Academic literature on the topic 'Perfect fluid'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Perfect fluid.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Perfect fluid"

1

Müller, Berndt. "The “perfect” fluid quenches jets almost perfectly." Progress in Particle and Nuclear Physics 62, no. 2 (April 2009): 551–55. http://dx.doi.org/10.1016/j.ppnp.2008.12.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhuk, A. "Perfect fluid wormholes." Physics Letters A 176, no. 3-4 (May 1993): 176–78. http://dx.doi.org/10.1016/0375-9601(93)91030-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bergh, N. Van den, and J. Skea. "Inhomogeneous perfect fluid cosmologies." Classical and Quantum Gravity 9, no. 2 (February 1, 1992): 527–32. http://dx.doi.org/10.1088/0264-9381/9/2/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sklavenites, D. "Stationary perfect fluid cylinders." Classical and Quantum Gravity 16, no. 8 (July 20, 1999): 2753–61. http://dx.doi.org/10.1088/0264-9381/16/8/313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nilsson, Ulf S., Claes Uggla, and Mattias Marklund. "Static perfect fluid cylinders." Journal of Mathematical Physics 39, no. 6 (June 1998): 3336–46. http://dx.doi.org/10.1063/1.532258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rahaman, F., K. K. Nandi, A. Bhadra, M. Kalam, and K. Chakraborty. "Perfect fluid dark matter." Physics Letters B 694, no. 1 (October 2010): 10–15. http://dx.doi.org/10.1016/j.physletb.2010.09.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Carot, J., and A. M. Sintes. "Homothetic perfect fluid spacetimes." Classical and Quantum Gravity 14, no. 5 (May 1, 1997): 1183–205. http://dx.doi.org/10.1088/0264-9381/14/5/021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Iegurnov, O. O., and M. P. Korkina. "Cosmological model with perfect fluid." Astronomical School’s Report 8, no. 1 (2012): 66–70. http://dx.doi.org/10.18372/2411-6602.08.1066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alvarenga, F. G., J. C. Fabris, N. A. Lemos, and G. A. Monerat. "Quantum Cosmological Perfect Fluid Models." General Relativity and Gravitation 34, no. 5 (May 2002): 651–63. http://dx.doi.org/10.1023/a:1015986011295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Eskola, Kari J. "Nearly perfect quark–gluon fluid." Nature Physics 15, no. 11 (August 12, 2019): 1111–12. http://dx.doi.org/10.1038/s41567-019-0643-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Perfect fluid"

1

Sandin, Patrik. "The asymptotic states of perfect fluid cosmological models." Licentiate thesis, Karlstad : Faculty of Technology and Science, Physics, Karlstads universitet, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-4713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Radford, James E. Burdick Joel Wakeman. "Symmetry, reduction and swimming in a perfect fluid /." Diss., Pasadena, Calif. : California Institute of Technology, 2003. http://resolver.caltech.edu/CaltechETD:etd-06042003-181857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kitchingham, David William. "Generating techniques in vacuum and stiff perfect fluid cosmologies." Thesis, Queen Mary, University of London, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mitsuda, Eiji, and Akira Tomimatsu. "Breakdown of self-similar evolution in homogeneous perfect fluid collapse." American Physical Society, 2006. http://hdl.handle.net/2237/8842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Messenger, Paul Henry. "Rotating perfect fluid bodies in Einstein's general theory of relativity." Thesis, University of South Wales, 2005. https://pure.southwales.ac.uk/en/studentthesis/rotating-perfect-fluid-bodies-in-einsteins-general-theory-of-relativity(127bc15d-ff0d-4f8e-80fe-351c24273697).html.

Full text
Abstract:
The study of rotating astrophysical bodies is of great importance in understanding the structure and development of the Universe. Rotating bodies, are not only of great interest in their own right, for example pulsars, but they have also been targeted as prime possible sources of gravitational waves, currently a topic of great interest. The ability of general relativity to describe the laws and phenomena of the Universe is unparalleled, but however there has been little success in the description of rotating astrophysical bodies. This is not due to a lack of interest, but rather the sheer complexity of the mathematics. The problem of the complexity may be eased by the adoption of a perturbation technique, in that a spherically symmetric non-rotating fluid sphere described by Einstein's equations is endowed with rotation, albeit slowly, and the result is expressed and analysed using Taylor's series. A further consideration is that of the exterior gravitational field, which must be asymptotically flat. It has been shown from experiment that, in line with the prediction of general relativity, a rotating body does indeed drag space-time around with it. This leads to the conclusion that the exterior gravity field must not only be asymptotically flat, but must also rotate. The only vacuum solution to satisfy these conditions is the Kerr metric. This work seeks to show that an internal rotating perfect fluid source may be matched to the rotating exterior Kerr metric using a perturbation technique up to and including second order parameters in angular velocity. The equations derived, are used as a starting point in the construction of such a perfect fluid solution, and it is shown how the method may be adapted for computer implementation.
APA, Harvard, Vancouver, ISO, and other styles
6

Daher, Ivo Martins. "Soluções das equações de campo de Einstein para fluidos perfeitos estáticos com simetria esférica." Universidade do Estado do Rio de Janeiro, 2008. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=1012.

Full text
Abstract:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Nesta dissertação, procuramos soluções exatas das equações de campo de Einstein em Relatividade Geral que descrevem um fluido perfeito em um espaço-tempo estático com simetria esférica. A técnica utilizada para encontrar essas soluções é o algoritmo de Kovacic, que pode ser aplicado a equações diferenciais ordinárias lineares e homogêneas de segunda ordem com coeficientes racionais. Esse algoritmo é capaz de nos dar soluções fechadas em termos de funções liouvillianas, se tal equação tiver esse tipo de solução. Para esse fim, vários sistemas de coordenadas foram investigados até encontrar o que fosse mais adequado à aplicação do algoritmo. Impondo que a função da métrica 11 g seja racional, ficamos com uma equação diferencial linear e homogênea de segunda ordem que tem coeficientes racionais. Nesse trabalho, as formas arbitradas foram: g11=-A/4x x-z1/x-Z1, g11=-A/4x x-z1/(x-Z1)(x-Z2), g11=-A/4x (x-z1) (x-z2)/x-Z1 e g11= -A/4x (x-z1) (x-z2)/ 4x(x-Z1) (x-Z2) onde x é uma coordenada espacial da métrica e Α, z1 , z2 , Z1 e Z2 são parâmetros dos modelos. Depois de obter soluções analíticas, verificamos se elas satisfazem determinadas condições físicas e, então, poderiam ser utilizadas como modelos de estrelas de nêutrons sem rotação (estrelas de alta densidade).
APA, Harvard, Vancouver, ISO, and other styles
7

Loeschcke, Christian [Verfasser]. "On the relaxation of a variational principle for the motion of a vortex sheet in perfect fluid / Christian Loeschcke." Bonn : Universitäts- und Landesbibliothek Bonn, 2013. http://d-nb.info/1044868945/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hajj-Boutros, Joseph. "Détermination des nouvelles solutions exactes d’Einstein dans le cas intérieur." Paris 6, 1987. http://www.theses.fr/1987PA066421.

Full text
Abstract:
Ensemble de travaux réalisé dans le cadre de la théorie de la relativité générale. La métrique de l'espace-temps adoptée est à symétrie bien précise pour simplifier dans la mesure du possible les équations du champ d’Einstein. Dans le cadre de la symétrie sphérique statique et non statique, nous avons obtenu de nouvelles solutions des équations du champ (cas intérieur). Dans le cas de la symétrie plane, nous avons pu engendrer plusieurs nouvelles solutions statiques et non statiques. Nous avons mis au point de nouvelles solutions du type cosmologique. L'espace-temps utilise étant essentiellement homogène, nous avons pu étudier le caractère non isotropique de la singularité initiale. Les conditions physiques ont été respectées. Dans le cas des solutions cosmologiques nous avons pu construire un modèle rendant compte de l'évolution possible de notre univers depuis son état initial radiatif et singulier jusqu'à son état actuel. Nous avons trouvé une solution globalement régulière dans le cadre de la symétrie cylindrique. La technique du calcul utilise a consisté dans la plupart des cas à linéariser les équations du champ.
APA, Harvard, Vancouver, ISO, and other styles
9

Косторний, Сергій Дмитрович, Сергей Дмитриевич Косторной, Serhii Dmytrovych Kostornyi, and М. В. Хилько. "Модель течения идеальной жидкости, учитывающая особенности граничных условий реальной жидкости." Thesis, Сумский государственный университет, 2013. http://essuir.sumdu.edu.ua/handle/123456789/31453.

Full text
Abstract:
При проектировании гидравлических машин (ГМ) турбин и насосов выбор геометрических размеров и формы проточной части (ПЧ) с учетом взаимного влияния всех элементов ПЧ для получения высоких энергетических и динамических характеристик представляет собой сложную научно-техническую задачу. Она решается, в основном, на основании опыта и интуиции конструктора с использованием упрощенных математических моделей течения рабочей жидкости в ПЧ, одна из которых приводится в данной работе. При цитировании документа, используйте ссылку http://essuir.sumdu.edu.ua/handle/123456789/31453
APA, Harvard, Vancouver, ISO, and other styles
10

Damamme, Gilles. "Contribution à la théorie hydrodynamique de l'onde de détonation dans les explosifs condensés." Poitiers, 1987. http://www.theses.fr/1987POIT2034.

Full text
Abstract:
Etude des proprietes hydrodynamiques des ondes de detonation utilisant trois niveaux successifs de modelisation. Dans l'hypothese d'une zone de reactions infiniment mince, on s'interesse a l'acceleration d'une onde de detonation convergente. Lorsque la zone de reaction est tres petite et que l'onde de detonation est stable et suivie d'une detente, on montre qu'elle est regie par une relation celerite-courbure. On propose un modele de zone de reactions ainsi qu'une modelisation de l'amorcage par choc de la detonation faisant intervenir des discontinuites partiellement reactives
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Perfect fluid"

1

United States. National Aeronautics and Space Administration., ed. A continuing search for a near-perfect numerical flux scheme. [Washington, DC]: National Aeronautics and Space Administration, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gnoffo, Peter A. An upwind-biased, point-implicit relaxation algorithm for viscous, compressible perfect-gas flows. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gnoffo, Peter A. An upwind-biased, point-implicit relaxation algorithm for viscous, compressible perfect-gas flows. Hampton, Va: Langley Research Center, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gnoffo, Peter A. An upwind-biased, point-implicit relaxation algorithm for viscous, compressible perfect-gas flows. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tatum, Kenneth E. Computation of thermally perfect properties of oblique shock waves. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Center, Langley Research, ed. Computation of thermally perfect properties of oblique shock waves: Under contract NAS1-19000. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Center, Langley Research, ed. Computation of thermally perfect properties of oblique shock waves: Under contract NAS1-19000. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Perfect incompressible fluids. Oxford: Clarendon Press, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rowlingson, Robert Richard. A class of perfect fluids in general relativity. Birmingham: Aston University. Department of Computing Science and Applied Mathematics, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Escudier, Marcel. Fluids and fluid properties. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198719878.003.0002.

Full text
Abstract:
In this chapter it is shown that the differences between solids, liquids, and gases have to be explained at the level of the molecular structure. The continuum hypothesis makes it possible to characterise any fluid and ultimately analyse its response to pressure difference Δ‎p and shear stress τ‎ through macroscopic physical properties, dependent only upon absolute temperature T and pressure p, which can be defined at any point in a fluid. The most important of these physical properties are density ρ‎ and viscosity μ‎, while some problems are also influenced by compressibility, vapour pressure pV, and surface tension σ‎. It is also shown that the bulk modulus of elasticity Ks is a measure of fluid compressibility which determines the speed at which sound propagates through a fluid. The perfect-gas law is introduced and an equation derived for the soundspeed c.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Perfect fluid"

1

Rieutord, Michel. "Flows of Perfect Fluids." In Fluid Dynamics, 71–109. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09351-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chéret, Roger. "Jump Relations in a Perfect Fluid." In Detonation of Condensed Explosives, 27–61. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-9284-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ahsan, Zafar. "Lanczos Potential and Perfect Fluid Spacetimes." In The Potential of Fields in Einstein's Theory of Gravitation, 67–80. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8976-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Deville, Michel O. "Plane Irrotational Flows of Perfect Fluid." In An Introduction to the Mechanics of Incompressible Fluids, 137–74. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04683-4_6.

Full text
Abstract:
AbstractThis chapter treats the theory of irrotational flows of perfect fluids by the use of complex variables. The theory is based on a complex velocity and the related concepts like circulation, flow rate, complex potential. Several simple examples are given. More elaborated is the flow around a circular cylinder with and without circulation . Using conformal mapping and especially the Joukowski transformation, it is possible to consider an aerodynamics application, namely the flow around an airfoil. Blasius theorem allows for the computation of the forces and moment generated by the flow around an immersed body. It is applied to the case of the cylinder and Joukowski profile.
APA, Harvard, Vancouver, ISO, and other styles
5

Skea, Jim E. F. "The Kasner Condition and Inhomogeneous Perfect Fluid Cosmologies." In On Einstein’s Path, 449–64. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1422-9_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Senovilla, José M. M. "Stationary and axisymmetric perfect-fluid solutions to Einstein's equations." In Rotating Objects and Relativistic Physics, 73–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/3-540-57364-x_202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aguiar, Paulo, and Paulo Crawford. "Axially Symmetric Cosmological Models with Perfect Fluid and Cosmological Constant." In The Non-Sleeping Universe, 299–300. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4497-1_72.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gao, Sijie. "A General Maximum Entropy Principle for Self-Gravitating Perfect Fluid." In Springer Proceedings in Physics, 359–65. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20046-0_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Galper, A., and T. Miloh. "On the motion of a non-rigid sphere in a perfect fluid." In Theoretical, Experimental, and Numerical Contributions to the Mechanics of Fluids and Solids, 627–42. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9229-2_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Melnikov, V. N., and V. R. Gavrilov. "2-Component Cosmological Models with Perfect Fluid and Scalar Field: Exact Solutions." In The Gravitational Constant: Generalized Gravitational Theories and Experiments, 247–68. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2242-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Perfect fluid"

1

Xu, Kun. "Does perfect Riemann solver exist?" In 14th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Palese, M., and M. Capone. "Perfect fluid geometries in Rastall’s cosmology." In Proceedings of the MG15 Meeting on General Relativity. WORLD SCIENTIFIC, 2022. http://dx.doi.org/10.1142/9789811258251_0053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schäfer, Thomas, and Marvin L. Marshak. "In search of the perfect fluid." In 10TH CONFERENCE ON THE INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS. AIP, 2009. http://dx.doi.org/10.1063/1.3293917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Boonserm, Petarpa, Kunlapat Sansook, and Tritos Ngampitipan. "Quasinormal modes of perfect fluid spheres." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2020 (MATHTECH 2020): Sustainable Development of Mathematics & Mathematics in Sustainability Revolution. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0075377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Goliath, Martin. "Self-similar spherically symmetric perfect-fluid models." In GENERAL RELATIVITY AND RELATIVISTIC ASTROPHYSICS. ASCE, 1999. http://dx.doi.org/10.1063/1.1301577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Deng, Xiaogang, Fenggan Zhuang, and Meiliang Mao. "On low Mach number perfect gas flow calculations." In 14th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Olsen, M., and D. Prabhu. "Application of OVERFLOW to hypersonic perfect gas flowfields." In 15th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-2664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

WYLLEMAN, LODE, and NORBERT Van den BERGH. "CLASSIFICATION RESULTS ON PURELY MAGNETIC PERFECT FLUID MODELS." In Proceedings of the MG11 Meeting on General Relativity. World Scientific Publishing Company, 2008. http://dx.doi.org/10.1142/9789812834300_0373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chambrion, T., and A. Munnier. "Generic 3D swimmers in a perfect fluid are controllable." In 2012 American Control Conference - ACC 2012. IEEE, 2012. http://dx.doi.org/10.1109/acc.2012.6315435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abishev, M., K. Boshkayev, H. Quevedo, and S. Toktarbay. "A perfect-fluid spacetime for a slightly deformed mass." In Twelfth Asia-Pacific International Conference on Gravitation, Astrophysics, and Cosmology. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814759816_0048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography