Academic literature on the topic 'Perfect fluid'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Perfect fluid.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Perfect fluid"
Müller, Berndt. "The “perfect” fluid quenches jets almost perfectly." Progress in Particle and Nuclear Physics 62, no. 2 (April 2009): 551–55. http://dx.doi.org/10.1016/j.ppnp.2008.12.028.
Full textZhuk, A. "Perfect fluid wormholes." Physics Letters A 176, no. 3-4 (May 1993): 176–78. http://dx.doi.org/10.1016/0375-9601(93)91030-9.
Full textBergh, N. Van den, and J. Skea. "Inhomogeneous perfect fluid cosmologies." Classical and Quantum Gravity 9, no. 2 (February 1, 1992): 527–32. http://dx.doi.org/10.1088/0264-9381/9/2/015.
Full textSklavenites, D. "Stationary perfect fluid cylinders." Classical and Quantum Gravity 16, no. 8 (July 20, 1999): 2753–61. http://dx.doi.org/10.1088/0264-9381/16/8/313.
Full textNilsson, Ulf S., Claes Uggla, and Mattias Marklund. "Static perfect fluid cylinders." Journal of Mathematical Physics 39, no. 6 (June 1998): 3336–46. http://dx.doi.org/10.1063/1.532258.
Full textRahaman, F., K. K. Nandi, A. Bhadra, M. Kalam, and K. Chakraborty. "Perfect fluid dark matter." Physics Letters B 694, no. 1 (October 2010): 10–15. http://dx.doi.org/10.1016/j.physletb.2010.09.038.
Full textCarot, J., and A. M. Sintes. "Homothetic perfect fluid spacetimes." Classical and Quantum Gravity 14, no. 5 (May 1, 1997): 1183–205. http://dx.doi.org/10.1088/0264-9381/14/5/021.
Full textIegurnov, O. O., and M. P. Korkina. "Cosmological model with perfect fluid." Astronomical School’s Report 8, no. 1 (2012): 66–70. http://dx.doi.org/10.18372/2411-6602.08.1066.
Full textAlvarenga, F. G., J. C. Fabris, N. A. Lemos, and G. A. Monerat. "Quantum Cosmological Perfect Fluid Models." General Relativity and Gravitation 34, no. 5 (May 2002): 651–63. http://dx.doi.org/10.1023/a:1015986011295.
Full textEskola, Kari J. "Nearly perfect quark–gluon fluid." Nature Physics 15, no. 11 (August 12, 2019): 1111–12. http://dx.doi.org/10.1038/s41567-019-0643-0.
Full textDissertations / Theses on the topic "Perfect fluid"
Sandin, Patrik. "The asymptotic states of perfect fluid cosmological models." Licentiate thesis, Karlstad : Faculty of Technology and Science, Physics, Karlstads universitet, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-4713.
Full textRadford, James E. Burdick Joel Wakeman. "Symmetry, reduction and swimming in a perfect fluid /." Diss., Pasadena, Calif. : California Institute of Technology, 2003. http://resolver.caltech.edu/CaltechETD:etd-06042003-181857.
Full textKitchingham, David William. "Generating techniques in vacuum and stiff perfect fluid cosmologies." Thesis, Queen Mary, University of London, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337947.
Full textMitsuda, Eiji, and Akira Tomimatsu. "Breakdown of self-similar evolution in homogeneous perfect fluid collapse." American Physical Society, 2006. http://hdl.handle.net/2237/8842.
Full textMessenger, Paul Henry. "Rotating perfect fluid bodies in Einstein's general theory of relativity." Thesis, University of South Wales, 2005. https://pure.southwales.ac.uk/en/studentthesis/rotating-perfect-fluid-bodies-in-einsteins-general-theory-of-relativity(127bc15d-ff0d-4f8e-80fe-351c24273697).html.
Full textDaher, Ivo Martins. "Soluções das equações de campo de Einstein para fluidos perfeitos estáticos com simetria esférica." Universidade do Estado do Rio de Janeiro, 2008. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=1012.
