Journal articles on the topic 'Per Arnt Sim (PAS)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Per Arnt Sim (PAS).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yang, Jinsong, Lei Zhang, Paul J. A. Erbel, et al. "Functions of the Per/ARNT/Sim Domains of the Hypoxia-inducible Factor." Journal of Biological Chemistry 280, no. 43 (2005): 36047–54. http://dx.doi.org/10.1074/jbc.m501755200.
Full textHirose, K., M. Morita, M. Ema, et al. "cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS factor (Arnt2) with close sequence similarity to the aryl hydrocarbon receptor nuclear translocator (Arnt)." Molecular and Cellular Biology 16, no. 4 (1996): 1706–13. http://dx.doi.org/10.1128/mcb.16.4.1706.
Full textReisz-Porszasz, S., M. R. Probst, B. N. Fukunaga, and O. Hankinson. "Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT)." Molecular and Cellular Biology 14, no. 9 (1994): 6075–86. http://dx.doi.org/10.1128/mcb.14.9.6075-6086.1994.
Full textReisz-Porszasz, S., M. R. Probst, B. N. Fukunaga, and O. Hankinson. "Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT)." Molecular and Cellular Biology 14, no. 9 (1994): 6075–86. http://dx.doi.org/10.1128/mcb.14.9.6075.
Full textWang, Feng, Shengli Shi, Ruixue Zhang, and Oliver Hankinson. "Identifying target genes of the aryl hydrocarbon receptor nuclear translocator (Arnt) using DNA microarray analysis." Biological Chemistry 387, no. 9 (2006): 1215–18. http://dx.doi.org/10.1515/bc.2006.150.
Full textde Souza, João V., Sylvia Reznikov, Ruidi Zhu, and Agnieszka K. Bronowska. "Druggability assessment of mammalian Per–Arnt–Sim [PAS] domains using computational approaches." MedChemComm 10, no. 7 (2019): 1126–37. http://dx.doi.org/10.1039/c9md00148d.
Full textMoffett, P., M. Reece, and J. Pelletier. "The murine Sim-2 gene product inhibits transcription by active repression and functional interference." Molecular and Cellular Biology 17, no. 9 (1997): 4933–47. http://dx.doi.org/10.1128/mcb.17.9.4933.
Full textPongratz, Ingemar, Camilla Antonsson, Murray L. Whitelaw, and Lorenz Poellinger. "Role of the PAS Domain in Regulation of Dimerization and DNA Binding Specificity of the Dioxin Receptor." Molecular and Cellular Biology 18, no. 7 (1998): 4079–88. http://dx.doi.org/10.1128/mcb.18.7.4079.
Full textZhao, J. M., H. Lee, R. A. Nome, S. Majid, N. F. Scherer, and W. D. Hoff. "Single-molecule detection of structural changes during Per-Arnt-Sim (PAS) domain activation." Proceedings of the National Academy of Sciences 103, no. 31 (2006): 11561–66. http://dx.doi.org/10.1073/pnas.0601567103.
Full textMacDonald, P. E., and P. Rorsman. "Per-arnt-sim (PAS) domain kinase (PASK) as a regulator of glucagon secretion." Diabetologia 54, no. 4 (2011): 719–21. http://dx.doi.org/10.1007/s00125-011-2072-1.
Full textAdaixo, Ricardo, and João Henrique Morais-Cabral. "Crystallization and preliminary crystallographic characterization of the PAS domains of EAG and ELK potassium channels." Acta Crystallographica Section F Structural Biology and Crystallization Communications 66, no. 9 (2010): 1056–59. http://dx.doi.org/10.1107/s1744309110027880.
Full textPhilip, A. F., M. Kumauchi, and W. D. Hoff. "Robustness and evolvability in the functional anatomy of a PER-ARNT-SIM (PAS) domain." Proceedings of the National Academy of Sciences 107, no. 42 (2010): 17986–91. http://dx.doi.org/10.1073/pnas.1004823107.
Full textde Souza, João Victor, Piotr Zaborniak, Sylvia Reznikov, Matthew Kondal, Ruidi Zhu, and Agnieszka K. Bronowska. "Molecular Forces Governing the Biological Function of Per-Arnt-Sim-B (PAS-B) Domains: A Comparative Computational Study." Biophysica 1, no. 1 (2021): 1–14. http://dx.doi.org/10.3390/biophysica1010001.
Full textXu, Xingjian, Igor Dikiy, Matthew R. Evans, Leandro P. Marcelino, and Kevin H. Gardner. "Fragile protein folds: sequence and environmental factors affecting the equilibrium of two interconverting, stably folded protein conformations." Magnetic Resonance 2, no. 1 (2021): 63–76. http://dx.doi.org/10.5194/mr-2-63-2021.
Full textGradin, K., J. McGuire, R. H. Wenger, et al. "Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor." Molecular and Cellular Biology 16, no. 10 (1996): 5221–31. http://dx.doi.org/10.1128/mcb.16.10.5221.
Full textAitola, Marjo, Christine M. Sadek, Jan-Åke Gustafsson, and Markku Pelto-Huikko. "Aint/Tacc3 Is Highly Expressed in Proliferating Mouse Tissues During Development, Spermatogenesis, and Oogenesis." Journal of Histochemistry & Cytochemistry 51, no. 4 (2003): 455–69. http://dx.doi.org/10.1177/002215540305100407.
Full textSeok, Seung-Hyeon, Woojong Lee, Li Jiang, et al. "Structural hierarchy controlling dimerization and target DNA recognition in the AHR transcriptional complex." Proceedings of the National Academy of Sciences 114, no. 21 (2017): 5431–36. http://dx.doi.org/10.1073/pnas.1617035114.
Full textAntonsson, C., M. L. Whitelaw, J. McGuire, J. A. Gustafsson, and L. Poellinger. "Distinct roles of the molecular chaperone hsp90 in modulating dioxin receptor function via the basic helix-loop-helix and PAS domains." Molecular and Cellular Biology 15, no. 2 (1995): 756–65. http://dx.doi.org/10.1128/mcb.15.2.756.
Full textSemplici, Francesca, Martine Vaxillaire, Sarah Fogarty, et al. "Human Mutation within Per-Arnt-Sim (PAS) Domain-containing Protein Kinase (PASK) Causes Basal Insulin Hypersecretion." Journal of Biological Chemistry 286, no. 51 (2011): 44005–14. http://dx.doi.org/10.1074/jbc.m111.254995.
Full textDardente, Hugues, Erin E. Fortier, Vincent Martineau, and Nicolas Cermakian. "Cryptochromes impair phosphorylation of transcriptional activators in the clock: a general mechanism for circadian repression." Biochemical Journal 402, no. 3 (2007): 525–36. http://dx.doi.org/10.1042/bj20060827.
Full textBrody, Stuart. "A Comparison of the Neurospora and Drosophila Clocks." Journal of Biological Rhythms 35, no. 2 (2019): 119–33. http://dx.doi.org/10.1177/0748730419892434.
Full textChapman-Smith, Anne, Jodi K. Lutwyche, and Murray L. Whitelaw. "Contribution of the Per/Arnt/Sim (PAS) Domains to DNA Binding by the Basic Helix-Loop-Helix PAS Transcriptional Regulators." Journal of Biological Chemistry 279, no. 7 (2003): 5353–62. http://dx.doi.org/10.1074/jbc.m310041200.
Full textBersten, David C., John B. Bruning, Daniel J. Peet, and Murray L. Whitelaw. "Human Variants in the Neuronal Basic Helix-Loop-Helix/Per-Arnt-Sim (bHLH/PAS) Transcription Factor Complex NPAS4/ARNT2 Disrupt Function." PLoS ONE 9, no. 1 (2014): e85768. http://dx.doi.org/10.1371/journal.pone.0085768.
Full textGozu, Yoko, Junichi Hosoi, Hiroaki Nagatomo, Kayako Ishimaru, and Atsuhito Nakao. "The PAS-B Domain of BMAL1 Controls Proliferation, Cellular Energetics, and Inflammatory Response in Human Monocytic Cell Line THP-1." International Journal of Molecular Sciences 26, no. 14 (2025): 6737. https://doi.org/10.3390/ijms26146737.
Full textCoban, Mathew A., Patrick R. Blackburn, Murray L. Whitelaw, Mieke M. van Haelst, Paldeep S. Atwal, and Thomas R. Caulfield. "Structural Models for the Dynamic Effects of Loss-of-Function Variants in the Human SIM1 Protein Transcriptional Activation Domain." Biomolecules 10, no. 9 (2020): 1314. http://dx.doi.org/10.3390/biom10091314.
Full textBeischlag, Timothy V., Song Wang, David W. Rose, et al. "Recruitment of the NCoA/SRC-1/p160 Family of Transcriptional Coactivators by the Aryl Hydrocarbon Receptor/Aryl Hydrocarbon Receptor Nuclear Translocator Complex." Molecular and Cellular Biology 22, no. 12 (2002): 4319–33. http://dx.doi.org/10.1128/mcb.22.12.4319-4333.2002.
Full textYamashita, Toshiharu, Osamu Ohneda, Masumi Nagano, et al. "Abnormal Heart Development and Lung Remodeling in Mice Lacking the Hypoxia-Inducible Factor-Related Basic Helix-Loop-Helix PAS Protein NEPAS." Molecular and Cellular Biology 28, no. 4 (2007): 1285–97. http://dx.doi.org/10.1128/mcb.01332-07.
Full textGiordano, Deborah, Angelo Facchiano, Stefania Moccia, Anna Maria Iole Meola, Gian Luigi Russo, and Carmela Spagnuolo. "Molecular Docking of Natural Compounds for Potential Inhibition of AhR." Foods 12, no. 10 (2023): 1953. http://dx.doi.org/10.3390/foods12101953.
Full textYun, Jaesuk, Taku Nagai, Yoko Furukawa-Hibi, et al. "Neuronal Per Arnt Sim (PAS) Domain Protein 4 (NPAS4) Regulates Neurite Outgrowth and Phosphorylation of Synapsin I." Journal of Biological Chemistry 288, no. 4 (2012): 2655–64. http://dx.doi.org/10.1074/jbc.m112.413310.
Full textLiu, Yu C., Mayra A. Machuca, Simone A. Beckham, Menachem J. Gunzburg, and Anna Roujeinikova. "Structural basis for amino-acid recognition and transmembrane signalling by tandem Per–Arnt–Sim (tandem PAS) chemoreceptor sensory domains." Acta Crystallographica Section D Biological Crystallography 71, no. 10 (2015): 2127–36. http://dx.doi.org/10.1107/s139900471501384x.
Full textTang, Xue, Juan Shao, and Xiaohong Qin. "Crystal structure of the PAS domain of the hEAG potassium channel." Acta Crystallographica Section F Structural Biology Communications 72, no. 8 (2016): 578–85. http://dx.doi.org/10.1107/s2053230x16009419.
Full textGilles-Gonzalez, Marie-Alda, and Gonzalo Gonzalez. "Signal transduction by heme-containing PAS-domain proteins." Journal of Applied Physiology 96, no. 2 (2004): 774–83. http://dx.doi.org/10.1152/japplphysiol.00941.2003.
Full textAn, R., G. da Silva Xavier, H. X. Hao, F. Semplici, J. Rutter та G. A. Rutter. "Regulation by Per-Arnt-Sim (PAS) kinase of pancreatic duodenal homeobox-1 nuclear import in pancreatic β-cells". Biochemical Society Transactions 34, № 5 (2006): 791–93. http://dx.doi.org/10.1042/bst0340791.
Full textMiliti, Stefania, Elizabeth S. Maywood, Colby R. Sandate, et al. "Early doors (Edo) mutant mouse reveals the importance of period 2 (PER2) PAS domain structure for circadian pacemaking." Proceedings of the National Academy of Sciences 113, no. 10 (2016): 2756–61. http://dx.doi.org/10.1073/pnas.1517549113.
Full textKolonko, Marta, and Beata Greb-Markiewicz. "bHLH–PAS Proteins: Their Structure and Intrinsic Disorder." International Journal of Molecular Sciences 20, no. 15 (2019): 3653. http://dx.doi.org/10.3390/ijms20153653.
Full textDeMille, Desiree, Benjamin T. Bikman, Andrew D. Mathis, et al. "A comprehensive protein–protein interactome for yeast PAS kinase 1 reveals direct inhibition of respiration through the phosphorylation of Cbf1." Molecular Biology of the Cell 25, no. 14 (2014): 2199–215. http://dx.doi.org/10.1091/mbc.e13-10-0631.
Full textKe, Ying, Chai Ann Ng, Mark J. Hunter, et al. "Trafficking defects in PAS domain mutant Kv11.1 channels: roles of reduced domain stability and altered domain–domain interactions." Biochemical Journal 454, no. 1 (2013): 69–77. http://dx.doi.org/10.1042/bj20130328.
Full textChen, Jun, Anrou Zou, Igor Splawski, Mark T. Keating, and Michael C. Sanguinetti. "Long QT Syndrome-associated Mutations in the Per-Arnt-Sim (PAS) Domain of HERG Potassium Channels Accelerate Channel Deactivation." Journal of Biological Chemistry 274, no. 15 (1999): 10113–18. http://dx.doi.org/10.1074/jbc.274.15.10113.
Full textHarley, Carol A., Greg Starek, David K. Jones, Andreia S. Fernandes, Gail A. Robertson, and João H. Morais-Cabral. "Enhancement of hERG channel activity by scFv antibody fragments targeted to the PAS domain." Proceedings of the National Academy of Sciences 113, no. 35 (2016): 9916–21. http://dx.doi.org/10.1073/pnas.1601116113.
Full textPape, Jenny, Colleen Newey, Haley Burrell, et al. "Per-Arnt-Sim Kinase (PASK) Deficiency Increases Cellular Respiration on a Standard Diet and Decreases Liver Triglyceride Accumulation on a Western High-Fat High-Sugar Diet." Nutrients 10, no. 12 (2018): 1990. http://dx.doi.org/10.3390/nu10121990.
Full textSoshilov, Anatoly A., Stefano Motta, Laura Bonati, and Michael S. Denison. "Transitional States in Ligand-Dependent Transformation of the Aryl Hydrocarbon Receptor into Its DNA-Binding Form." International Journal of Molecular Sciences 21, no. 7 (2020): 2474. http://dx.doi.org/10.3390/ijms21072474.
Full textKolonko-Adamska, Marta, Vladimir N. Uversky, and Beata Greb-Markiewicz. "The Participation of the Intrinsically Disordered Regions of the bHLH-PAS Transcription Factors in Disease Development." International Journal of Molecular Sciences 22, no. 6 (2021): 2868. http://dx.doi.org/10.3390/ijms22062868.
Full textBurton, Mark J., Joel Cresser-Brown, Morgan Thomas, et al. "Discovery of a heme-binding domain in a neuronal voltage-gated potassium channel." Journal of Biological Chemistry 295, no. 38 (2020): 13277–86. http://dx.doi.org/10.1074/jbc.ra120.014150.
Full textKe, Ying, Mark J. Hunter, Chai Ann Ng, Matthew D. Perry, and Jamie I. Vandenberg. "Role of the Cytoplasmic N-terminal Cap and Per-Arnt-Sim (PAS) Domain in Trafficking and Stabilization of Kv11.1 Channels." Journal of Biological Chemistry 289, no. 20 (2014): 13782–91. http://dx.doi.org/10.1074/jbc.m113.531277.
Full textWang, Ze-Jun, Stephanie M. Soohoo, Purushottam B. Tiwari, Grzegorz Piszczek, and Tinatin I. Brelidze. "Chlorpromazine binding to the PAS domains uncovers the effect of ligand modulation on EAG channel activity." Journal of Biological Chemistry 295, no. 13 (2020): 4114–23. http://dx.doi.org/10.1074/jbc.ra119.012377.
Full textKikani, Chintan K. "Metabolic “Sense Relay” in Stem Cells: A Short But Impactful Life of PAS Kinase Balancing Stem Cell Fates." Cells 12, no. 13 (2023): 1751. http://dx.doi.org/10.3390/cells12131751.
Full textHeintz, Udo, Anton Meinhart, and Andreas Winkler. "Multi-PAS domain-mediated protein oligomerization of PpsR fromRhodobacter sphaeroides." Acta Crystallographica Section D Biological Crystallography 70, no. 3 (2014): 863–76. http://dx.doi.org/10.1107/s1399004713033634.
Full textTorii, Satoru, Shuya Kasai, Tatsushi Yoshida, Ken-ichi Yasumoto, and Shigeomi Shimizu. "Mitochondrial E3 Ubiquitin Ligase Parkin: Relationships with Other Causal Proteins in Familial Parkinson’s Disease and Its Substrate-Involved Mouse Experimental Models." International Journal of Molecular Sciences 21, no. 4 (2020): 1202. http://dx.doi.org/10.3390/ijms21041202.
Full textKarakkat, Jimsheena V., Suneesh Kaimala, Sreejisha P. Sreedharan, et al. "The metabolic sensor PASK is a histone 3 kinase that also regulates H3K4 methylation by associating with H3K4 MLL2 methyltransferase complex." Nucleic Acids Research 47, no. 19 (2019): 10086–103. http://dx.doi.org/10.1093/nar/gkz786.
Full textda Silva Xavier, G., J. Rutter, and G. A. Rutter. "Involvement of Per-Arnt-Sim (PAS) kinase in the stimulation of preproinsulin and pancreatic duodenum homeobox 1 gene expression by glucose." Proceedings of the National Academy of Sciences 101, no. 22 (2004): 8319–24. http://dx.doi.org/10.1073/pnas.0307737101.
Full text