To see the other types of publications on this topic, follow the link: Perfect fluid.

Journal articles on the topic 'Perfect fluid'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Perfect fluid.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Müller, Berndt. "The “perfect” fluid quenches jets almost perfectly." Progress in Particle and Nuclear Physics 62, no. 2 (April 2009): 551–55. http://dx.doi.org/10.1016/j.ppnp.2008.12.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhuk, A. "Perfect fluid wormholes." Physics Letters A 176, no. 3-4 (May 1993): 176–78. http://dx.doi.org/10.1016/0375-9601(93)91030-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bergh, N. Van den, and J. Skea. "Inhomogeneous perfect fluid cosmologies." Classical and Quantum Gravity 9, no. 2 (February 1, 1992): 527–32. http://dx.doi.org/10.1088/0264-9381/9/2/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sklavenites, D. "Stationary perfect fluid cylinders." Classical and Quantum Gravity 16, no. 8 (July 20, 1999): 2753–61. http://dx.doi.org/10.1088/0264-9381/16/8/313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nilsson, Ulf S., Claes Uggla, and Mattias Marklund. "Static perfect fluid cylinders." Journal of Mathematical Physics 39, no. 6 (June 1998): 3336–46. http://dx.doi.org/10.1063/1.532258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rahaman, F., K. K. Nandi, A. Bhadra, M. Kalam, and K. Chakraborty. "Perfect fluid dark matter." Physics Letters B 694, no. 1 (October 2010): 10–15. http://dx.doi.org/10.1016/j.physletb.2010.09.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Carot, J., and A. M. Sintes. "Homothetic perfect fluid spacetimes." Classical and Quantum Gravity 14, no. 5 (May 1, 1997): 1183–205. http://dx.doi.org/10.1088/0264-9381/14/5/021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Iegurnov, O. O., and M. P. Korkina. "Cosmological model with perfect fluid." Astronomical School’s Report 8, no. 1 (2012): 66–70. http://dx.doi.org/10.18372/2411-6602.08.1066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alvarenga, F. G., J. C. Fabris, N. A. Lemos, and G. A. Monerat. "Quantum Cosmological Perfect Fluid Models." General Relativity and Gravitation 34, no. 5 (May 2002): 651–63. http://dx.doi.org/10.1023/a:1015986011295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Eskola, Kari J. "Nearly perfect quark–gluon fluid." Nature Physics 15, no. 11 (August 12, 2019): 1111–12. http://dx.doi.org/10.1038/s41567-019-0643-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

den Bergh, Norbert Van. "Conformal Einstein Perfect Fluid Spacetimes." Journal of Physics: Conference Series 314 (September 22, 2011): 012022. http://dx.doi.org/10.1088/1742-6596/314/1/012022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Villas da Rocha, J. F., Anzhong Wang, and N. O. Santos. "Gravitational collapse of perfect fluid." Physics Letters A 255, no. 4-6 (May 1999): 213–20. http://dx.doi.org/10.1016/s0375-9601(99)00181-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Barrow, John D., and José P. Mimoso. "Perfect fluid scalar-tensor cosmologies." Physical Review D 50, no. 6 (September 15, 1994): 3746–54. http://dx.doi.org/10.1103/physrevd.50.3746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Chinea, F. J. "A differentially rotating perfect fluid." Classical and Quantum Gravity 10, no. 12 (December 1, 1993): 2539–44. http://dx.doi.org/10.1088/0264-9381/10/12/013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Estevez-Delgado, Joaquin, Jose Vega Cabrera, Jorge Mauricio Paulin-Fuentes, Joel Arturo Rodriguez Ceballos, and Modesto Pineda Duran. "A charged perfect fluid solution." Modern Physics Letters A 35, no. 15 (March 12, 2020): 2050120. http://dx.doi.org/10.1142/s0217732320501205.