Full textNesta dissertação, procuramos soluções exatas das equações de campo de Einstein em Relatividade Geral que descrevem um fluido perfeito em um espaço-tempo estático com simetria esférica. A técnica utilizada para encontrar essas soluções é o algoritmo de Kovacic, que pode ser aplicado a equações diferenciais ordinárias lineares e homogêneas de segunda ordem com coeficientes racionais. Esse algoritmo é capaz de nos dar soluções fechadas em termos de funções liouvillianas, se tal equação tiver esse tipo de solução. Para esse fim, vários sistemas de coordenadas foram investigados até encontrar o que fosse mais adequado à aplicação do algoritmo. Impondo que a função da métrica 11 g seja racional, ficamos com uma equação diferencial linear e homogênea de segunda ordem que tem coeficientes racionais. Nesse trabalho, as formas arbitradas foram: g11=-A/4x x-z1/x-Z1, g11=-A/4x x-z1/(x-Z1)(x-Z2), g11=-A/4x (x-z1) (x-z2)/x-Z1 e g11= -A/4x (x-z1) (x-z2)/ 4x(x-Z1) (x-Z2) onde x é uma coordenada espacial da métrica e Α, z1 , z2 , Z1 e Z2 são parâmetros dos modelos. Depois de obter soluções analíticas, verificamos se elas satisfazem determinadas condições físicas e, então, poderiam ser utilizadas como modelos de estrelas de nêutrons sem rotação (estrelas de alta densidade).
Loeschcke, Christian [Verfasser]. "On the relaxation of a variational principle for the motion of a vortex sheet in perfect fluid / Christian Loeschcke." Bonn : Universitäts- und Landesbibliothek Bonn, 2013. http://d-nb.info/1044868945/34.
Full textHajj-Boutros, Joseph. "Détermination des nouvelles solutions exactes d’Einstein dans le cas intérieur." Paris 6, 1987. http://www.theses.fr/1987PA066421.
Full textКосторний, Сергій Дмитрович, Сергей Дмитриевич Косторной, Serhii Dmytrovych Kostornyi, and М. В. Хилько. "Модель течения идеальной жидкости, учитывающая особенности граничных условий реальной жидкости." Thesis, Сумский государственный университет, 2013. http://essuir.sumdu.edu.ua/handle/123456789/31453.
Full textDamamme, Gilles. "Contribution à la théorie hydrodynamique de l'onde de détonation dans les explosifs condensés." Poitiers, 1987. http://www.theses.fr/1987POIT2034.
Full textBooks on the topic "Perfect fluid"
United States. National Aeronautics and Space Administration., ed. A continuing search for a near-perfect numerical flux scheme. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Find full textGnoffo, Peter A. An upwind-biased, point-implicit relaxation algorithm for viscous, compressible perfect-gas flows. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Find full textGnoffo, Peter A. An upwind-biased, point-implicit relaxation algorithm for viscous, compressible perfect-gas flows. Hampton, Va: Langley Research Center, 1990.
Find full textGnoffo, Peter A. An upwind-biased, point-implicit relaxation algorithm for viscous, compressible perfect-gas flows. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Find full textTatum, Kenneth E. Computation of thermally perfect properties of oblique shock waves. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1996.
Find full textCenter, Langley Research, ed. Computation of thermally perfect properties of oblique shock waves: Under contract NAS1-19000. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Find full textCenter, Langley Research, ed. Computation of thermally perfect properties of oblique shock waves: Under contract NAS1-19000. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Find full textRowlingson, Robert Richard. A class of perfect fluids in general relativity. Birmingham: Aston University. Department of Computing Science and Applied Mathematics, 1990.
Find full textEscudier, Marcel. Fluids and fluid properties. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198719878.003.0002.
Full textBook chapters on the topic "Perfect fluid"
Rieutord, Michel. "Flows of Perfect Fluids." In Fluid Dynamics, 71–109. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09351-2_3.
Full textChéret, Roger. "Jump Relations in a Perfect Fluid." In Detonation of Condensed Explosives, 27–61. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-9284-2_2.
Full textAhsan, Zafar. "Lanczos Potential and Perfect Fluid Spacetimes." In The Potential of Fields in Einstein's Theory of Gravitation, 67–80. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8976-4_6.
Full textDeville, Michel O. "Plane Irrotational Flows of Perfect Fluid." In An Introduction to the Mechanics of Incompressible Fluids, 137–74. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04683-4_6.
Full textSkea, Jim E. F. "The Kasner Condition and Inhomogeneous Perfect Fluid Cosmologies." In On Einstein’s Path, 449–64. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1422-9_31.
Full textSenovilla, José M. M. "Stationary and axisymmetric perfect-fluid solutions to Einstein's equations." In Rotating Objects and Relativistic Physics, 73–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/3-540-57364-x_202.
Full textAguiar, Paulo, and Paulo Crawford. "Axially Symmetric Cosmological Models with Perfect Fluid and Cosmological Constant." In The Non-Sleeping Universe, 299–300. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4497-1_72.
Full textGao, Sijie. "A General Maximum Entropy Principle for Self-Gravitating Perfect Fluid." In Springer Proceedings in Physics, 359–65. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20046-0_43.
Full textGalper, A., and T. Miloh. "On the motion of a non-rigid sphere in a perfect fluid." In Theoretical, Experimental, and Numerical Contributions to the Mechanics of Fluids and Solids, 627–42. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9229-2_33.
Full textMelnikov, V. N., and V. R. Gavrilov. "2-Component Cosmological Models with Perfect Fluid and Scalar Field: Exact Solutions." In The Gravitational Constant: Generalized Gravitational Theories and Experiments, 247–68. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2242-5_12.
Full textConference papers on the topic "Perfect fluid"
Xu, Kun. "Does perfect Riemann solver exist?" In 14th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3344.
Full textPalese, M., and M. Capone. "Perfect fluid geometries in Rastall’s cosmology." In Proceedings of the MG15 Meeting on General Relativity. WORLD SCIENTIFIC, 2022. http://dx.doi.org/10.1142/9789811258251_0053.
Full textSchäfer, Thomas, and Marvin L. Marshak. "In search of the perfect fluid." In 10TH CONFERENCE ON THE INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS. AIP, 2009. http://dx.doi.org/10.1063/1.3293917.
Full textBoonserm, Petarpa, Kunlapat Sansook, and Tritos Ngampitipan. "Quasinormal modes of perfect fluid spheres." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2020 (MATHTECH 2020): Sustainable Development of Mathematics & Mathematics in Sustainability Revolution. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0075377.
Full textGoliath, Martin. "Self-similar spherically symmetric perfect-fluid models." In GENERAL RELATIVITY AND RELATIVISTIC ASTROPHYSICS. ASCE, 1999. http://dx.doi.org/10.1063/1.1301577.
Full textDeng, Xiaogang, Fenggan Zhuang, and Meiliang Mao. "On low Mach number perfect gas flow calculations." In 14th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3317.
Full textOlsen, M., and D. Prabhu. "Application of OVERFLOW to hypersonic perfect gas flowfields." In 15th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-2664.
Full textWYLLEMAN, LODE, and NORBERT Van den BERGH. "CLASSIFICATION RESULTS ON PURELY MAGNETIC PERFECT FLUID MODELS." In Proceedings of the MG11 Meeting on General Relativity. World Scientific Publishing Company, 2008. http://dx.doi.org/10.1142/9789812834300_0373.
Full textChambrion, T., and A. Munnier. "Generic 3D swimmers in a perfect fluid are controllable." In 2012 American Control Conference - ACC 2012. IEEE, 2012. http://dx.doi.org/10.1109/acc.2012.6315435.
Full textAbishev, M., K. Boshkayev, H. Quevedo, and S. Toktarbay. "A perfect-fluid spacetime for a slightly deformed mass." In Twelfth Asia-Pacific International Conference on Gravitation, Astrophysics, and Cosmology. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814759816_0048.
Full text