.org/10.1128/aac.49.1.316-322.2005.
Full textTanaka, Tsuyoshi, Yoriko Kokuryu, and Tadashi Matsunaga. "Novel Method for Selection of Antimicrobial Peptides from a Phage Display Library by Use of Bacterial Magnetic Particles." Applied and Environmental Microbiology 74, no. 24 (2008): 7600–7606. http://dx.doi.org/10.1128/aem.00162-08.
Full textLi, Bin, Peng Lyu, Shuping Xie, et al. "LFB: A Novel Antimicrobial Brevinin-Like Peptide from the Skin Secretion of the Fujian Large Headed Frog, Limnonectes fujianensi." Biomolecules 9, no. 6 (2019): 242. http://dx.doi.org/10.3390/biom9060242.
Full textJin, Yi, Janet Hammer, Michelle Pate та ін. "Antimicrobial Activities and Structures of Two Linear Cationic Peptide Families with Various Amphipathic β-Sheet and α-Helical Potentials". Antimicrobial Agents and Chemotherapy 49, № 12 (2005): 4957–64. http://dx.doi.org/10.1128/aac.49.12.4957-4964.2005.
Full textCerrato, Andrea, Anna Laura Capriotti, Federico Capuano, et al. "Identification and Antimicrobial Activity of Medium-Sized and Short Peptides from Yellowfin Tuna (Thunnus albacares) Simulated Gastrointestinal Digestion." Foods 9, no. 9 (2020): 1185. http://dx.doi.org/10.3390/foods9091185.
Full textChrom, Christina, Lindsay Renn, and Gregory Caputo. "Characterization and Antimicrobial Activity of Amphiphilic Peptide AP3 and Derivative Sequences." Antibiotics 8, no. 1 (2019): 20. http://dx.doi.org/10.3390/antibiotics8010020.
Full textKim, Young Soo, and Hyung Joon Cha. "High-Throughput and Facile Assay of Antimicrobial Peptides Using pH-Controlled Fluorescence Resonance Energy Transfer." Antimicrobial Agents and Chemotherapy 50, no. 10 (2006): 3330–35. http://dx.doi.org/10.1128/aac.00455-06.
Full textAvci, Fatma Gizem, Berna Sariyar Akbulut, and Elif Ozkirimli. "Membrane Active Peptides and Their Biophysical Characterization." Biomolecules 8, no. 3 (2018): 77. http://dx.doi.org/10.3390/biom8030077.
Full textMusin, Kh G. "ANTIMICROBIAL PEPTIDES — A POTENTIAL REPLACEMENT FOR TRADITIONAL ANTIBIOTICS." Russian Journal of Infection and Immunity 8, no. 3 (2018): 295–308. http://dx.doi.org/10.15789/2220-7619-2018-3-295-308.
Full textCytryńska, Małgorzata, and Agnieszka Zdybicka-Barabas. "Defense peptides: recent developments." Biomolecular Concepts 6, no. 4 (2015): 237–51. http://dx.doi.org/10.1515/bmc-2015-0014.
Full textGrafskaia, Ekaterina, Elizaveta Pavlova, Vladislav V. Babenko, et al. "The Hirudo Medicinalis Microbiome Is a Source of New Antimicrobial Peptides." International Journal of Molecular Sciences 21, no. 19 (2020): 7141. http://dx.doi.org/10.3390/ijms21197141.
Full textHe, Jian, Randal Eckert, Thanh Pharm, et al. "Novel Synthetic Antimicrobial Peptides against Streptococcus mutans." Antimicrobial Agents and Chemotherapy 51, no. 4 (2007): 1351–58. http://dx.doi.org/10.1128/aac.01270-06.
Full text