Full text
Abstract:
A static and spherically symmetric stellar model is described by a perfect charged fluid. Its construction is done using the solution of the Einstein–Maxwell equations for which we specify the temporal metric and the electric field which is a monotonic increasing function null in the center. The density, pressure and speed of sound turn out to be regular functions, positive and monotonic decreasing as function of the radial distance. Also, the speed of sound is lower than the speed of light, that is to say, it does not violate the condition of causality. The value of compactness [Formula: see text], so the model is useful to represent neutron stars of quark stars. In a complementary manner, we report the physical values when describing a star of mass [Formula: see text] and radius [Formula: see text], in such case [Formula: see text], and given the presence of the charge, the interval for the central density [Formula: see text].
APA, Harvard, Vancouver, ISO, and other styles
16

Lorenz-Petzold, D. "Higher-dimensional perfect fluid cosmologies." Physics Letters B 153, no. 3 (March 1985): 134–36. http://dx.doi.org/10.1016/0370-2693(85)91414-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

De, Uday Chand, Sameh Shenawy, Abdallah Abdelhameed Syied, and Nasser Bin Turki. "Conformally Flat Pseudoprojective Symmetric Spacetimes in f R , G Gravity." Advances in Mathematical Physics 2022 (March 25, 2022): 1–7. http://dx.doi.org/10.1155/2022/3096782.

Full text
Abstract:
Sufficient conditions on a pseudoprojective symmetric spacetime PPS n whose Ricci tensor is of Codazzi type to be either a perfect fluid or Einstein spacetime are given. Also, it is shown that a PPS n is Einstein if its Ricci tensor is cyclic parallel. Next, we illustrate that a conformally flat PPS n spacetime is of constant curvature. Finally, we investigate conformally flat PPS 4 spacetimes and conformally flat PPS 4 perfect fluids in f R , G theory of gravity, and amongst many results, it is proved that the isotropic pressure and the energy density of conformally flat perfect fluid PPS 4 spacetimes are constants and such perfect fluid behaves like a cosmological constant. Further, in this setting, we consider some energy conditions.
APA, Harvard, Vancouver, ISO, and other styles
18

KIESS, THOMAS E. "A NONSINGULAR PERFECT FLUID CLASSICAL LEPTON MODEL OF ARBITRARILY SMALL RADIUS." International Journal of Modern Physics D 22, no. 14 (December 2013): 1350088. http://dx.doi.org/10.1142/s0218271813500880.

Full text
Abstract:
We exhibit a classical lepton model based on a perfect fluid that reproduces leptonic charges and masses in arbitrarily small volumes without metric singularities or pressure discontinuities. This solution is the first of this kind to our knowledge, because to date the only classical general relativistic models that have reproduced leptonic charges and masses in arbitrarily small volumes are based on imperfect (anisotopic) fluids or perfect fluids with electric field discontinuities. We use a Maxwell–Einstein exact metric for a spherically symmetric static perfect fluid in a region in which the pressure vanishes at a boundary, beyond which the metric is of the Reissner–Nordström form. This construction models lepton mass and charge in the limit as the boundary → 0.
APA, Harvard, Vancouver, ISO, and other styles
19

French, John. "Perfect fluid model with g = 2." Physics Essays 34, no. 2 (June 17, 2021): 224–26. http://dx.doi.org/10.4006/0836-1398-34.2.224.

Full text
Abstract:
A perfect fluid model with a shell of charge is presented which yields g = 2 for low angular velocity. This model is not intended to represent a classical model of the electron but to show that a simple model based on equations consistent with special relativity can yield a value of g = 2.
APA, Harvard, Vancouver, ISO, and other styles
20

De, U. C., S. K. Chaubey, and S. Shenawy. "Perfect fluid spacetimes and Yamabe solitons." Journal of Mathematical Physics 62, no. 3 (March 1, 2021): 032501. http://dx.doi.org/10.1063/5.0033967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

De, Uday, Carlo Mantica, and Young Suh. "Perfect fluid spacetimes and gradient solitons." Filomat 36, no. 3 (2022): 829–42. http://dx.doi.org/10.2298/fil2203829d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Potapov, A. A., G. M. Garipova, and K. K. Nandi. "Perfect fluid dark matter model revisited." Proceedings of Tomsk State University of Control Systems and Radioelectronics 19, no. 4 (2016): 46–48. http://dx.doi.org/10.21293/1818-0442-2016-19-4-46-48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Bazhul, G. T., and B. V. Kuksenko. "A crack in a perfect fluid." Moscow University Mechanics Bulletin 63, no. 3 (June 2008): 68–72. http://dx.doi.org/10.3103/s0027133008030035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Avilés, Luis, Patricio Mella, and Patricio Salgado. "5D EChS Cosmology with Perfect Fluid." Journal of Physics: Conference Series 720 (May 2016): 012015. http://dx.doi.org/10.1088/1742-6596/720/1/012015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

CHANDRASEKHAR, S. "Massless particles from a perfect fluid." Nature 333, no. 6173 (June 1988): 506. http://dx.doi.org/10.1038/333506b0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Ivanov, B. V. "On rigidly rotating perfect fluid cylinders." Classical and Quantum Gravity 19, no. 14 (July 3, 2002): 3851–61. http://dx.doi.org/10.1088/0264-9381/19/14/323.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hall, G. S., and M. T. Patel. "Projective symmetry in perfect fluid spacetimes." Classical and Quantum Gravity 19, no. 8 (April 2, 2002): 2319–22. http://dx.doi.org/10.1088/0264-9381/19/8/318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Szereszewski, A., and J. Tafel. "Perfect fluid spacetimes with two symmetries." Classical and Quantum Gravity 21, no. 7 (March 8, 2004): 1755–59. http://dx.doi.org/10.1088/0264-9381/21/7/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

ZLOSHCHASTIEV, KONSTANTIN G. "MASS OF PERFECT FLUID BLACK SHELLS." Modern Physics Letters A 13, no. 18 (June 14, 1998): 1419–25. http://dx.doi.org/10.1142/s0217732398001492.

Full text
Abstract:
The spherically symmetric singular perfect fluid shells are considered when their radii are equal to the event horizon (the black shells). We study their observable masses, depending at least on the three parameters, viz. the square speed of sound in the shell, instantaneous radial velocity of the shell at a moment when it reaches the horizon, and integration constant related to surface mass density. We discuss the features of black shells depending on the equation of state.
APA, Harvard, Vancouver, ISO, and other styles
30

Ahsan, Zafar, and Mohd Bilal. "Lanczos Potential and Perfect Fluid Spacetimes." International Journal of Theoretical Physics 50, no. 6 (January 28, 2011): 1752–68. http://dx.doi.org/10.1007/s10773-011-0684-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Fišer, Kurt, Kjell Rosquist, and Claes Uggla. "Bianchi type V perfect fluid cosmologies." General Relativity and Gravitation 24, no. 6 (June 1992): 679–86. http://dx.doi.org/10.1007/bf00760434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Carot, J., and J. da Costa. "Perfect fluid spacetimes admitting curvature collineations." General Relativity and Gravitation 23, no. 9 (September 1991): 1057–69. http://dx.doi.org/10.1007/bf00756866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

HUANG, WUNG-HONG, and I.-CHIN WANG. "QUANTUM PERFECT-FLUID KALUZA–KLEIN COSMOLOGY." International Journal of Modern Physics A 21, no. 22 (September 10, 2006): 4463–77. http://dx.doi.org/10.1142/s0217751x06031442.

Full text
Abstract:
The perfect-fluid cosmology in the (1+d+D)-dimensional Kaluza–Klein space–times for an arbitrary barotropic equation of state p = (γ-1)ρ is quantized by using the Schutz's variational formalism. We make efforts in the mathematics to solve the problems in two cases. In the first case of the stiff fluid γ = 2 we exactly solve the Wheeler–DeWitt equation when the d space is flat. After the superposition of the solutions the wave-packet function is obtained exactly. We analyze the Bohmian trajectories of the final-stage wave-packet functions and show that the scale functions of the flat d spaces and the compact D spaces will eventually evolve into the nonzero finite values. In the second case of γ≈2, we use the approximated wave function in the Wheeler–DeWitt equation to find the analytic forms of the final-stage wave-packet functions. After analyzing the Bohmian trajectories we show that the flat d spaces will be expanding forever while the scale function of the contracting D spaces would not become zero within finite time. Our investigations indicate that the quantum effect in the quantum perfect-fluid cosmology could prevent the extra compact D spaces in the Kaluza–Klein theory from collapsing into a singularity or that the "crack-of-doom" singularity of the extra compact dimensions is made to occur at t = ∞.
APA, Harvard, Vancouver, ISO, and other styles
34

Thomas, John E. "Spin drag in a perfect fluid." Nature 472, no. 7342 (April 2011): 172–73. http://dx.doi.org/10.1038/472172a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

García, Alberto, and Jorge Tellez. "Stationary axisymmetric charged perfect fluid typeDsolutions." Journal of Mathematical Physics 33, no. 6 (June 1992): 2254–57. http://dx.doi.org/10.1063/1.529647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Duan, Yan-zhi. "Time-machine in perfect fluid cosmologies." Journal of Shanghai Jiaotong University (Science) 14, no. 4 (August 2009): 510–12. http://dx.doi.org/10.1007/s12204-009-0510-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sharif, Muhammad, and Ghulam Abbas. "Charged Perfect Fluid Cylindrical Gravitational Collapse." Journal of the Physical Society of Japan 80, no. 10 (October 15, 2011): 104002. http://dx.doi.org/10.1143/jpsj.80.104002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Mars, Marc, and José M. M. Senovilla. "Non-diagonal separable perfect-fluid spacetimes." Classical and Quantum Gravity 14, no. 1 (January 1, 1997): 205–26. http://dx.doi.org/10.1088/0264-9381/14/1/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Bergh, N. Van den. "The shear-free perfect fluid conjecture." Classical and Quantum Gravity 16, no. 1 (January 1, 1999): 117–29. http://dx.doi.org/10.1088/0264-9381/16/1/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hajj‐Boutros, J. "On spherically symmetric perfect fluid solutions." Journal of Mathematical Physics 26, no. 4 (April 1985): 771–73. http://dx.doi.org/10.1063/1.526565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Chakraborty, S. K., and N. Bandyopadhyaya. "Charged perfect fluid in rigid rotation." Journal of Mathematical Physics 26, no. 7 (July 1985): 1752–54. http://dx.doi.org/10.1063/1.526886.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Coll, Bartolomé, and Joan Josep Ferrando. "Thermodynamic perfect fluid. Its Rainich theory." Journal of Mathematical Physics 30, no. 12 (December 1989): 2918–22. http://dx.doi.org/10.1063/1.528477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Estevez-Delgado, Joaquin, Jose Vega Cabrera, Joel Arturo Rodriguez Ceballos, Arthur Cleary-Balderas, and Mauricio Paulin-Fuentes. "An interior solution with perfect fluid." Modern Physics Letters A 35, no. 17 (March 20, 2020): 2050141. http://dx.doi.org/10.1142/s0217732320501412.

Full text
Abstract:
Starting from the construction of a solution for Einstein’s equations with a perfect fluid for a static spherically symmetric spacetime, we present a model for stars with a compactness rate of [Formula: see text]. The model is physically acceptable, that is to say, its geometry is non-singular and does not have an event horizon, pressure and speed of sound are bounded functions, positive and monotonically decreasing as function of the radial coordinate, also the speed of sound is lower than the speed of light. While it is shown that the adiabatic index [Formula: see text], which guarantees the stability of the solution. In a complementary manner, numerical data are presented considering the star PSR J0737-3039A with observational mass of [Formula: see text], for the value of compactness [Formula: see text], which implies the radius [Formula: see text] and the range of the density [Formula: see text] [Formula: see text], where [Formula: see text] and [Formula: see text] are the central density and the surface density, respectively. This range is consistent with the expected values; as such, the model presented allows to describe this type of stars.
APA, Harvard, Vancouver, ISO, and other styles
44

Ootsuka, Takayoshi, Muneyuki Ishida, Erico Tanaka, and Ryoko Yahagi. "Variational principle of relativistic perfect fluid." Classical and Quantum Gravity 33, no. 24 (November 17, 2016): 245007. http://dx.doi.org/10.1088/0264-9381/33/24/245007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Senovilla, J. M. M. "New LRS perfect-fluid cosmological models." Classical and Quantum Gravity 4, no. 5 (September 1, 1987): 1449–55. http://dx.doi.org/10.1088/0264-9381/4/5/037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Jackiw, R., V. P. Nair, S.-Y. Pi, and A. P. Polychronakos. "Perfect fluid theory and its extensions." Journal of Physics A: Mathematical and General 37, no. 42 (October 7, 2004): R327—R432. http://dx.doi.org/10.1088/0305-4470/37/42/r01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gleiser, Reinaldo J., and Mario C. Diaz. "Perfect-fluid cosmologies with extra dimensions." Physical Review D 37, no. 12 (June 15, 1988): 3761–64. http://dx.doi.org/10.1103/physrevd.37.3761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sahdev, Deshdeep. "Perfect-fluid higher-dimensional cosmologies. II." Physical Review D 39, no. 10 (May 15, 1989): 3155–58. http://dx.doi.org/10.1103/physrevd.39.3155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sahdev, Deshdeep. "Erratum: Perfect-fluid higher-dimensional cosmologies." Physical Review D 39, no. 2 (January 15, 1989): 697. http://dx.doi.org/10.1103/physrevd.39.697.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Nayak, B. K., and G. B. Bhuyan. "Bianchi type-V perfect fluid models." General Relativity and Gravitation 18, no. 1 (January 1986): 79–91. http://dx.doi.org/10.1007/bf00843752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography