To see the other types of publications on this topic, follow the link: Perception et de la transduction.

Journal articles on the topic 'Perception et de la transduction'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Perception et de la transduction.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Benhamou, Nicole, and Patrice Rey. "Stimulateurs des défenses naturelles des plantes : une nouvelle stratégie phytosanitaire dans un contexte d’écoproduction durable." Article de synthèse 92, no. 1 (September 25, 2012): 1–23. http://dx.doi.org/10.7202/1012399ar.

Full text
Abstract:
Après avoir été longtemps dépendante des pesticides, l’agriculture mondiale est aujourd’hui frappée par un courant qui favorise des pratiques plus durables et plus respectueuses de l’environnement. Pour répondre à ces nouvelles exigences, les agriculteurs doivent se tourner vers l’exploitation et la rentabilisation des ressources naturelles par le biais de pratiques agricoles combinant la performance et la protection des cultures à un moindre coût écologique. Dans ce contexte, le développement de molécules biologiques capables de stimuler les défenses naturelles des végétaux (SDN) est une stratégie qui attire de plus en plus l’attention. Une molécule SDN est un éliciteur susceptible de déclencher une série d’évènements biochimiques menant à l’expression de la résistance chez la plante. La perception du signal par des récepteurs membranaires spécifiques et sa transduction par diverses voies de signalisation conduisent à la synthèse et à l’accumulation synchronisée de molécules défensives parmi lesquelles certaines jouent un rôle structural alors que d’autres exercent une fonction antimicrobienne directe. Les barrières structurales contribuent à retarder la progression de l’agent pathogène dans les tissus de la plante et à empêcher la diffusion de substances délétères telles des enzymes de dégradation des parois ou des toxines. Les mécanismes biochimiques incluent, entre autres, la synthèse de protéines de stress et d’inhibiteurs de protéases ainsi que la production de phytoalexines, des métabolites secondaires ayant un fort potentiel antimicrobien. Les progrès remarquables accomplis ces dernières années en termes de compréhension des mécanismes impliqués dans la résistance induite chez les plantes se traduisent aujourd’hui par la commercialisation d’un nombre de plus en plus important de SDN capables de stimuler le « système immunitaire » des plantes en mimant l’effet des agents pathogènes.
APA, Harvard, Vancouver, ISO, and other styles
2

Heyl, Alexander, and Thomas Schmülling. "Cytokinin signal perception and transduction." Current Opinion in Plant Biology 6, no. 5 (October 2003): 480–88. http://dx.doi.org/10.1016/s1369-5266(03)00087-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Macdonald, Heather. "Auxin perception and signal transduction." Physiologia Plantarum 100, no. 3 (July 1997): 423–30. http://dx.doi.org/10.1034/j.1399-3054.1997.1000303.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Macdonald, Heather. "Auxin perception and signal transduction." Physiologia Plantarum 100, no. 3 (July 1997): 423–30. http://dx.doi.org/10.1111/j.1399-3054.1997.tb03046.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hooley, Richard. "Gibberellins: perception, transduction and responses." Plant Molecular Biology 26, no. 5 (December 1994): 1529–55. http://dx.doi.org/10.1007/bf00016489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

de Beistegui, Miguel. "Réduction et Transduction." Chiasmi International 7 (2005): 127–50. http://dx.doi.org/10.5840/chiasmi2005722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Quail, P., M. Boylan, B. Parks, T. Short, Y. Xu, and D. Wagner. "Phytochromes: photosensory perception and signal transduction." Science 268, no. 5211 (May 5, 1995): 675–80. http://dx.doi.org/10.1126/science.7732376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Paul Bolwell, G. "Plant hormone signal perception and transduction." Phytochemistry 45, no. 1 (May 1997): 209. http://dx.doi.org/10.1016/s0031-9422(97)84445-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Griffiths, Gareth. "Jasmonates: biosynthesis, perception and signal transduction." Essays in Biochemistry 64, no. 3 (June 30, 2020): 501–12. http://dx.doi.org/10.1042/ebc20190085.

Full text
Abstract:
Abstract Jasmonates (JAs) are physiologically important molecules involved in a wide range of plant responses from growth, flowering, senescence to defence against abiotic and biotic stress. They are rapidly synthesised from α-linolenic acid (ALA; C18:3 ∆9,12,15) by a process of oxidation, cyclisation and acyl chain shortening involving co-operation between the chloroplast and peroxisome. The active form of JA is the isoleucine conjugate, JA-isoleucine (JA-Ile), which is synthesised in the cytoplasm. Other active metabolites of JA include the airborne signalling molecules, methyl JA (Me-JA) and cis-jasmone (CJ), which act as inter-plant signalling molecules activating defensive genes encoding proteins and secondary compounds such as anthocyanins and alkaloids. One of the key defensive metabolites in many plants is a protease inhibitor that inactivates the protein digestive capabilities of insects, thereby, reducing their growth. The receptor for JA-Ile is a ubiquitin ligase termed as SCFCoi1 that targets the repressor protein JA Zim domain (JAZ) for degradation in the 26S proteasome. Removal of JAZ allows other transcription factors (TFs) to activate the JA response. The levels of JA-Ile are controlled through catabolism by hydroxylating enzymes of the cytochrome P450 (CYP) family. The JAZ proteins act as metabolic hubs and play key roles in cross-talk with other phytohormone signalling pathways in co-ordinating genome-wide responses. Specific subsets of JAZ proteins are involved in regulating different response outcomes such as growth inhibition versus biotic stress responses. Understanding the molecular circuits that control plant responses to pests and pathogens is a necessary pre-requisite to engineering plants with enhanced resilience to biotic challenges for improved agricultural yields.
APA, Harvard, Vancouver, ISO, and other styles
10

Quail, Peter H. "PHYTOCHROMES: PHOTOSENSORY PERCEPTION AND SIGNAL TRANSDUCTION." Biochemical Society Transactions 24, no. 4 (November 1, 1996): 517S. http://dx.doi.org/10.1042/bst024517sc.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Crawford, MA, M. Thabet, and Y. Wang. "An introduction to a theory on the role of π-electrons of docosahexaenoic acid in brain function." OCL 25, no. 4 (May 21, 2018): A402. http://dx.doi.org/10.1051/ocl/2018010.

Full text
Abstract:
In Part I, we discuss the background to views on brain function and our thesis that it is conducted by π-electrons which perform sensory reception, memory, action, cognition and consciousness. Our thesis is consistent with the classical views of ion movement and synaptic protein strengthening. However, protein based views contain no element of precision for the signal. Precision is essential for true signal transduction of sensory input and the faithful execution of learnt neural pathways. In Part II, we incorporate these principles to discuss the mechanism whereby electron function adds precision of signal energy to the process through the Pauli Exclusion Principle. The Huxley-Hodgkin (HH) account of neural function describes the movement of sodium, potassium and calcium ions to create electrochemical potentials across membranes with well-established mathematical and experimental support. To explain learning, consciousness and perception, others have claimed brain function depends on protein synthesis or RNA coding. Some consider super position and collapse as the computational mechanism. This however is fragile with no mechanism described to protect from natural collapse and decoherence at the temperatures of the brain. A novel approach was adopted by Penrose and Hammeroff who describe consciousness as a function of ʻobjective reduction’ (ʻOR’) of the quantum state. This orchestrated OR activity (ʻOrch OR’) is taken to result in moments of conscious awareness and/or choice (Hameroff S, Penrose R. 2014 Consciousness in the universe: a review of the ʻOrch OR’ theory. Phys Life Rev 11(1): 39–78. Doi: 10.1016/j.plrev.2013.08.002. Epub 2013 Aug 20). Orch-OR operates in principle in protein tubules of neurons. This concept is non-computational and has received much attention with a convincing advocacy and its share of criticism. The advocacy includes the fossil record of organisms that emerged throughout the first Cambrian period with onset roughly 540 million years ago (mya). They had essential degrees of microtubular arrays in skeletal size, complexity and capability for quantum isolation. Attractive as this hypothesis maybe we point out that the brain is predominantly made of lipid not protein. We suggest that both protein and RNA in the brain would more likely been required to serve the extraordinary energy requirements for the brain. Early photosynthetic systems such as the dinoflagellates are rich in docosahexaenoic acid (DHA) including di-DHA phosphoglycerides as also in contemporary mammalian photoreceptors. We wish to discuss in Part II, quantum mechanical properties of the π-electrons of DHA suggestive of a mechanism for the depolarization of the receptor membrane at a precise energy levels as required for vision and neural signalling (Crawford MA, Broadhurst CL, Guest M et al., 2013. A quantum theory for the irreplaceable role of docosahexaenoic acid in neural cell signalling throughout evolution. Prostaglandins Leukot Essent Fatty Acids (PLEFA) 88(1): 5–13. Doi: 10.1016/j.plefa.2012.08.005. PMID: 23206328). We wish to extend this principle to a concept of brain function in learning, recall, perception and cognition.
APA, Harvard, Vancouver, ISO, and other styles
12

Zazimalova, Eva. "Signal perception and transduction in higher plants." Biologia plantarum 33, no. 6 (November 1, 1991): 438. http://dx.doi.org/10.1007/bf02897715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

HALL, M. A., I. E. MOSHKOV, G. V. NOVIKOVA, L. A. J. MUR, and A. R. SMITH. "Ethylene signal perception and transduction: multiple paradigms?" Biological Reviews of the Cambridge Philosophical Society 76, no. 1 (February 2001): 103–28. http://dx.doi.org/10.1017/s1464793100005649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bolwell, G. Paul. "Signal perception and transduction in higher plants." Phytochemistry 30, no. 9 (January 1991): 3171. http://dx.doi.org/10.1016/s0031-9422(00)98285-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

HALL, M. A., I. E. MOSHKOV, G. V. NOVIKOVA, L. A. J. MUR, and A. R. SMITH. "Ethylene signal perception and transduction: multiple paradigms?" Biological Reviews 76, no. 1 (January 11, 2007): 103–28. http://dx.doi.org/10.1111/j.1469-185x.2000.tb00060.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Penfield, Steven. "Temperature perception and signal transduction in plants." New Phytologist 179, no. 3 (August 2008): 615–28. http://dx.doi.org/10.1111/j.1469-8137.2008.02478.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Quail, Peter H. "Photosensory perception and signal transduction in plants." Current Opinion in Genetics & Development 4, no. 5 (October 1994): 652–61. http://dx.doi.org/10.1016/0959-437x(94)90131-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kim, Jungmook. "Perception, transduction, and networks in cold signaling." Journal of Plant Biology 50, no. 2 (April 2007): 139–47. http://dx.doi.org/10.1007/bf03030622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Hall, Brenda P., Samina N. Shakeel, and G. Eric Schaller. "Ethylene Receptors: Ethylene Perception and Signal Transduction." Journal of Plant Growth Regulation 26, no. 2 (June 23, 2007): 118–30. http://dx.doi.org/10.1007/s00344-007-9000-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Miklashevichs, E. "Perception and Signal Transduction of Rhizobial NOD Factors." Critical Reviews in Plant Sciences 20, no. 4 (2001): 373–94. http://dx.doi.org/10.1016/s0735-2689(01)80044-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Yang, Y., J. Shah, and D. F. Klessig. "Signal perception and transduction in plant defense responses." Genes & Development 11, no. 13 (July 1, 1997): 1621–39. http://dx.doi.org/10.1101/gad.11.13.1621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Miklashevichs, E., H. Röhrig, J. Schell, and J. Schmidt. "Perception and Signal Transduction of Rhizobial NOD Factors." Critical Reviews in Plant Sciences 20, no. 4 (July 2001): 373–94. http://dx.doi.org/10.1080/20013591099263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

HAYASHI, Ken-ichiro, and Hiroshi NOZAKI. "Molecular Basis of Auxin Perception and Signal Transduction." KAGAKU TO SEIBUTSU 50, no. 12 (2012): 876–82. http://dx.doi.org/10.1271/kagakutoseibutsu.50.876.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ju, Chuanli, and Caren Chang. "Mechanistic Insights in Ethylene Perception and Signal Transduction." Plant Physiology 169, no. 1 (August 5, 2015): 85–95. http://dx.doi.org/10.1104/pp.15.00845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Block, I., A. Wolke, W. Briegleb, and K. Ivanova. "Gravity perception and signal transduction in single cells." Acta Astronautica 36, no. 8-12 (October 1995): 479–86. http://dx.doi.org/10.1016/0094-5765(95)00134-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Schenk, Paul W., and B. Ewa Snaar-Jagalska. "Signal perception and transduction: the role of protein kinases." Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1449, no. 1 (February 1999): 1–24. http://dx.doi.org/10.1016/s0167-4889(98)00178-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zhu, Ziqiang, and Hongwei Guo. "Genetic Basis of Ethylene Perception and Signal Transduction inArabidopsis." Journal of Integrative Plant Biology 50, no. 7 (July 2008): 808–15. http://dx.doi.org/10.1111/j.1744-7909.2008.00710.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Raybould, H. E. "Visceral perception: sensory transduction in visceral afferents and nutrients." Gut 51, Supplement 1 (July 1, 2002): i11—i14. http://dx.doi.org/10.1136/gut.51.suppl_1.i11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Lechner, Stefan G., and Jan Siemens. "Sensory transduction, the gateway to perception: mechanisms and pathology." EMBO reports 12, no. 4 (March 18, 2011): 292–95. http://dx.doi.org/10.1038/embor.2011.45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Aducci, P., M. Marra, V. Fogliano, and M. R. Fullone. "Fusicoccin receptors: perception and transduction of the fusicoccin signal." Journal of Experimental Botany 46, no. 10 (October 1, 1995): 1463–78. http://dx.doi.org/10.1093/jxb/46.10.1463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Lamb, Chris J. "Plant disease resistance genes in signal perception and transduction." Cell 76, no. 3 (February 1994): 419–22. http://dx.doi.org/10.1016/0092-8674(94)90106-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jenkins, Gareth I. "Photomorphogenic UV-B perception and signal transduction in Arabidopsis." Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 153, no. 2 (June 2009): S203. http://dx.doi.org/10.1016/j.cbpa.2009.04.638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kontos, Pavlos. "Perception et négation." Études Phénoménologiques 11, no. 22 (1995): 51–80. http://dx.doi.org/10.5840/etudphen199511224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Nicolaïdis, Nicos. "Perception et reconnaissance." Revue française de psychanalyse 59, no. 2 (1995): 565. http://dx.doi.org/10.3917/rfp.g1995.59n2.0565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Dumouchel, Paul. "Émotion et perception." Philosophiques 29, no. 2 (2002): 371. http://dx.doi.org/10.7202/006261ar.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bordron, Jean-François. "Perception et expérience." Signata, no. 1 (December 31, 2010): 255–93. http://dx.doi.org/10.4000/signata.308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kapsambelis, Vassilis. "Perception et objet." Revue française de psychosomatique 49, no. 1 (2016): 117. http://dx.doi.org/10.3917/rfps.049.0117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lindén, Jan‑Ivar. "Intentionnalité et perception." Chôra 9 (2011): 339–52. http://dx.doi.org/10.5840/chora2011/20129/1017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hébert, É. "Lectines membranaires et transduction du signal." médecine/sciences 17, no. 4 (2001): 486. http://dx.doi.org/10.4267/10608/1950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Payrastre, B. "Cytosquelette, phosphoinositides et transduction du signal." médecine/sciences 8, no. 2 (1992): 127. http://dx.doi.org/10.4267/10608/3084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Höfer, Dirk, Esther Asan, and Detlev Drenckhahn. "Chemosensory Perception in the Gut." Physiology 14, no. 1 (February 1999): 18–23. http://dx.doi.org/10.1152/physiologyonline.1999.14.1.18.

Full text
Abstract:
The ability of the gut mucosa to sense the chemical composition of chyme is important for gastrointestinal functions. The demonstration of gustducin and transducin, two α-subunits of GTP-binding proteins involved in gustatory signal transduction, in gastrointestinal epithelial cells provides first clues to the molecular basis of enteric chemosensitivity. Nitric oxide may play a role as a secondary messenger.
APA, Harvard, Vancouver, ISO, and other styles
42

Nürnberger, Thorsten, Wolfgang Wirtz, Dirk Nennstiel, Klaus Hahlbrock, Thorsten Jabs, Sabine Zimmermann, and Dierk Scheel. "Signal Perception and Intracellular Signal Transduction in Plant Pathogen Defense." Journal of Receptors and Signal Transduction 17, no. 1-3 (January 1997): 127–36. http://dx.doi.org/10.3109/10799899709036598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kolesnikov, Yaroslav S., Serhiy V. Kretynin, Igor D. Volotovsky, Elizabeth L. Kordyum, Eric Ruelland, and Volodymyr S. Kravets. "Molecular mechanisms of gravity perception and signal transduction in plants." Protoplasma 253, no. 4 (July 28, 2015): 987–1004. http://dx.doi.org/10.1007/s00709-015-0859-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Mol, Joseph, Gareth Jenkins, Eberhard Schäfer, David Weiss, and Virginia Walbot. "Signal perception, transduction, and gene expression involved in anthocyanin biosynthesis." Critical Reviews in Plant Sciences 15, no. 5-6 (January 1996): 525–57. http://dx.doi.org/10.1080/07352689609382369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Mol, J., G. Jenkins, E. Schaefer, and D. Weiss. "Signal Perception, Transduction, and Gene Expression Involved in Anthocyanin Biosynthesis." Critical Reviews in Plant Sciences 15, no. 5 (1996): 525–58. http://dx.doi.org/10.1080/713608141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ullrich, Oliver, and Donat-P. Häder. "Editorial: Signal transduction in gravity perception: From microorganisms to mammals." Signal Transduction 6, no. 6 (December 2006): 377–79. http://dx.doi.org/10.1002/sita.200690050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Krämer, Reinhard. "Bacterial stimulus perception and signal transduction: Response to osmotic stress." Chemical Record 10, no. 4 (July 6, 2010): 217–29. http://dx.doi.org/10.1002/tcr.201000005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Porto, André da Silva, and Bento Prado Neto. "Singularité et perception visuelle1." Articles 39, no. 1 (August 7, 2012): 75–100. http://dx.doi.org/10.7202/1011611ar.

Full text
Abstract:
Cet article poursuit un double but : d’une part, situer dans le parcours philosophique de Wittgenstein une partie de l’histoire du « problème du champ visuel », thème clé de sa période intermédiaire ; d’autre part, mettre en lumière sa critique de l’idée d’un champ visuel (et celle de l’idée d’un objet interne). Nous croyons que ses arguments sont nouveaux, pénétrants, et ainsi leur intérêt dépasse les limites d’un exposé purement exégétique.
APA, Harvard, Vancouver, ISO, and other styles
49

Lebon, Florent, Aymeric Guillot, Christian Collet, and Charalambos Papaxanthis. "Perception, Observation et Action." Movement & Sport Sciences 89, no. 3 (2015): 43. http://dx.doi.org/10.3917/sm.089.0043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Fisette, Denis. "Pensée, langage et perception." Articles 18, no. 2 (August 6, 2007): 79–100. http://dx.doi.org/10.7202/027153ar.

Full text
Abstract:
RÉSUMÉ La parution récente d'un livre de M. Dummett sur les origines de la philosophie analytique sert ici de prétexte pour examiner à nouveau la question de la relation entre la théorie frégéenne de la signification et la théorie husserlienne de l'intentionnalité. Dummet défend la thèse suivant laquelle les pensées et le sens ont un caractère essentiellement linguistique et qu'ils sont incompatibles avec la conception husserlienne du contenu intentionnel. Nous examinerons les arguments qu'il fait valoir pour l'autonomie du langage et de la signification relativement à la pensée conceptuelle et la légitimité de la distinction entre pensée au sens propre et « pensée primitive » qui est introduite afin de rendre compte du cas de la perception.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography