Academic literature on the topic 'Perfect nash equilibrium in subgames'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Perfect nash equilibrium in subgames.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Perfect nash equilibrium in subgames"
Demeze-Jouatsa, Ghislain-Herman. "A complete folk theorem for finitely repeated games." International Journal of Game Theory 49, no. 4 (September 28, 2020): 1129–42. http://dx.doi.org/10.1007/s00182-020-00735-z.
Full textGibbons, Robert. "An Introduction to Applicable Game Theory." Journal of Economic Perspectives 11, no. 1 (February 1, 1997): 127–49. http://dx.doi.org/10.1257/jep.11.1.127.
Full textAbreu, Dilip, Benjamin Brooks, and Yuliy Sannikov. "Algorithms for Stochastic Games With Perfect Monitoring." Econometrica 88, no. 4 (2020): 1661–95. http://dx.doi.org/10.3982/ecta14357.
Full textWeber, Thomas A. "Quantifying Commitment in Nash Equilibria." International Game Theory Review 21, no. 02 (June 2019): 1940011. http://dx.doi.org/10.1142/s0219198919400115.
Full textGóngora, Pedro A., and David A. Rosenblueth. "A symbolic shortest path algorithm for computing subgame-perfect Nash equilibria." International Journal of Applied Mathematics and Computer Science 25, no. 3 (September 1, 2015): 577–96. http://dx.doi.org/10.1515/amcs-2015-0043.
Full textCorrea, José, Jasper de Jong, Bart de Keijzer, and Marc Uetz. "The Inefficiency of Nash and Subgame Perfect Equilibria for Network Routing." Mathematics of Operations Research 44, no. 4 (November 2019): 1286–303. http://dx.doi.org/10.1287/moor.2018.0968.
Full textOhnishi, Kazuhiro. "Non-altruistic Equilibria." Indian Economic Journal 67, no. 3-4 (December 2019): 185–95. http://dx.doi.org/10.1177/0019466220953124.
Full textCOULOMB, JEAN MICHEL, and VLADIMIR GAITSGORY. "ON A CLASS OF NASH EQUILIBRIA WITH MEMORY STRATEGIES FOR NONZERO-SUM DIFFERENTIAL GAMES." International Game Theory Review 02, no. 02n03 (June 2000): 173–92. http://dx.doi.org/10.1142/s021919890000010x.
Full textCaruso, Francesco, Maria Carmela Ceparano, and Jacqueline Morgan. "Subgame Perfect Nash Equilibrium: A Learning Approach via Costs to Move." Dynamic Games and Applications 9, no. 2 (July 28, 2018): 416–32. http://dx.doi.org/10.1007/s13235-018-0277-3.
Full textLi, Xianghui, Wei Zheng, and Yang Li. "An axiomatic and non-cooperative approach to the multi-step Shapley value." RAIRO - Operations Research 55, no. 3 (May 2021): 1541–57. http://dx.doi.org/10.1051/ro/2021073.
Full textDissertations / Theses on the topic "Perfect nash equilibrium in subgames"
Del, Fiori Diogo. "Industrialização do Brasil na década de 1930 : uma aplicação com teoria dos jogos." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2011. http://hdl.handle.net/10183/40254.
Full textThis study proposes to examine the industrialization of Brazil in the context of economic and political changes in the first government of Getulio Vargas, from 1930 until 1945. In the literature of the Brazilian economy with the coming of industry in Brazil, two visions are in opposition: on one hand, industrialization as a byproduct of government intervention in the coffee sector, on the other, deliberately promoted industrialization by the government. Based on an analysis of equilibrium in a dynamic game of imperfect information, rationality is evident from the creation of institutions for industrial development in the 1930s. The result shows the changes of equilibrium in which Brazil went from the 1930s, with changes in the tax structure, educational, financial and labor relations, that institutional change created fertile ground for the rise of industrialization that characterized the first Vargas government and also shows the intention of this government, when one observes the transformation of the tax system, so be immune to external economic fluctuations and also educational changes, which came to encourage the primary, secondary and technical vocational, measures designed to meet the new economic landscape of Brazil. Another point that confirms the outcome of the Nash equilibrium is perfect in subgame the loss of the importance of the coffee sector in the period that includes the nineteenth century until the end of the first Vargas government, where the evidence shows that farmers had, since the decade of 1930, to diversify investment trends due to the loss of income to the grower industry.
Dimitry, El Baghdady Johan. "Equilibrium Strategies for Time-Inconsistent Stochastic Optimal Control of Asset Allocation." Thesis, KTH, Optimeringslära och systemteori, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202520.
Full textVi har undersökt problemet som uppstår vid konstruktion av effektiva strategier för tidskontinuerlig dynamisk tillgångsallokering. Tillvägagångsättet för konstruktionen av strategierna har baserats på stokastisk optimal styrteori där optimal transaktionsstyrning beräknas. Två matematiska problem formulerades och betraktades: Modell I, en metod där dynamisk programmering används för att maximera en isoelastisk funktional med avseende på given underliggande portföljdynamik. Modell II, en mer sofistikerad metod som tar i beaktning en tidsinkonsistent och tillståndsberoende avvägning mellan förväntad avkastning och varians. Till skillnad från de optimala styrvariablerna för Modell I som satisfierar Hamilton-Jacobi-Bellmans (HJB) partiella differentialekvation, konstrueras de effektiva strategierna för Modell II genom att erhålla subgame perfekt Nashjämvikt. Dessa satisfierar den utökade HJB ekvationen som introduceras av Björk et al. i [1]. Vidare har övergripande exekveringsalgoritmer skapats med hjälp av resultaten och ett flertal simuleringar har producerats. Resultaten avslöjar att optimalitet för Modell I erhålls genom att hålla en fix portföljbalans mellan de riskfria och riskfyllda tillgångarna, genom hela investeringsperioden. Medan för Modell II föreslås en kontinuerlig likvidering av de riskfyllda tillgångarna i takt med, men inte proportionerligt mot, tidens gång. Slutsatsen är att det finns en tydlig fördel med användandet av Modell II eftersom att resultaten påvisar en påtagligt högre grad av effektivitet samt att modellen faktiskt tar hänsyn till tidsinkonsistens.
Addo, Sandra E. "A Game-Theoretic Framework To Competitive Individual Targeting." University of Akron / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=akron1258403779.
Full textMing, Hui Yang, and Zhang Lei. "The Audit Pricing Decisions for Accounting Firms in China : A Case Study from RSM China." Thesis, Umeå universitet, Handelshögskolan vid Umeå universitet, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-45314.
Full textCarvalho, Luís. "Three essays on game theory and bargaining." Doctoral thesis, NSBE - UNL, 2014. http://hdl.handle.net/10362/11851.
Full textEquilibrium Outcomes of Repeated Two-Person Zero-Sum Games - We consider discounted repeated two-person zero-sum games. We show that even when players have different discount factors (in which case the repeated game is not a zero-sum game), an outcome is subgame perfect if and only if all of its components are Nash equilibria of the stage game. This implies that in all subgame perfect equilibria, each player's payoff is equal to his minmax payoff. In conclusion, the competitive nature of two-player zero-sum games is not altered when the game is repeated.
A Constructive Proof of the Nash Bargaining Solution - We consider the classical axiomatic Nash bargaining framework and propose a constructive proof of its solution. On the first part of this paper we prove Nash’s solution is the result of a maximization problem; on the second part, through the properties of maximand’s indifference curves we derive that it must be equal to xy.
Equilibria and Outcomes in Multiplayer Bargaining - Multiplayer bargaining is a game in which all possible divisions are equilibrium outcomes. This paper presents the classical subgame perfect equilibria strategies and analyses their weak robustness, namely the use of weakly dominated strategies. The paper then develops a refined equilibrium concept, based on trembling hand perfection, in order to overcome such weakness. Concluding that none of the classical equilibrium strategies survives the imposition of the extra robustness and, albeit using more complex strategies, the equilibrium outcomes don't change.
Book chapters on the topic "Perfect nash equilibrium in subgames"
Gintis, Herbert. "Extensive Form Rationalizability." In The Bounds of Reason. Princeton University Press, 2014. http://dx.doi.org/10.23943/princeton/9780691160849.003.0005.
Full textBresson, Alain. "The Greek Cities and the Market." In The Making of the Ancient Greek Economy, translated by Steven Rendall, 415–38. Princeton University Press, 2018. http://dx.doi.org/10.23943/princeton/9780691183411.003.0015.
Full textConference papers on the topic "Perfect nash equilibrium in subgames"
Sabbaghi, Mostafa, and Sara Behdad. "Design for Repair: A Game Between Manufacturer and Independent Repair Service Provider." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67986.
Full textKroer, Christian, Gabriele Farina, and Tuomas Sandholm. "Smoothing Method for Approximate Extensive-Form Perfect Equilibrium." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/42.
Full textHsin, Pei-Han. "Forecasting Taiwan's GDP by the novel nash nonlinear grey Bernoulli model with trembling-hand perfect equilibrium." In INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS 2013 (ICMSS2013): Proceedings of the International Conference on Mathematical Sciences and Statistics 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4823908.
Full textBagheri, Mostafa, Alexander Bertino, and Peiman Naseradinmousavi. "Experimental and Analytical Nonzero-Sum Differential Game-Based Control of a 7-DOF Robotic Manipulator." In ASME 2020 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/dscc2020-3114.
Full textLiu, Chunsheng, and Mark V. Trevorrow. "Optimal Strategy for Multiple Evaders Against an Agile Pursuer." In ASME 2019 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/dscc2019-8924.
Full text