Academic literature on the topic 'Peptides drug delivery'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Peptides drug delivery.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Peptides drug delivery"

1

Berillo, Dmitriy, Adilkhan Yeskendir, Zharylkasyn Zharkinbekov, Kamila Raziyeva, and Arman Saparov. "Peptide-Based Drug Delivery Systems." Medicina 57, no. 11 (November 5, 2021): 1209. http://dx.doi.org/10.3390/medicina57111209.

Full text
Abstract:
Peptide-based drug delivery systems have many advantages when compared to synthetic systems in that they have better biocompatibility, biochemical and biophysical properties, lack of toxicity, controlled molecular weight via solid phase synthesis and purification. Lysosomes, solid lipid nanoparticles, dendrimers, polymeric micelles can be applied by intravenous administration, however they are of artificial nature and thus may induce side effects and possess lack of ability to penetrate the blood-brain barrier. An analysis of nontoxic drug delivery systems and an establishment of prospective trends in the development of drug delivery systems was needed. This review paper summarizes data, mainly from the past 5 years, devoted to the use of peptide-based carriers for delivery of various toxic drugs, mostly anticancer or drugs with limiting bioavailability. Peptide-based drug delivery platforms are utilized as peptide–drug conjugates, injectable biodegradable particles and depots for delivering small molecule pharmaceutical substances (500 Da) and therapeutic proteins. Controlled drug delivery systems that can effectively deliver anticancer and peptide-based drugs leading to accelerated recovery without significant side effects are discussed. Moreover, cell penetrating peptides and their molecular mechanisms as targeting peptides, as well as stimuli responsive (enzyme-responsive and pH-responsive) peptides and peptide-based self-assembly scaffolds are also reviewed.
APA, Harvard, Vancouver, ISO, and other styles
2

T. Varkey, Jaya. "Peptides-Incorporated Nanoparticles for Imaging and Drug Delivery Applications." Journal of Pharmaceutical and Medicinal Chemistry 2, no. 2 (2016): 145–48. http://dx.doi.org/10.21088/jpmc.2395.6615.2216.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Preet, Payal. "PEPTIDES: A NEW THERAPEUTIC APPROACH." International Journal of Current Pharmaceutical Research 10, no. 2 (March 15, 2018): 29. http://dx.doi.org/10.22159/ijcpr.2018v10i2.25887.

Full text
Abstract:
Peptide therapeutics have played a notable role in medical practice since the advent of insulin therapy in the 1920s. Over 60 peptide drugs are approved in the United States and other major markets, and peptides continue to enter clinical development at a steady pace. Peptide drug discovery has diversified beyond its traditional focus on endogenous human peptides to include a broader range of structures identified from other natural sources or through medicinal chemistry efforts. Peptides are recognized for being highly selective and efficacious and, at the same time, relatively safe and well tolerated. Consequently, there is an increased interest in peptides in pharmaceutical research and development (R and D), and approximately 140 peptide therapeutics are currently being evaluated in clinical trials. Given that the low-hanging fruits in the form of obvious peptide targets have already been picked, it has now become necessary to explore new routes beyond traditional peptide design. Examples of such approaches are multifunctional and cell-penetrating peptides, as well as peptide drug conjugates. In regards to patient compliance for drug delivery, oral drug delivery is generally the preferred route of administration. However, parental injection of peptide drugs has always been the primary method of peptide drug administration. Nevertheless, oral delivery of peptide drug presents a significant challenge due to the enzymatic degradation by enzymes in the GI tract and the poor penetration of the peptides across gastro-intestinal epithelium membranes, particularly for adults. Therefore, a novel peptide drug analogue or pro-drug that both protect peptide drugs from degradation by the enzymes in the GI tract that also improves its penetration across the intestinal epithelium membrane would greatly advance the development of peptide drugs as effective candidates for the treatment of various diseases.
APA, Harvard, Vancouver, ISO, and other styles
4

Peng, Fei, Wensheng Zhang, and Feng Qiu. "Self-assembling Peptides in Current Nanomedicine: Versatile Nanomaterials for Drug Delivery." Current Medicinal Chemistry 27, no. 29 (September 2, 2020): 4855–81. http://dx.doi.org/10.2174/0929867326666190712154021.

Full text
Abstract:
Background: The development of modern nanomedicine greatly depends on the involvement of novel materials as drug delivery system. In order to maximize the therapeutic effects of drugs and minimize their side effects, a number of natural or synthetic materials have been widely investigated for drug delivery. Among these materials, biomimetic self-assembling peptides (SAPs) have received more attention in recent years. Considering the rapidly growing number of SAPs designed for drug delivery, a summary of how SAPs-based drug delivery systems were designed, would be beneficial. Method: We outlined research works on different SAPs that have been investigated as carriers for different drugs, focusing on the design of SAPs nanomaterials and how they were used for drug delivery in different strategies. Results: Based on the principle rules of chemical complementarity and structural compatibility, SAPs such as ionic self-complementary peptide, peptide amphiphile and surfactant-like peptide could be designed. Determined by the features of peptide materials and the drugs to be delivered, different strategies such as hydrogel embedding, hydrophobic interaction, electrostatic interaction, covalent conjugation or the combination of them could be employed to fabricate SAPs-drug complex, which could achieve slow release, targeted or environment-responsive delivery of drugs. Furthermore, some SAPs could also be combined with other types of materials for drug delivery, or even act as drug by themselves. Conclusion: Various types of SAPs have been designed and used for drug delivery following various strategies, suggesting that SAPs as a category of versatile nanomaterials have promising potential in the field of nanomedicine.
APA, Harvard, Vancouver, ISO, and other styles
5

Dahiya, Sunita, and Rajiv Dahiya. "BIOAVAILABILITY ENHANCEMENT AND LIPID NANOCARRIER BASED DELIVERY OF PEPTIDES AND PROTEINS." Bulletin of Pharmaceutical Research 10, no. 1-3 (2020): 1–10. http://dx.doi.org/10.21276/bpr.2020.10.3.

Full text
Abstract:
Peptides and proteins are vital biomacromolecules that perform several bodily functions in various physiological and biological processes. Being biocompatible and biodegradable, these macromolecules are considered promising platforms for delivery of drugs and genes. However, peptides and proteins suffer from major limitations including enzymatic degradation, short circulation half-lives, and poor membrane permeability that leads to poor bioavailability, challenging their effective delivery. This article briefly discusses the inherent challenges in peptide and protein delivery along with strategies for bioavailability enhancement and lipid nanocarriers as prospective systems for peptide and protein drug delivery.
APA, Harvard, Vancouver, ISO, and other styles
6

Tesauro, Diego, Antonella Accardo, Carlo Diaferia, Vittoria Milano, Jean Guillon, Luisa Ronga, and Filomena Rossi. "Peptide-Based Drug-Delivery Systems in Biotechnological Applications: Recent Advances and Perspectives." Molecules 24, no. 2 (January 19, 2019): 351. http://dx.doi.org/10.3390/molecules24020351.

Full text
Abstract:
Peptides of natural and synthetic sources are compounds operating in a wide range of biological interactions. They play a key role in biotechnological applications as both therapeutic and diagnostic tools. They are easily synthesized thanks to solid-phase peptide devices where the amino acid sequence can be exactly selected at molecular levels, by tuning the basic units. Recently, peptides achieved resounding success in drug delivery and in nanomedicine smart applications. These applications are the most significant challenge of recent decades: they can selectively deliver drugs to only pathological tissues whilst saving the other districts of the body. This specific feature allows a reduction in the drug side effects and increases the drug efficacy. In this context, peptide-based aggregates present many advantages, including biocompatibility, high drug loading capacities, chemical diversity, specific targeting, and stimuli responsive drug delivery. A dual behavior is observed: on the one hand they can fulfill a structural and bioactive role. In this review, we focus on the design and the characterization of drug delivery systems using peptide-based carriers; moreover, we will also highlight the peptide ability to self-assemble and to actively address nanosystems toward specific targets.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Qian, Nan Jiang, Bo Fu, Fan Huang, and Jianfeng Liu. "Self-assembling peptide-based nanodrug delivery systems." Biomaterials Science 7, no. 12 (2019): 4888–911. http://dx.doi.org/10.1039/c9bm01212e.

Full text
Abstract:
The present review outlines the methods designing self-assembling peptide-based NDDs for small molecule drugs, with an emphasis on the different drug delivery strategies and their applications in using peptides and peptide conjugates.
APA, Harvard, Vancouver, ISO, and other styles
8

Huang, Wenzhe. "Peptide-based Drug Delivery for Curing Cancer." Journal of Drug Delivery and Therapeutics 9, no. 1-s (February 15, 2019): 387–89. http://dx.doi.org/10.22270/jddt.v9i1-s.2338.

Full text
Abstract:
Peptides have numerous advantages as the chains help treat cancer, tumor and several complex diseases. The review details on the different structures of peptides that can ensure actual and efficient delivery of therapy to tumor and cancer cases. The co-delivery system mainly aims to improve the therapeutic delivery process regarding manufacturing, targeting, and impact. Keywords: Nanotechnology, Peptide-based Drug Delivery, cancer
APA, Harvard, Vancouver, ISO, and other styles
9

Lakshmi, P. k., D. Prasanthi, and B. Veeresh. "NON INVASIVE DELIVERY OF PROTEIN AND PEPTIDE DRUGS: A REVIEW." Asian Journal of Pharmaceutical and Clinical Research 10, no. 8 (August 1, 2017): 25. http://dx.doi.org/10.22159/ajpcr.2017.v10i8.18274.

Full text
Abstract:
Till recent, injections remained the most common route for administration of protein and peptide drugs because of their poor bioavailability in the other routes. Because it is generally recognized that injection based delivery is a major impediment to the commercial success of therapeutic proteins and peptides, research in both academia and industry continues to focus on ways to overcome this problem. Possible non-parenteral administration routes for delivery of peptide and protein drugs include oral, nasal, ocular, transdermal, rectal, colonic, and vaginal route. The large surface area associated with most of these routes makes them attractive targets for drug delivery. While non-invasive administration by these routes is considered a more logical and achievable option for local treatment regimens, systemic delivery of proteins and peptides is significantly more challenging. In spite of effort made on the development of drugs for these routes, most of the successes fail to address how the technology will be transformed to a commercial product. The only notable exceptions have been the successful commercialization of nasal formulations for systemic delivery of a limited number of therapeutic peptides, and recent regulatory approvals of both pulmonary and buccal delivery systems for systemic delivery of insulin and an oral formulation of a small peptide analog, cyclosporine, have been commercialized. The present review aims to discuss the potential non-invasive routes of protein and peptide drug delivery. The factors which will affect drug transport and the bioavailability of proteins administered through these routes is also emphasized
APA, Harvard, Vancouver, ISO, and other styles
10

Cerrato, Carmine Pasquale, Tõnis Lehto, and Ülo Langel. "Peptide-based vectors: recent developments." Biomolecular Concepts 5, no. 6 (December 1, 2014): 479–88. http://dx.doi.org/10.1515/bmc-2014-0024.

Full text
Abstract:
AbstractPeptides and peptide-cargo complexes have been used for drug delivery and gene therapy. One of the most used delivery vectors are cell-penetrating peptides, due to their ability to be taken up by a variety of cell types and deliver a large variety of cargoes through the cell membrane with low cytotoxicity. In vitro and in vivo studies have shown their possibility and full effectiveness to deliver oligonucleotides, plasmid DNA, small interfering RNAs, antibodies, and drugs. We report in this review some of the latest strategies for peptide-mediated delivery of nucleic acids. It focuses on peptide-based vectors for therapeutic molecules and on nucleic acid delivery. In addition, we discuss recent applications and clinical trials.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Peptides drug delivery"

1

Easley, Christina A. "Electrically-assisted enhancement of transdermal drug delivery using magainin peptides." Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/21419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

SOLLAMI, DELEKTA SZYMON. "Hexosomes as Drug Delivery Vehicles for Antimicrobial Peptides." Thesis, KTH, Skolan för kemivetenskap (CHE), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172360.

Full text
Abstract:
This master thesis project was carried out at SP Technical Research Institute of Sweden within the FORMAMP project which goal is to increase the efficiency and stability of antimicrobial peptides (AMPs) by exploring and developing a number of innovative formulation strategies for the drug delivery of those systems. In view of the growing problem of bacterial resistance to traditional antibiotics, AMPs represent one of the most promising alternatives as therapeutics against infectious diseases: besides having a fast and non-specific mechanism of action, they are less prone to bacterial resistance. In this project, the goal was to develop an efficient method for the formulation of hexagonal lyotropic phase nanodispersions (called hexosomes) as drug delivery vehicles for the AP114, DPK-060 and LL-37 AMPs. Then, these formulations were characterized through size measurements, zeta potential measurements, SAXS, cryo-TEM and UPLC and their stability was assessed. Lastly, the interaction of these systems with model bacterial membranes was tested through QCM-D and ellipsometry. The relevant samples were found to have a hexagonal structure with the lattice parameter being larger when peptide was loaded. The systems were observed to be sufficiently stable and the peptide loading efficiency was found to be higher than 90% in most cases. The hexosomes loaded with LL-37 were observed to preserve the effectiveness of the peptide when interacting with the model membrane through QCM-D.
APA, Harvard, Vancouver, ISO, and other styles
3

Vellore, Janarthanan Mohanraj. "Formulation of chitosan-based nanoparticles for delivery of proteins and peptides." Thesis, Curtin University, 2003. http://hdl.handle.net/20.500.11937/1224.

Full text
Abstract:
Delivery of complex molecules such as peptides, proteins, oligonucleotides and plasmids is an intensively studied subject, which has attracted considerable medical and pharmaceutical interest. Encapsulation of these molecules with biodegradable polymers represents one way of overcoming various problems associated with the conventional delivery of macromolecules, for example instability and short biological half-life. The use of carriers made of hydrophilic polysaccharides such as chitosan, has been pursued as a promising alternative for improving the transport of biologically active macromolecules across biological surfaces. The development of nanoparticles as a delivery system also has major advantages of achieving possible drug protection, controlled release and drug targeting by either a passive or an active means. The aim of this study was to develop a simple and effective method to formulate biodegradable nanoparticles for the delivery of a model protein-bovine serum albumin (BSA) and an angiogenesis inhibitor, arginine-rich hexapeptide (ARE peptide). Major factors which determine nanoparticle formation and loading of the protein and the peptide as well as the underlying mechanisms controlling their incorporation and release characteristics were investigated. The preparation technique, based on the complex coacervation process, is extremely mild and involves the mixture of two aqueous solutions (chitosan and dextran sulfate) at room temperature. The formation of nanoparticles is dependent on the concentrations of chitosan (CS) and dextran sulfate (DS); particles with size, of 257 to 494nm can be obtained with 0.1%w/v solutions of CS and DS. Zeta potential of nanoparicles can be modulated conveniently from -34.3mV to +52.7mV by varying the composition of the two ionic polymers.Both bovine BSA and the ARH peptide were successfully incorporated into CS-based nanoparticles, mainly via an electrostatic interaction, with entrapment efficiency up to 100% and 75.9% for the protein and peptide respectively. Incorporation of both the protein and peptide into nanoparticles resulted in an increase in size suggesting their close association with the nanoparticle matrix material. The difference in sign and magnitude of zeta potential of empty and macromolecules-loaded nanoparticles supports the hypothesis that protein and peptide association with nanoparticles can be modulated by their ionic interaction with the oppositely charged ionic polymer (DS) in the nanoparticles. The release of BSA from the nanoparticles was very slow in water compared to that in l0mM phosphate buffer pH 7.4; whereas, ARH peptide showed extremely low level of release in water at the low ratio of DS but at the high ratio of DS, its release was in biphasic fashion, with an initial burst effect followed by an almost constant but very slow release up to 7 days in both water and 1 OmM phosphate buffer (pH 7.4). It was found that, unlike ARH peptide, the percentage of BSA released was relatively slower for the nanoparticles with a high ratio of DS. It is speculated that this difference in the release behaviour of BSA and ARH peptide, could be due to the effect of molecular size of the compounds and their interaction with the polymer matrix of the nanoparticle. The results of this study suggest that these novel CS/DS nanoparticulate system, prepared by a very mild ionic crosslinking technique, have potential to be a suitable carrier for the entrapment and controlled release of peptides and proteins.
APA, Harvard, Vancouver, ISO, and other styles
4

Abdulrazzaq, Fadi. "Aquasomes as a drug delivery system for proteins and peptides." Thesis, Aston University, 2016. http://publications.aston.ac.uk/30080/.

Full text
Abstract:
Aquasomes are nanocarrier systems consist of three distinctive layers; an inner core, a polyhydroxy carbohydrate layer and an outer layer of an API (Kossovsky et al., 1991). Aquasomes have a unique structure and ability to carry active molecules through a non-covalent bounding and provide superior stability, especially for proteins and peptides (Masatoshi and Yongning, 1998; Kim and Kim, 2002; Khopade et al., 2002). Different core and coating materials were used to prepare aquasomes under different conditions to investigate the relationship between preparation conditions and loading efficiency. In terms of loading efficiency, hydroxyapatite aquasomes, with either lactose or trehalose as a coating material, had the highest BSA loading (40%-60%) when compared to DSPA aquasomes. While DCPA aquasomes, with either lactose or trehalose as a coating material, had the lowest BSA loading (8%-16%). To investigate the interaction of the three layers of aquasomes, Surface analysis, docking and MD simulations were performed. Surface analysis performed by Discovery Studio showed that HA and trehalose interact by hydrogen bonding with the later acting as a hydrogen acceptor, while BSA displayed almost complete SAS and that there are numerous targets for trehalose attachments (no specific active site). MD simulations of BSA performed by AMBER 12 showed a stable MD simulation of BSA for 5 ns. Total energy analysis of BSA on the two conditions performed (300K and 280K) support the experimental data of lower BSA loadings of aquasomes prepared at 400C compared to those manufactured at 250C (p < 0.05). This could be related to that BSA might have either started to denature/unfold or breaking up which eventually resulted in low BSA loadings obtained experimentally. The high loading efficiency highlights aquasomes as a promising carrier for the delivery of proteins and peptides. Following formulation Optimisation, two routes of delivery were investigated, pulmonary and oral routes. For pulmonary delivery of aquasomes, BSA-loaded aquasomes were successfully formulated as pMDI and DPI formulations. Both pMDI and DPI formulations were investigated to identify lung distribution of BSA-loaded aquasomes using NGI. In vitro release studies on the selected size fractions from NGI show a sustained release of BSA over a period of 6 hr. In order to complement the in vitro release data, cell culture studies were performed to demonstrate the controlled release effect of aquasomes with BEAS-2B cell lines. The release of salbutamol sulphate (model drug) from aquasomes post 2 hr started to slow gradually until it reached its highest difference at 6 hr (p<0.05) when compared to the control. For oral delivery of aquasomes, BSA-loaded aquasome tablets were successfully formulated with MCC as multifunctional excipient and talc as a lubricant. Various powder blends of varying aquasomes amounts (25, 37.5, 50, 62.5 and 75%) were prepared and compressed at increasing compression forces (0.5, 1, 2 and 3 tons). It was noticed that under high compression forces of 2 and 3 tons, BSA spreads out of BSA-loaded aquasomes as was presented with confocal microscopy images. Tablets compressed under 1 ton of compression force was therefore chosen for coating as it showed desirable tablet characteristics (hardness, disintegration etc.). Acrylic based coating was used to spray coat the tablets. The coated tablets were found to disintegrate in pH >5.5 and steadily release for 6 hr. Cell culture studies were conducted to demonstrate the controlled release effect of aquasomes using Caco-2 cell lines. The release of metronidazole (model drug) from aquasomes post 2 hr started to slow gradually until it reached its highest difference at 6 hr (p<0.05) when compared to the control.
APA, Harvard, Vancouver, ISO, and other styles
5

Mitra, Deboleena. "Light Mediated Drug Delivery Using Photocaged Molecules and Photoswitchable Peptides." VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3618.

Full text
Abstract:
There are many different types of targeted therapy for cancer treatment. The method of light mediated targeted therapy that we have developed uses photocaged molecules and photoswitchable peptides. In photocaging, a biologically active molecule is made inactive by the attachment of a photocleavable blocking group. On exposure to UV radiation the photocleavable entity is removed and the biologically active molecule is released. Using this concept we have designed a prodrug that consists of a cell impermeable hydrophilic molecule attached to a photocaged doxorubicin. Upon irradiation with UV light the photosensitive group is removed and cytotoxic doxorubicin is released at the tumor site. This concept has been further modified by attaching receptor binding molecules to the photocaged entity to increase its specificity. A peptide which consists of an azobenzene photoswitch has been used which, in the dark state is randomly coiled and cell impermeable but upon illumination becomes helical and cell permeable and can be used to deliver drugs into the cells. Upon illumination with UV light of suitable wavelength the azobenzene linker will change from a trans to a cis form and this will convert the randomly coiled cell impermeable peptide into an α helical permeable form. Thus a series of peptides have been designed with different arginine mutations which develop an arginine patch in the helical form. This arginine patch would help in cell permeability by interacting with cell surface glycans. The method could potentially be used to deliver drugs into cells in presence of light.
APA, Harvard, Vancouver, ISO, and other styles
6

Vellore, Janarthanan Mohanraj. "Formulation of chitosan-based nanoparticles for delivery of proteins and peptides." Curtin University of Technology, School of Pharmacy, 2003. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=14517.

Full text
Abstract:
Delivery of complex molecules such as peptides, proteins, oligonucleotides and plasmids is an intensively studied subject, which has attracted considerable medical and pharmaceutical interest. Encapsulation of these molecules with biodegradable polymers represents one way of overcoming various problems associated with the conventional delivery of macromolecules, for example instability and short biological half-life. The use of carriers made of hydrophilic polysaccharides such as chitosan, has been pursued as a promising alternative for improving the transport of biologically active macromolecules across biological surfaces. The development of nanoparticles as a delivery system also has major advantages of achieving possible drug protection, controlled release and drug targeting by either a passive or an active means. The aim of this study was to develop a simple and effective method to formulate biodegradable nanoparticles for the delivery of a model protein-bovine serum albumin (BSA) and an angiogenesis inhibitor, arginine-rich hexapeptide (ARE peptide). Major factors which determine nanoparticle formation and loading of the protein and the peptide as well as the underlying mechanisms controlling their incorporation and release characteristics were investigated. The preparation technique, based on the complex coacervation process, is extremely mild and involves the mixture of two aqueous solutions (chitosan and dextran sulfate) at room temperature. The formation of nanoparticles is dependent on the concentrations of chitosan (CS) and dextran sulfate (DS); particles with size, of 257 to 494nm can be obtained with 0.1%w/v solutions of CS and DS. Zeta potential of nanoparicles can be modulated conveniently from -34.3mV to +52.7mV by varying the composition of the two ionic polymers.
Both bovine BSA and the ARH peptide were successfully incorporated into CS-based nanoparticles, mainly via an electrostatic interaction, with entrapment efficiency up to 100% and 75.9% for the protein and peptide respectively. Incorporation of both the protein and peptide into nanoparticles resulted in an increase in size suggesting their close association with the nanoparticle matrix material. The difference in sign and magnitude of zeta potential of empty and macromolecules-loaded nanoparticles supports the hypothesis that protein and peptide association with nanoparticles can be modulated by their ionic interaction with the oppositely charged ionic polymer (DS) in the nanoparticles. The release of BSA from the nanoparticles was very slow in water compared to that in l0mM phosphate buffer pH 7.4; whereas, ARH peptide showed extremely low level of release in water at the low ratio of DS but at the high ratio of DS, its release was in biphasic fashion, with an initial burst effect followed by an almost constant but very slow release up to 7 days in both water and 1 OmM phosphate buffer (pH 7.4). It was found that, unlike ARH peptide, the percentage of BSA released was relatively slower for the nanoparticles with a high ratio of DS. It is speculated that this difference in the release behaviour of BSA and ARH peptide, could be due to the effect of molecular size of the compounds and their interaction with the polymer matrix of the nanoparticle. The results of this study suggest that these novel CS/DS nanoparticulate system, prepared by a very mild ionic crosslinking technique, have potential to be a suitable carrier for the entrapment and controlled release of peptides and proteins.
APA, Harvard, Vancouver, ISO, and other styles
7

Karthauser, Zoe. "A new approach to drug delivery : non-peptidic, high load macrocyclic alternatives to cell penetrating peptides." Thesis, University of East Anglia, 2013. https://ueaeprints.uea.ac.uk/48136/.

Full text
Abstract:
Calixarenes are versatile macrocycles formed from the condensation of para-tertbutyl- phenol and formaldehyde. Chapter 1 describes the synthesis of these molecules and how conformational control and selective functionalisation can give an array of molecules with customised properties; this allows for various applications including those of biological relevance. The copper catalysed alkyne-azide cycloaddition (CuAAC) reaction is also introduced as a tool for functionalising calixarenes. The phenomenon of cell penetration is of interest where a molecule has an intracellular target, for example gene therapy, delivery of cytotoxic agents or cellular imaging. Chapter 2 introduces the mechanisms of cell uptake and the design and applications of cell penetrating peptides. Calixarenes are presented as alternatives to cell penetrating peptides and the work published to date on intracellular delivery of calixarenes is summarised. A synthetic route for calixarenes with variable fluorescent dyes and different functionalities on the upper rim via a common intermediate is presented. Synthesis of an analogue featuring guanidinium groups on the upper rim was achieved using carboxybenzyl (Cbz) protecting groups as a less labile alternative to butoxycarbonyl (Boc) groups. The syntheses of analogues with varied linkers for attachment of the dye are also presented. Biological evaluation revealed that the dynamics of cellular uptake and the intracellular localisation were sensitive to the upper-rim functionalisation and the dye molecule. The linker attaching the dye had less impact. Chapter 3 describes the suitability of calixarenes as scaffolds to form glycoconjugates. These can be used to target Pseudomonas aeruginosa; research towards development of novel treatments of infections from this pathogen is summarised. A route that has been developed towards bifunctional calixarenes featuring a fluorescent tag and points of attachment for sugars via CuAAC reactions is presented. The use of alkyne protecting groups to maintain the integrity of the scaffold during transformations was found to be particularly important.
APA, Harvard, Vancouver, ISO, and other styles
8

Mäe, Maarja. "Rational modifications of cell-penetrating peptides for drug delivery : Applications in tumor targeting and oligonucleotide delivery." Doctoral thesis, Stockholms universitet, Institutionen för neurokemi, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-8374.

Full text
Abstract:
High molecular weight biomolecules are becoming important in the development of new therapeutics. However, their size and nature creates a major limitation for their application – poor penetration through biological membranes. A new class of peptides, cell-penetrating peptides (CPPs), has shown the capability to transport various macromolecules inside the cells. However, there are at least two limiting factors for successful application of CPPs: the lack of cell-type specificity and restricted bioavailability resulting from endocytic uptake of CPPs and entrapment in endosomal compartments. This thesis aims at designing delivery vehicles for therapeutic substances. In papers I-III, the CPPs have been rationally modified in order to achieve in vivo selectivity towards cancer cells. The first two papers employ tumor homing peptides as targeting moieties coupled to the N-termini of CPPs. In the third paper, a CPP is C-terminally prolonged with a matrix metalloproteinase 2 (MMP-2) specific cleavage site followed by an inactivating amino acid sequence. In tissues overexpressing MMP-2, i. e. in proximity to cancer, the CPP is activated after proteolytic removal of the inactivating sequence, thus the cargo can be transported inside the cells. In paper IV, several CPPs have been N-terminally modified with a stearyl moiety and applied for the delivery of splice-correcting oligonucleotides. We show that stearyl-TP10 is as effective in oligonucleotide delivery as Lipofectamine™ 2000. Moreover, stearyl-TP10 has preserved efficacy in serum and is not toxic to cells. In conclusion, the rational modifications of CPPs greatly potentiate their application in cargo delivery both in vitro and in vivo.
APA, Harvard, Vancouver, ISO, and other styles
9

Barman, Poulami. "The interaction of peptides with functionalized carbon nanotubes /." Online version of thesis, 2009. http://hdl.handle.net/1850/8688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mozaffari, Saghar. "Amphiphilic Cell-Penetrating Hybrid Cyclic-Linear Peptides as a Drug Delivery System." Chapman University Digital Commons, 2019. https://digitalcommons.chapman.edu/pharmaceutical_sciences_dissertations/2.

Full text
Abstract:
A number of cyclic peptides containing a positively charged ring composed of arginine residues attached to hydrophobic tail made of tryptophan residues through a lysine linker namely [R5K]W5, [R6K]W5, [R5K]W6, [R7K]W5, [R5K]W7, [R6K]W6, and [R7K]W7 were synthesized and evaluated as molecular transporters. The peptides were evaluated for their ability to deliver, fluorescence-labeled cell-impermeable negatively charged phosphopeptide (F′-GpYEEI), and fluorescent labeled anti-HIV drugs (F′-FTC and F′-d4T). The results indicated that the presence of positively charged arginine residues on the ring and hydrophobic tryptophan residues in a sequential linear outside the ring was an optimal approach to improve the intracellular uptake of cargo molecules through non-covalent interactions. Some of these peptides were also evaluated for their efficiency for intracellular delivery of siRNA to triple-negative breast cancer cell lines in the presence and absence of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). [R6K]W6 and [R5K]W5 were found to be very efficient in the delivery of siRNA. Furthermore, co-formulation of peptides with lipid DOPE significantly enhanced the efficiency of siRNA delivery compared to peptide alone. Silencing of kinesin spindle protein (KSP) and Janus kinase 2 (JAK2) was evaluated in MDA-MB-231 cells in the presence of the peptides. The addition of DOPE significantly enhanced the silencing efficiency for all selected peptides. A chemotherapeutic drug, doxorubicin (Dox) was covalently conjugated to the cyclic peptide [R5K]W7A and linear peptide R5KW7A, and the biological activity was evaluated in cell-based assays. Comparative antiproliferative assays between covalently conjugated peptide-Dox and the corresponding noncovalent physical mixtures of the peptides and Dox were performed. The conjugation of Dox with cyclic [R5K]W7A-Dox exhibited similar antiproliferative activity compared to Dox alone after 72 h incubation time in all cancer cell lines, such as leukemia, ovarian and gastric cancer cells. However, [R5K]W7A-Dox significantly reduced the cell cytotoxicity in normal cell lines such as normal heart muscle and normal kidney cells after 72 h when compared with Dox alone. These results revealed that this cyclic peptide prodrug can be used as a potential candidate for the treatment of cancer cells with reduced side effects against normal cells in the body.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Peptides drug delivery"

1

Banga, Ajay K. Therapeutic peptides and proteins: Formulation, processing, and delivery systems. 2nd ed. Boca Raton, FL: CRC/Taylor & Francis, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Banga, Ajay K. Therapeutic peptides and proteins: Formulation, processing, and delivery systems. Lancaster, Pa: Technomic Pub., 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1949-, Adjei Akete Lex, and Gupta Pramod K. 1959-, eds. Inhalation delivery of therapeutic peptides and proteins. New York: M. Dekker, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lene, Jorgensen, and Nielsen Hanne Mørck, eds. Delivery technologies for biopharmaceuticals: Peptides, proteins, nucleic acids, and vaccines. Chichester, West Sussex: John Wiley, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Peptide drug delivery to the brain. New York: Raven Press, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, Vincent H. L., 1951-, Hashida Mitsuru, and Mizushima Yutaka, eds. Trends and future perspectives in peptide and protein drug delivery. Chur, Switzerland: Harwood Academic, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

NATO Advanced Research Workshop on Advanced Drug Delivery Systems for Peptides and Proteins (1986 Copenhagen, Denmark). Delivery systems for peptide drugs. New York: Plenum Press, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Peptide and protein delivery. London: Academic Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

NATO, Advanced Research Workshop on Advanced Drug Delivery Sytems for Peptides and Proteins (1986 Copenhagen Denmark). Delivery systems for peptide drugs. New York: Plenum in cooperation with NATO Scientific Affairs Division, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Davis, S. S., Lisbeth Illum, and E. Tomlinson, eds. Delivery Systems for Peptide Drugs. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-9960-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Peptides drug delivery"

1

Sarisozen, Can, and Vladimir P. Torchilin. "Intracellular Delivery of Proteins and Peptides." In Drug Delivery, 576–622. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781118833322.ch23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ulapane, Kavisha R., Brian M. Kopec, Mario E. G. Moral, and Teruna J. Siahaan. "Peptides and Drug Delivery." In Peptides and Peptide-based Biomaterials and their Biomedical Applications, 167–84. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66095-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kueltzo, Lisa A., and C. Russell Middaugh. "Polycationic Peptides and Proteins in Drug Delivery: Focus on Nonclassical Transport." In Drug Delivery, 279–304. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471475734.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bontempo, John A. "Parenteral Formulation for Peptides, Proteins, and Monoclonal Antibodies Drugs: A Commercial Development Overview." In Drug Delivery, 321–39. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471475734.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kwok, Philip Chi Lip, Rania Osama Salama, and Hak-Kim Chan. "Proteins, Peptides, and Controlled-Release Formulations for Inhalation." In Inhalation Drug Delivery, 121–44. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118397145.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wolff, Ron. "Inhaled Proteins and Peptides." In Advances in Pulmonary Drug Delivery, 1–22. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315311975-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kurrikoff, Kaido, Julia Suhorut, and ülo Langel. "Cell-Penetrating Peptides in Cancer Targeting." In Drug Delivery in Oncology, 1187–217. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527634057.ch37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shoyele, Sunday A. "Controlling the Release of Proteins/Peptides via the Pulmonary Route." In Drug Delivery Systems, 141–48. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-210-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Danton, M., N. Flinn, W. A. Gibbons, and I. Toth. "Lipidic amino acid based synthetic drug delivery system." In Peptides 1994, 751–52. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-1468-4_346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Min Jae, Dexi Liu, Guisheng Zhang, and Xiang Gao. "TAT and TAT-Like Peptides for Protein Transduction and Intracellular Drug Delivery." In Cellular Drug Delivery, 95–106. Totowa, NJ: Humana Press, 2004. http://dx.doi.org/10.1007/978-1-59259-745-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Peptides drug delivery"

1

Mező, Gabor, Erika Orbán, Ildikó Szabó, Rózsa Hegedüs, Szilvia Bősze, Miguel Tejeda, Dezső Gaál, Bence Kapuvári, and Marilena Manea. "GnRH based drug delivery systems for targeted tumor therapy." In XIth Conference Biologically Active Peptides. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2009. http://dx.doi.org/10.1135/css200911072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Abioye, Raliat, Caleb Acquah, Chibuike Udenigwe, Nico Huttmann, and Pei Chun Queenie Hsu. "Self-assembly and hydrogelation properties of egg white-derived peptides." In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/jzku2300.

Full text
Abstract:
Functional foods are gaining traction as a source of peptides possessing hydrogelation properties. Analysis of peptides (n=429) in egg white protein hydrolysates resulted in the identification of six peptides: IFYCPIAIM, NIFYCPIAIM, VLVNAIVFKGL, YCPIAIMSA, MMYQIGLF, and VYSFSLASRL as prominent self-assembly candidates based on prediction of their aggregation-prone segments. The objective of this study was to characterize the hydrogel formed via self-assembly of the peptides. Of the six peptides studied, NIFYCPIAIM and MMYQIGLF showed promising self-assembly and hydrogelation properties. Thioflavin T kinetics indicated that NIFYCPIAIM possesses the strongest self-assembly property, confirmed by dynamic light scattering which indicated the largest average particle diameter was achieved after 24 hours. Rheological characterization indicated that all six peptides possessed viscoelastic pseudoplastic properties and some were able to regain some level of viscosity following the exertion of shear stress. Finally, transmission electron microscopy of the six peptides showed the development of fibrillar structures of varying morphologies after 24 hours. The remarkable difference in self-assembly and hydrogelation properties of NIFYCPIAIM, IFYCPIAIMSA and YCPIAIMSA, which share a common sequence YCPIAIM, indicate the importance of amino acid sequence in the formation and property of peptide hydrogels. Identification of the egg white-derived peptides with hydrogelation properties shows a promising future for the use of functional foods in applications of drug delivery systems and tissue engineering, in the food, pharmaceutical, cosmetics, and biomedical sectors.
APA, Harvard, Vancouver, ISO, and other styles
3

Bracci, Luisa, Chiara Falciani, Alessandro Pini, Jlenia Brunetti, Barbara Lelli, Antonella Accardo, Diego Tesauro, and Giancarlo Morelli. "Abstract 2319: Target selective drug delivery through liposomes labeled with tetra-branched neurotensin peptides." In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-2319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Firer, Michael A., Bat-Chen Lubin, Sharon Cohen, and Galia Luboshits. "Abstract A85: Peptides specific for chronic lymphocytic leukemic cells: Characterization and use in targeted drug delivery." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Oct 19-23, 2013; Boston, MA. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1535-7163.targ-13-a85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chan, Warren C. W. "Elucidating the Interactions of Nanomaterials With Biological Systems." In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13377.

Full text
Abstract:
Nanotechnology is a rapidly growing research fields with many applications in biology and medicine. At a heart of nanotechnology research is engineered nanostructures, which possess distinct optical, electronic, and magnetic properties based on their size, shape, and chemical composition. Researchers can now design their surface chemistry with small bi-functional organic molecules or amphiphillic polymers so that they are biocompatible and can be coated with bio-recognition molecules such as antibodies, aptamers, and peptides. Nanoparticles are used as a platform for drug delivery, as a physical trigger for controlling drug release, as a contrast agent for quantifying biological molecules. Thus, the applications of engineered nanostructures are diverse. In this presentation, an overview of the field of nanomedicine is described with an emphasis on results obtained from studying the in vivo interactions of nanostructures as it pertains to their applications in cancer.
APA, Harvard, Vancouver, ISO, and other styles
6

Olivos, David J., Mary R. Saunders, Yuanpei Li, Nasir Al Awwad, and Kit S. Lam. "Abstract A37: Discovery of novel luteinizing hormone releasing hormone (LHRH) peptides as a nanotherapeutic targeting drug delivery system for prostate, ovarian, breast, and cervical cancers." In Abstracts: Fifth AACR Conference on the Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved; Oct 27–30, 2012; San Diego, CA. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1055-9965.disp12-a37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Morales, Alma R., Ciceron O. Yanez, Takeo Urakami, Masanobu Komatsu, and Kevin D. Belfield. "Two-Photon Fluorescence Vascular Imaging with a New Fluorene-RGD Peptide Conjugate." In Optical Molecular Probes, Imaging and Drug Delivery. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/omp.2011.omb5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhao, Tinghan, Sweety Singh, Yuanwei Zhang, and Kevin D. Belfield. "Novel mitochondria penetrating peptide for live-cell long-term tracking of mitochondria." In Optical Molecular Probes, Imaging and Drug Delivery. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/omp.2019.om3d.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yeo, Leslie Y., and James R. Friend. "Surface Acoustic Waves: A New Paradigm for Driving Ultrafast Biomicrofluidics." In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18517.

Full text
Abstract:
Surface acoustic waves (SAWs), which are 10 MHz order surface waves roughly 10 nm in amplitude propagating on the surface of a piezoelectric substrate, can offer a powerful method for driving fast microfluidic actuation and microparticle or biomolecule manipulation. We demonstrate that sessile drops can be linearly translated on planar substrates or fluid can be pumped through microchannels at typically one to two orders of magnitude faster than that achievable through current microfluidic technologies. Micromixing can be induced in the same microchannel in which fluid is pumped using the SAW simply by changing the SAW frequency to superimpose a chaotic oscillatory flow onto the uniform through flow. Strong inertial microcentrifugation for micromixing and particle concentration or separation can also be induced via symmetry-breaking. At low SAW amplitudes below that at which flow commences, the transverse standing wave that arises across the microchannel afford particle aggregation and hence sorting on nodal lines. Other microfluidic manipulations are also possible with the SAW. For example, capillary waves excited on a sessile drop by the SAW can be exploited for microparticle or nanoparticle collection and sorting. At higher amplitudes, the large substrate accelerations drives rapid destabilization of the drop interface giving rise to inertial liquid jets or atomization to produce 1–10 μm monodispersed aerosol droplets. These have significant implications for microfluidic chip mass spectrometry interfacing or pulmonary drug delivery. The atomization also provides a convenient means for the synthesis of 150–200 nm polymer or protein particles or to encapsulate proteins, peptides and other therapeutic molecules within biodegradable polymeric shells for controlled release drug delivery. The atomization of thin films containing polymer solutions, in addition, gives produces a unique regular, long-range spatial polymer spot patterning effect whose size and spacing are dependent on the SAW frequency, thus offering a simple and powerful method for surface patterning without requiring physical or chemical templating.
APA, Harvard, Vancouver, ISO, and other styles
10

De Zotti, Marta, Ivan Guryanov, Tatiana Tennikova, Madhushree Bhattacharya, and Arto Urtti. "Trichogin analogs for retinal drug delivery." In 35th European Peptide Symposium. Prompt Scientific Publishing, 2018. http://dx.doi.org/10.17952/35eps.2018.289.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Peptides drug delivery"

1

Dotto, Gian P. Peptide-Targeted Drug Delivery to Breast Tumors. Fort Belvoir, VA: Defense Technical Information Center, July 1999. http://dx.doi.org/10.21236/ada373913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dotto, Gian P. Peptide-Targeted Drug Delivery to Breast Tumors. Fort Belvoir, VA: Defense Technical Information Center, July 2000. http://dx.doi.org/10.21236/ada392787.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography