Journal articles on the topic 'Peptides with enantiomeric sequence'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Peptides with enantiomeric sequence.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Urban, Jennifer M., Janson Ho, Gavin Piester, Riqiang Fu та Bradley L. Nilsson. "Rippled β-Sheet Formation by an Amyloid-β Fragment Indicates Expanded Scope of Sequence Space for Enantiomeric β-Sheet Peptide Coassembly". Molecules 24, № 10 (2019): 1983. http://dx.doi.org/10.3390/molecules24101983.
Full textSantamaría, Carlos, Silda Larios, Steve Quirós, et al. "Bactericidal and Antiendotoxic Properties of Short Cationic Peptides Derived from a Snake Venom Lys49 Phospholipase A2." Antimicrobial Agents and Chemotherapy 49, no. 4 (2005): 1340–45. http://dx.doi.org/10.1128/aac.49.4.1340-1345.2005.
Full textNovelli, Federica, Serena De Santis, Stefano Morosetti, Mattia Titubante, Giancarlo Masci, and Anita Scipioni. "Peptides with regularly alternating enantiomeric sequence: From ion channel models to bioinspired nanotechnological applications." Peptide Science 110, no. 5 (2018): e24043. http://dx.doi.org/10.1002/pep2.24043.
Full textStrömstedt, Adam A., Mukesh Pasupuleti, Artur Schmidtchen, and Martin Malmsten. "Evaluation of Strategies for Improving Proteolytic Resistance of Antimicrobial Peptides by Using Variants of EFK17, an Internal Segment of LL-37." Antimicrobial Agents and Chemotherapy 53, no. 2 (2008): 593–602. http://dx.doi.org/10.1128/aac.00477-08.
Full textAgostini, Luigi, and Stefano Morosetti. "In silico Design of Glyco-D,L-Peptide Antiviral Molecules." Journal of Computational Biophysics and Chemistry 21, no. 03 (2022): 349–60. http://dx.doi.org/10.1142/s2737416522500132.
Full textDe Santis, Pasquale, Stefano Morosetti, and Anita Scipioni. "Peptides with Regular Enantiomeric Sequences: A Wide Class of Modular Self-Assembling Architectures." Journal of Nanoscience and Nanotechnology 7, no. 7 (2007): 2230–38. http://dx.doi.org/10.1166/jnn.2007.644.
Full textCavaco, Marco, Javier Valle, Ruben da Silva, et al. "DPepH3, an Improved Peptide Shuttle for Receptor-independent Transport Across the Blood-Brain Barrier." Current Pharmaceutical Design 26, no. 13 (2020): 1495–506. http://dx.doi.org/10.2174/1381612826666200213094556.
Full textMatsuo, Naoki, Natsuko Goda, Takeshi Tenno, and Hidekazu Hiroaki. "Cryoprotective activities of FK20, a human genome-derived intrinsically disordered peptide against cryosensitive enzymes without a stereospecific molecular interaction." PeerJ Physical Chemistry 3 (December 14, 2021): e20. http://dx.doi.org/10.7717/peerj-pchem.20.
Full textDÍAZ-ACHIRICA, Pilar, Josep UBACH, Almudena GUINEA, David ANDREU, and Luis RIVAS. "The plasma membrane of Leishmania donovani promastigotes is the main target for CA(1–8)M(1–18), a synthetic cecropin A–melittin hybrid peptide." Biochemical Journal 330, no. 1 (1998): 453–60. http://dx.doi.org/10.1042/bj3300453.
Full textCzerwenka, Christoph, and Wolfgang Lindner. "Enantiomer discrimination of peptides by tandem mass spectrometry: influence of the peptide sequence on chiral recognition." Rapid Communications in Mass Spectrometry 18, no. 22 (2004): 2713–18. http://dx.doi.org/10.1002/rcm.1671.
Full textAndreeff, Michael, Marina Konopleva, Julie C. Watt, et al. "A Novel Peptide Containing a Nine Amino Acid Sequence from Nur77 Induces Bcl-2-Dependent Apoptosis in AML." Blood 108, no. 11 (2006): 2607. http://dx.doi.org/10.1182/blood.v108.11.2607.2607.
Full textAlvarez-Bravo, J., S. Kurata, and S. Natori. "Novel synthetic antimicrobial peptides effective against methicillin-resistant Staphylococcus aureus." Biochemical Journal 302, no. 2 (1994): 535–38. http://dx.doi.org/10.1042/bj3020535.
Full textCLOOS, Paul A. C., and Christian FLEDELIUS. "Collagen fragments in urine derived from bone resorption are highly racemized and isomerized: a biological clock of protein aging with clinical potential." Biochemical Journal 345, no. 3 (2000): 473–80. http://dx.doi.org/10.1042/bj3450473.
Full textMinkiewicz, Iwaniak, and Darewicz. "BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities." International Journal of Molecular Sciences 20, no. 23 (2019): 5978. http://dx.doi.org/10.3390/ijms20235978.
Full textWakabayashi, Hiroyuki, Hiroshi Matsumoto, Koichi Hashimoto, Susumu Teraguchi, Mitsunori Takase, and Hirotoshi Hayasawa. "N-Acylated and d Enantiomer Derivatives of a Nonamer Core Peptide of Lactoferricin B Showing Improved Antimicrobial Activity." Antimicrobial Agents and Chemotherapy 43, no. 5 (1999): 1267–69. http://dx.doi.org/10.1128/aac.43.5.1267.
Full textChong, Pele, Charles Sia, Brian Tripet, Olive James, and Michel Klein. "Comparative immunological properties of enantiomeric peptides." Letters in Peptide Science 3, no. 2 (1996): 99–106. http://dx.doi.org/10.1007/bf00126739.
Full textKukhar, Valery, Vladimir Solodenko, Vadim Soloshonok, and Tamara Kasheva. "Synthesis of Enantiomeric Aminophosphonic Acids and Peptides." Phosphorus, Sulfur, and Silicon and the Related Elements 109, no. 1-4 (1996): 529–32. http://dx.doi.org/10.1080/10426509608545207.
Full textCavini, Italo A., Claudia E. Munte, Markus Beck Erlach та ін. "Inhibition of amyloid Aβ aggregation by high pressures or specificd-enantiomeric peptides". Chemical Communications 54, № 26 (2018): 3294–97. http://dx.doi.org/10.1039/c8cc01458b.
Full textPospíšek, Jan, and Karel Bláha. "Peptides containing a neopentylglycine residue." Collection of Czechoslovak Chemical Communications 52, no. 2 (1987): 514–21. http://dx.doi.org/10.1135/cccc19870514.
Full textGrelich-Mucha, Manuela, Ana M. Garcia, Vladimir Torbeev, Katarzyna Ożga, Łukasz Berlicki, and Joanna Olesiak-Bańska. "Autofluorescence of Amyloids Determined by Enantiomeric Composition of Peptides." Journal of Physical Chemistry B 125, no. 21 (2021): 5502–10. http://dx.doi.org/10.1021/acs.jpcb.1c00808.
Full textWan, Hong, and Lars G. Blomberg. "Enantiomeric separation of small chiral peptides by capillary electrophoresis." Journal of Chromatography A 792, no. 1-2 (1997): 393–400. http://dx.doi.org/10.1016/s0021-9673(97)00976-x.
Full textYamagata, Natsuko, Xiaoyi Chen, Jie Zhou, Jie Li, Xuewen Du, and Bing Xu. "Enzymatic self-assembly of an immunoreceptor tyrosine-based inhibitory motif (ITIM)." Organic & Biomolecular Chemistry 15, no. 27 (2017): 5689–92. http://dx.doi.org/10.1039/c7ob01074e.
Full textBartnik, Dirk, Susanne Aileen Funke, Luminita-Cornelia Andrei-Selmer, Michael Bacher, Richard Dodel та Dieter Willbold. "Differently Selected d-Enantiomeric Peptides Act on Different Aβ Species". Rejuvenation Research 13, № 2-3 (2010): 202–5. http://dx.doi.org/10.1089/rej.2009.0924.
Full textTao, W. Andy, and R. Graham Cooks. "Parallel Reactions for Enantiomeric Quantification of Peptides by Mass Spectrometry." Angewandte Chemie 113, no. 4 (2001): 779–82. http://dx.doi.org/10.1002/1521-3757(20010216)113:4<779::aid-ange7790>3.0.co;2-d.
Full textTao, W. Andy, and R. Graham Cooks. "Parallel Reactions for Enantiomeric Quantification of Peptides by Mass Spectrometry." Angewandte Chemie International Edition 40, no. 4 (2001): 757–60. http://dx.doi.org/10.1002/1521-3773(20010216)40:4<757::aid-anie7570>3.0.co;2-h.
Full textDeigin, Vladislav, Natalia Linkova, Julia Vinogradova, et al. "The First Reciprocal Activities of Chiral Peptide Pharmaceuticals: Thymogen and Thymodepressin, as Examples." International Journal of Molecular Sciences 25, no. 9 (2024): 5042. http://dx.doi.org/10.3390/ijms25095042.
Full textKolkwitz, Pauline Elisabeth, Jeannine Mohrlüder, and Dieter Willbold. "Inhibition of Polyglutamine Misfolding with D-Enantiomeric Peptides Identified by Mirror Image Phage Display Selection." Biomolecules 12, no. 2 (2022): 157. http://dx.doi.org/10.3390/biom12020157.
Full textSimaan, Marwan, and Ilan Marek. "Diastereo- and enantioselective preparation of cyclopropanol derivatives." Beilstein Journal of Organic Chemistry 15 (March 21, 2019): 752–60. http://dx.doi.org/10.3762/bjoc.15.71.
Full textParveen, Sabiha, J. A. Cowan, Zhen Yu, and Farukh Arjmand. "Enantiomeric copper based anticancer agents promoting sequence-selective cleavage of G-quadruplex telomeric DNA and non-random cleavage of plasmid DNA." Metallomics 12, no. 6 (2020): 988–99. http://dx.doi.org/10.1039/d0mt00084a.
Full textChen, Ming, Shuanglong Wang, and Xihan Yu. "Cryptand-imidazolium supported total synthesis of the lasso peptide BI-32169 and its d-enantiomer." Chemical Communications 55, no. 23 (2019): 3323–26. http://dx.doi.org/10.1039/c8cc10301a.
Full textVieira, Lucas C. C., Bianca T. Matsuo, Lorena S. R. Martelli, Mayara Gall, Marcio W. Paixão та Arlene G. Corrêa. "Asymmetric synthesis of new γ-butenolides via organocatalyzed epoxidation of chalcones". Organic & Biomolecular Chemistry 15, № 29 (2017): 6098–103. http://dx.doi.org/10.1039/c7ob00165g.
Full textGandhapudi, Siva K., Karuna Sundarapandiyan, Martin Ward, et al. "Abstract B24: Development of targeted T-cell cancer immunotherapies based on a novel enantiomeric cationic lipid that promotes antigen cross-presentation and upregulation of type I interferons." Cancer Immunology Research 10, no. 12_Supplement (2022): B24. http://dx.doi.org/10.1158/2326-6074.tumimm22-b24.
Full textIWASAKI, Takashi, Jun ISHIBASHI, Masanori KUBO, DeMar TAYLOR, and Minoru YAMAKAWA. "Multiple Functions of Short Synthetic Enantiomeric Peptides Based on Beetle Defensins." Bioscience, Biotechnology, and Biochemistry 73, no. 3 (2009): 683–87. http://dx.doi.org/10.1271/bbb.80735.
Full textFunke, Susanne, Christina Dammers, Marcus Pickhardt, Dieter Willbold, and Eckhard Mandelkow. "Tau-specific D-enantiomeric peptides for therapeutic applications in Alzheimer’s disease." Neurobiology of Aging 39 (March 2016): S13. http://dx.doi.org/10.1016/j.neurobiolaging.2016.01.066.
Full textBarone, G., G. Castronuovo, V. Elia, and C. Giancola. "Chiral recognition of enantiomeric peptides in water at 25° by calorimetry." Journal of Thermal Analysis 30, no. 6 (1985): 1367–74. http://dx.doi.org/10.1007/bf01914308.
Full textGottlieb, Philip A., Mohammed M. Maneshi, Frederick Sachs та Susan Z. Hua. "Enantiomeric Aβ Peptides Inhibit the Fluid Shear Stress Response of PIEZO1". Biophysical Journal 116, № 3 (2019): 460a. http://dx.doi.org/10.1016/j.bpj.2018.11.2483.
Full textSaha, Indranil, Bhaswati Chatterjee, Narayanaswamy Shamala, and Padmanabhan Balaram. "Crystal structures of peptide enantiomers and racemates: Probing conformational diversity in heterochiral Pro-Pro sequences." Biopolymers 90, no. 4 (2008): 537–43. http://dx.doi.org/10.1002/bip.20982.
Full textChen, Yuxin, Adriana I. Vasil, Linda Rehaume, et al. "Comparison of Biophysical and Biologic Properties of alpha-Helical Enantiomeric Antimicrobial Peptides." Chemical Biology Drug Design 67, no. 2 (2006): 162–73. http://dx.doi.org/10.1111/j.1747-0285.2006.00349.x.
Full textSwanekamp, Ria J., John T. M. DiMaio, Charles J. Bowerman та Bradley L. Nilsson. "Coassembly of Enantiomeric Amphipathic Peptides into Amyloid-Inspired Rippled β-Sheet Fibrils". Journal of the American Chemical Society 134, № 12 (2012): 5556–59. http://dx.doi.org/10.1021/ja301642c.
Full textGottlieb, Philip A., Mohammad M. Maneshi, Radhakrishnan Gnanasambandam, Susan Z. Hua, and Frederick Sachs. "Enantiomeric Forms of Abeta Peptides Inhibit the Shear Stress Response of PIEZO1." Biophysical Journal 112, no. 3 (2017): 533a. http://dx.doi.org/10.1016/j.bpj.2016.11.2884.
Full textMarelli, Udaya Kiran, Jacqueline Bezençon, Eduard Puig, Beat Ernst, and Horst Kessler. "Enantiomeric Cyclic Peptides with Different Caco-2 Permeability Suggest Carrier-Mediated Transport." Chemistry - A European Journal 21, no. 22 (2015): 8023–27. http://dx.doi.org/10.1002/chem.201501270.
Full textAltendorf, Tim, Ian Gering, Beatrix Santiago-Schübel, et al. "Stabilization of Monomeric Tau Protein by All D-Enantiomeric Peptide Ligands as Therapeutic Strategy for Alzheimer’s Disease and Other Tauopathies." International Journal of Molecular Sciences 24, no. 3 (2023): 2161. http://dx.doi.org/10.3390/ijms24032161.
Full textKrasnov, Victor P., Galina L. Levit, Vera V. Musiyak, Dmitry A. Gruzdev, and Valery N. Charushin. "Fragment-based approach to novel bioactive purine derivatives." Pure and Applied Chemistry 92, no. 8 (2020): 1277–95. http://dx.doi.org/10.1515/pac-2019-1214.
Full textGilbert, AT, and EOP Thompson. "Amino Acid Sequence of the ß-Chain of the Tetrameric Haemoglobin of the Bivalve Mollusc, Anadara trapezia." Australian Journal of Biological Sciences 38, no. 3 (1985): 221. http://dx.doi.org/10.1071/bi9850221.
Full textKanduc, Darja. "Peptimmunology: Immunogenic Peptides and Sequence Redundancy." Current Drug Discovery Technologies 2, no. 4 (2005): 239–44. http://dx.doi.org/10.2174/157016305775202946.
Full textCouceiro, José R., Rodrigo Gallardo, Frederik De Smet, et al. "Sequence-dependent Internalization of Aggregating Peptides." Journal of Biological Chemistry 290, no. 1 (2014): 242–58. http://dx.doi.org/10.1074/jbc.m114.586636.
Full textMeyer, Helmut E., Edeltraut Hoffmann-Posorske, Horst Korte, and Ludwig M. G. Heilmeyer. "Sequence analysis of phosphoserine-containing peptides." FEBS Letters 204, no. 1 (1986): 61–66. http://dx.doi.org/10.1016/0014-5793(86)81388-6.
Full textJanairo, Jose Isagani B. "Sequence rules for gold-binding peptides." RSC Advances 13, no. 31 (2023): 21146–52. http://dx.doi.org/10.1039/d3ra04269c.
Full textBacik, I., J. H. Cox, R. Anderson, J. W. Yewdell, and J. R. Bennink. "TAP (transporter associated with antigen processing)-independent presentation of endogenously synthesized peptides is enhanced by endoplasmic reticulum insertion sequences located at the amino- but not carboxyl-terminus of the peptide." Journal of Immunology 152, no. 2 (1994): 381–87. http://dx.doi.org/10.4049/jimmunol.152.2.381.
Full textPérez‐Victoria, Ignacio. "Co‐occurring Congeners Reveal the Position of Enantiomeric Amino Acids in Nonribosomal Peptides." ChemBioChem 22, no. 12 (2021): 2087–92. http://dx.doi.org/10.1002/cbic.202000805.
Full text