Academic literature on the topic 'Percolation orientée'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Percolation orientée.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Percolation orientée"
Andjel, E. D., and L. F. Gray. "Extreme paths in oriented two-dimensional percolation." Journal of Applied Probability 53, no. 2 (June 2016): 369–80. http://dx.doi.org/10.1017/jpr.2016.6.
Full textGaret, Olivier, and Régine Marchand. "Growth of a Population of Bacteria in a Dynamical Hostile Environment." Advances in Applied Probability 46, no. 03 (September 2014): 661–86. http://dx.doi.org/10.1017/s000186780000731x.
Full textGaret, Olivier, and Régine Marchand. "Growth of a Population of Bacteria in a Dynamical Hostile Environment." Advances in Applied Probability 46, no. 3 (September 2014): 661–86. http://dx.doi.org/10.1239/aap/1409319554.
Full textWu, Xianyuan. "On the Random-Oriented percolation." Acta Mathematica Scientia 21, no. 2 (April 2001): 265–74. http://dx.doi.org/10.1016/s0252-9602(17)30409-5.
Full textDurrett, Richard, Roberto H. Schonmann, and Nelson I. Tanaka. "Correlation lengths for oriented percolation." Journal of Statistical Physics 55, no. 5-6 (June 1989): 965–79. http://dx.doi.org/10.1007/bf01041074.
Full textDurrett, Richard, and Nelson I. Tanaka. "Scaling inequalities for oriented percolation." Journal of Statistical Physics 55, no. 5-6 (June 1989): 981–95. http://dx.doi.org/10.1007/bf01041075.
Full textMarchetti, D. H. U., V. Sidoravicius, and M. E. Vares. "Oriented Percolation in One–dimensional 1/|x−y|2 Percolation Models." Journal of Statistical Physics 139, no. 6 (May 4, 2010): 941–59. http://dx.doi.org/10.1007/s10955-010-9966-z.
Full textAlmeida Gomes, Pablo, Alan Pereira, and Rémy Sanchis. "Anisotropic oriented percolation in high dimensions." Latin American Journal of Probability and Mathematical Statistics 17, no. 1 (2020): 531. http://dx.doi.org/10.30757/alea.v17-21.
Full textPei, Anqi, and Jun Wang. "Nonlinear Analysis of Return Time Series Model by Oriented Percolation Dynamic System." Abstract and Applied Analysis 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/612738.
Full textMiller, Katja. "Random walks on weighted, oriented percolation clusters." Latin American Journal of Probability and Mathematical Statistics 13, no. 1 (2016): 53. http://dx.doi.org/10.30757/alea.v13-03.
Full textDissertations / Theses on the topic "Percolation orientée"
Couronné, Olivier. "Sur les grands clusters en percolation." Phd thesis, Université Paris Sud - Paris XI, 2004. http://tel.archives-ouvertes.fr/tel-00007948.
Full textEzanno, François. "Systèmes de particules en interaction et modèles de déposition aléatoire." Phd thesis, Aix-Marseille Université, 2012. http://tel.archives-ouvertes.fr/tel-00796271.
Full textBienvenu, François. "Random graphs in evolution." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS180.
Full textThis thesis consists of five independent research projects, related either to random graphs or to evolutionary biology - and most often to both. Chapters 2 and 3 introduce two random graphs that are obtained as the stationary distributions of graph-valued Markov chains. The first of these, which we term the split-and-drift random graph, aims to describe the structure and dynamics of interbreeding-potential networks; the second one is a random forest that was inspired by the celebrated Moran model of population genetics. Chapter 4 is devoted to the study of a new class of phylogenetic networks that we term ranked tree-child networks, or RTCNs for short. These networks correspond to a subclass of tree-child networks that are endowed with an additional structure ensuring compatibility with a time-embedded evolutionary process, and are designed to model reticulated phylogenies. We focus on the enumeration and sampling of RTCNs before turning to the structural properties of large uniform RTCNs. In Chapter 5, we prove a general result about oriented percolation in randomly oriented graphs: the positive association of the percolation cluster. Finally, in Chapter 6 we focus on a widely used statistic of populations: the mean age at which parents give birth. We point out several problems with one of the most widely used way to compute it, and provide an alternative measure
Hiemer, Philipp Robert. "Topics in polygonal billiards and oriented percolation." Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620413.
Full textStacey, Alan Martin. "Bounds on the critical probability in oriented percolation models." Thesis, University of Cambridge, 1994. https://www.repository.cam.ac.uk/handle/1810/251746.
Full textLanchier, Nicolas. "Systemes de particules multicolores." Phd thesis, Université de Rouen, 2005. http://tel.archives-ouvertes.fr/tel-00164594.
Full textLe, Stum Simon. "Existence et absence de percolation de modèles germes grains arrêtés." Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10162/document.
Full textIn this thesis, we investigate the existence and the absence of percolation for a large family of random graphs. We precisely study the oriented outdegree-one graphs based on a Poisson point process in $\mathbf{R}^{d}$. On the random pattern of points, each vertex is connected to its unique "neighbour" according to a fixed connection rule. This rule is translation-invariant and could also include a random part. Many natural simple dynamics can be described by an outdegree-one graph: the classical walk to the nearest neighbour on the graph defined by the hard sphere Lilypond model, etc.The first result of the thesis establishes sufficient conditions which guarantee the almost sure absence of infinite connected component in the graph. Precisely, each Poisson outdegree-one graph satisfying two precise assumptions does not percolate. The proof uses the mass transport principle, and an important result of stochastic domination. The most important corollary of this theorem is the absence of percolation of the line segment model with unit speed which has been conjectured in 2014 by D. Daley, S. Ebert and G. Last.The line segment model with random speed is well defined (as a stopped germs grains model) if the random velocity has an order $4$ moment. In the last chapter, we proved that the existence of an order $s$ exponential moment (with $s>1$) ensures the almost sure absence of percolation of the configuration of stopped segments. One of the key point of this result is the existence of a sufficiently small time $\mathbf{T}$ such that, before the time $\mathbf{T}$, any quick segments grows inside a boolean model which does not percolate. This argument should be used for different kinds of germs grains dynamics
Deveaux, Vincent. "Modèles markoviens partiellement orientés. Approche géométrique des Automates cellulaires probabilistes." Phd thesis, Université de Rouen, 2008. http://tel.archives-ouvertes.fr/tel-00325051.
Full textAu cours de la première, nous définissons la notion de chaîne partiellement ordonnée qui généralise celle d'automate cellulaire probabiliste. Cette définition se fait par l'intermédiaire de spécification partiellement ordonnée de la même façon que les mesures de Gibbs sont définies à l'aide de spécifications. Nous obtenons des résultats analogues sur l'espace des phases : caractérisation des mesures extrêmes, construction/reconstruction en partant des noyaux sur un seul site, critères d'unicité. Les résultats sont appliqués tout au long du texte à des automates déjà connus.
La deuxième partie est essentiellement vouée à l'étude d'automates cellulaires unidimensionnels à deux voisins et deux états. Nous donnons deux décompositions des configurations spatio-temporelles en flot d'information. Ces flots ont une signification géométrique. De cela nous tirons deux critères d'unicité.
En annexe, nous donnons une démonstration de transition de phase d'un automate cellulaire défini par A. Toom, le modèle NEC. Tout au long du texte, des simulations sont présentées.
Miller, Katja [Verfasser], Nina [Akademischer Betreuer] Gantert, Matthias [Gutachter] Birkner, Nina [Gutachter] Gantert, and Silke [Gutachter] Rolles. "Random walks on oriented percolation and in recurrent environments / Katja Miller ; Gutachter: Matthias Birkner, Nina Gantert, Silke Rolles ; Betreuer: Nina Gantert." München : Universitätsbibliothek der TU München, 2017. http://d-nb.info/115354573X/34.
Full textMiller, Katja Verfasser], Nina [Akademischer Betreuer] [Gantert, Matthias [Gutachter] Birkner, Nina [Gutachter] Gantert, and Silke [Gutachter] Rolles. "Random walks on oriented percolation and in recurrent environments / Katja Miller ; Gutachter: Matthias Birkner, Nina Gantert, Silke Rolles ; Betreuer: Nina Gantert." München : Universitätsbibliothek der TU München, 2017. http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20171023-1366085-1-2.
Full textBooks on the topic "Percolation orientée"
T, Barlow M., ed. Random walk on the incipient infinite cluster for oriented percolation in high dimensions. Kyoto, Japan: Research Institute for Mathematical Sciences, 2006.
Find full textBook chapters on the topic "Percolation orientée"
Mountford, Thomas S. "Comparison of Semi-Oriented Bootstrap Percolation Models with Modified Bootstrap Percolation." In Cellular Automata and Cooperative Systems, 519–23. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1691-6_41.
Full textGao, Wei, Kam-Fai Wong, Yunqing Xia, and Ruifeng Xu. "Clique Percolation Method for Finding Naturally Cohesive and Overlapping Document Clusters." In Computer Processing of Oriental Languages. Beyond the Orient: The Research Challenges Ahead, 97–108. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11940098_10.
Full textSchertzer, Emmanuel, and Rongfeng Sun. "Perturbations of Supercritical Oriented Percolation and Sticky Brownian Webs." In Sojourns in Probability Theory and Statistical Physics - II, 241–61. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0298-9_11.
Full textMcDiarmid, Colin. "General Percolation and Oriented Matroids." In North-Holland Mathematics Studies, 187–97. Elsevier, 1987. http://dx.doi.org/10.1016/s0304-0208(08)73056-1.
Full textConference papers on the topic "Percolation orientée"
Pearce, C. E. M., Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Oriented Bond Percolation and Phase Transitions: an Analytic Approach." In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790245.
Full textSeidel, Gary D., Yordanos Bisrat, and Dimitris C. Lagoudas. "Electrical and Thermal Conductivities of Carbon Nanotube-Epoxy Composites: Modeling and Characterization." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42339.
Full textZhang, X., S. Kanuparthi, G. Subbarayan, B. Sammakia, and S. Tonapi. "Hierarchical Modeling and Trade-Off Studies in Design of Thermal Interface Materials." In ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/ipack2005-73259.
Full text