Journal articles on the topic 'Perfusable'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Perfusable.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Forgacs, Gabor. "Perfusable vascular networks." Nature Materials 11, no. 9 (2012): 746–47. http://dx.doi.org/10.1038/nmat3412.
Full textTian, Ye, and Liqiu Wang. "Microfiber-Patterned Versatile Perfusable Vascular Networks." Micromachines 14, no. 12 (2023): 2201. http://dx.doi.org/10.3390/mi14122201.
Full textFong, EL, M. Santoro, MC Farach-Carson, FK Kasper, and AG Mikos. "Tissue engineering perfusable cancer models." Current Opinion in Chemical Engineering 3 (February 2014): 112–17. http://dx.doi.org/10.1016/j.coche.2013.12.008.
Full textTran, Reginald, Byungwook Ahn, David R. Myers, et al. "Simplified prototyping of perfusable polystyrene microfluidics." Biomicrofluidics 8, no. 4 (2014): 046501. http://dx.doi.org/10.1063/1.4892035.
Full textBogorad, Max I., Jackson DeStefano, Johan Karlsson, Andrew D. Wong, Sharon Gerecht, and Peter C. Searson. "Review: in vitro microvessel models." Lab on a Chip 15, no. 22 (2015): 4242–55. http://dx.doi.org/10.1039/c5lc00832h.
Full textLiu, Juan, Huaiyuan Zheng, Patrina Poh, Hans-Günther Machens, and Arndt Schilling. "Hydrogels for Engineering of Perfusable Vascular Networks." International Journal of Molecular Sciences 16, no. 7 (2015): 15997–6016. http://dx.doi.org/10.3390/ijms160715997.
Full textŠtumberger, Gabriela, and Boštjan Vihar. "Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices." Materials 11, no. 12 (2018): 2529. http://dx.doi.org/10.3390/ma11122529.
Full textHe, Jiankang, Lin Zhu, Yaxiong Liu, Dichen Li, and Zhongmin Jin. "Sequential assembly of 3D perfusable microfluidic hydrogels." Journal of Materials Science: Materials in Medicine 25, no. 11 (2014): 2491–500. http://dx.doi.org/10.1007/s10856-014-5270-9.
Full textXu, Peidi, Ruoxiao Xie, Yupeng Liu, Guoan Luo, Mingyu Ding, and Qionglin Liang. "Bioinspired Microfibers with Embedded Perfusable Helical Channels." Advanced Materials 29, no. 34 (2017): 1701664. http://dx.doi.org/10.1002/adma.201701664.
Full textSkylar-Scott, Mark A., Sebastien G. M. Uzel, Lucy L. Nam, et al. "Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels." Science Advances 5, no. 9 (2019): eaaw2459. http://dx.doi.org/10.1126/sciadv.aaw2459.
Full textZhang, Yahui, Yin Yu, Adil Akkouch, Amer Dababneh, Farzaneh Dolati, and Ibrahim T. Ozbolat. "In vitro study of directly bioprinted perfusable vasculature conduits." Biomaterials Science 3, no. 1 (2015): 134–43. http://dx.doi.org/10.1039/c4bm00234b.
Full textLei, Dong, Yang Yang, Zenghe Liu, et al. "3D printing of biomimetic vasculature for tissue regeneration." Materials Horizons 6, no. 6 (2019): 1197–206. http://dx.doi.org/10.1039/c9mh00174c.
Full textLiu, Yupeng, Peidi Xu, Zhe Liang, et al. "Hydrogel microfibers with perfusable folded channels for tissue constructs with folded morphology." RSC Advances 8, no. 42 (2018): 23475–80. http://dx.doi.org/10.1039/c8ra04192j.
Full textPiccone, Ashley. "Creating perfusable channels in tissue with embedded printing." Scilight 2022, no. 3 (2022): 031108. http://dx.doi.org/10.1063/10.0009389.
Full textMenon, Nishanth Venugopal, Hui Min Tay, Soon Nan Wee, King Ho Holden Li, and Han Wei Hou. "Micro-engineered perfusable 3D vasculatures for cardiovascular diseases." Lab on a Chip 17, no. 17 (2017): 2960–68. http://dx.doi.org/10.1039/c7lc00607a.
Full textLiu, Zhou, Yuyan Zhang, Tiyun Yang, et al. "Soft ionic devices by perfusable all-hydrogel microfluidics." Journal of Materials Chemistry C 8, no. 7 (2020): 2320–25. http://dx.doi.org/10.1039/c9tc05639d.
Full textGui, Liqiong, and Laura E. Niklason. "Vascular tissue engineering: building perfusable vasculature for implantation." Current Opinion in Chemical Engineering 3 (February 2014): 68–74. http://dx.doi.org/10.1016/j.coche.2013.11.004.
Full textCampbell, Rachel, Karina A. Hernandez, Tatiana Boyko, et al. "Fabrication of perfusable microvessels within tissue engineered constructs." Journal of the American College of Surgeons 217, no. 3 (2013): S143—S144. http://dx.doi.org/10.1016/j.jamcollsurg.2013.07.337.
Full textHan, Li-Hsin. "Fabricating a new heart: One step closer to reality." Science Translational Medicine 11, no. 490 (2019): eaax4870. http://dx.doi.org/10.1126/scitranslmed.aax4870.
Full textXiao, Yun, Boyang Zhang, Haijiao Liu, et al. "Microfabricated perfusable cardiac biowire: a platform that mimics native cardiac bundle." Lab Chip 14, no. 5 (2014): 869–82. http://dx.doi.org/10.1039/c3lc51123e.
Full textOrtega, Ilida, Lindsey Dew, Adam G. Kelly, Chuh K. Chong, Sheila MacNeil, and Frederik Claeyssens. "Fabrication of biodegradable synthetic perfusable vascular networks via a combination of electrospinning and robocasting." Biomaterials Science 3, no. 4 (2015): 592–96. http://dx.doi.org/10.1039/c4bm00418c.
Full textTao, Tingting, Yaqing Wang, Wenwen Chen, et al. "Engineering human islet organoids from iPSCs using an organ-on-chip platform." Lab on a Chip 19, no. 6 (2019): 948–58. http://dx.doi.org/10.1039/c8lc01298a.
Full textLiu, Yupeng, Peidi Xu, Zhe Liang, et al. "Correction: Hydrogel microfibers with perfusable folded channels for tissue constructs with folded morphology." RSC Advances 9, no. 19 (2019): 10625. http://dx.doi.org/10.1039/c9ra90025j.
Full textShimizu, Azusa, Wei Huang Goh, Shun Itai, Michinao Hashimoto, Shigenori Miura, and Hiroaki Onoe. "ECM-based microchannel for culturing in vitro vascular tissues with simultaneous perfusion and stretch." Lab on a Chip 20, no. 11 (2020): 1917–27. http://dx.doi.org/10.1039/d0lc00254b.
Full textHong, Soyoung, Yejin Song, Jaesoon Choi, and Changmo Hwang. "Bonding of Flexible Membranes for Perfusable Vascularized Networks Patch." Tissue Engineering and Regenerative Medicine 19, no. 2 (2021): 363–75. http://dx.doi.org/10.1007/s13770-021-00409-1.
Full textChiu, L. L. Y., M. Montgomery, Y. Liang, H. Liu, and M. Radisic. "Perfusable branching microvessel bed for vascularization of engineered tissues." Proceedings of the National Academy of Sciences 109, no. 50 (2012): E3414—E3423. http://dx.doi.org/10.1073/pnas.1210580109.
Full textMansbridge, J., B. Maguire, and N. Bursacs. "PERFUSABLE SCAFFOLD FOR THE FORMATION OF VASCULARIZED SOLID ORGANS." ASAIO Journal 47, no. 2 (2001): 134. http://dx.doi.org/10.1097/00002480-200103000-00133.
Full textMori, Nobuhito, Yuya Morimoto, and Shoji Takeuchi. "Perfusable and stretchable 3D culture system for skin-equivalent." Biofabrication 11, no. 1 (2018): 011001. http://dx.doi.org/10.1088/1758-5090/aaed12.
Full textKnaapen, P. "The perfusable tissue index: a marker of myocardial viability." Journal of Nuclear Cardiology 10, no. 6 (2003): 684–91. http://dx.doi.org/10.1016/s1071-3581(03)00656-1.
Full textMori, Nobuhito, Yuya Morimoto, and Shoji Takeuchi. "Skin integrated with perfusable vascular channels on a chip." Biomaterials 116 (February 2017): 48–56. http://dx.doi.org/10.1016/j.biomaterials.2016.11.031.
Full textHooper, Rachel Campbell, Adam Jacoby, Ope A. Asanbe, Hector L. Osoria, Tarek Elshazly, and Jason A. Spector. "Fabrication of Durable, Perfusable Microvessels within Tissue-Engineered Constructs." Journal of the American College of Surgeons 219, no. 3 (2014): S154. http://dx.doi.org/10.1016/j.jamcollsurg.2014.07.371.
Full textJung, Olive, Yen-Ting Tung, Esther Sim, et al. "Development of human-derived, three-dimensional respiratory epithelial tissue constructs with perfusable microvasculature on a high-throughput microfluidics screening platform." Biofabrication 14, no. 2 (2022): 025012. http://dx.doi.org/10.1088/1758-5090/ac32a5.
Full textFigueiredo, Lara, Catherine Le Visage, Pierre Weiss, and Jing Yang. "Quantifying Oxygen Levels in 3D Bioprinted Cell-Laden Thick Constructs with Perfusable Microchannel Networks." Polymers 12, no. 6 (2020): 1260. http://dx.doi.org/10.3390/polym12061260.
Full textDeng, Pengwei, Mengqian Zhao, Xu Zhang, and Jianhua Qin. "A Transwell-Based Vascularized Model to Investigate the Effect of Interstitial Flow on Vasculogenesis." Bioengineering 9, no. 11 (2022): 668. http://dx.doi.org/10.3390/bioengineering9110668.
Full textSchepers, Arnout, Cheri Li, Arnav Chhabra, Benjamin Tschudy Seney, and Sangeeta Bhatia. "Engineering a perfusable 3D human liver platform from iPS cells." Lab on a Chip 16, no. 14 (2016): 2644–53. http://dx.doi.org/10.1039/c6lc00598e.
Full textItai, Shun, Hisatsugu Tajima, and Hiroaki Onoe. "Double-layer perfusable collagen microtube device for heterogeneous cell culture." Biofabrication 11, no. 1 (2018): 015010. http://dx.doi.org/10.1088/1758-5090/aaf09b.
Full textOsaki, Tatsuya, Takahiro Kakegawa, Tatsuto Kageyama, Junko Enomoto, Tadashi Nittami, and Junji Fukuda. "Acceleration of Vascular Sprouting from Fabricated Perfusable Vascular-Like Structures." PLOS ONE 10, no. 4 (2015): e0123735. http://dx.doi.org/10.1371/journal.pone.0123735.
Full textKim, Sudong, Hyunjae Lee, Minhwan Chung, and Noo Li Jeon. "Engineering of functional, perfusable 3D microvascular networks on a chip." Lab on a Chip 13, no. 8 (2013): 1489. http://dx.doi.org/10.1039/c3lc41320a.
Full textGershlak, Joshua R., Sarah Hernandez, Gianluca Fontana, et al. "Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds." Biomaterials 125 (May 2017): 13–22. http://dx.doi.org/10.1016/j.biomaterials.2017.02.011.
Full textKim, Da-Hyun, Jungho Ahn, Hyun Kyoung Kang, et al. "Development of highly functional bioengineered human liver with perfusable vasculature." Biomaterials 265 (January 2021): 120417. http://dx.doi.org/10.1016/j.biomaterials.2020.120417.
Full textHe, Jiankang, Mao Mao, Yaxiong Liu, Jinyou Shao, Zhongmin Jin, and Dichen Li. "Fabrication of Nature-Inspired Microfluidic Network for Perfusable Tissue Constructs." Advanced Healthcare Materials 2, no. 8 (2013): 1108–13. http://dx.doi.org/10.1002/adhm.201200404.
Full textKarp, Sophie, Martin Pollak, and Balaji karthick Subramanian. "Perfusable Human Tubule Chip System to Model Polycystic Kidney Disease." Journal of the American Society of Nephrology 33, no. 11S (2022): 609–10. http://dx.doi.org/10.1681/asn.20223311s1609d.
Full textGensler, Marius, Christoph Malkmus, Philipp Ockermann, et al. "Perfusable Tissue Bioprinted into a 3D-Printed Tailored Bioreactor System." Bioengineering 11, no. 1 (2024): 68. http://dx.doi.org/10.3390/bioengineering11010068.
Full textRussell, Teal, Qassim Dirar, Yan Li, Chiwan Chiang, Daniel T. Laskowitz, and Yeoheung Yun. "Cortical spheroid on perfusable microvascular network in a microfluidic device." PLOS ONE 18, no. 10 (2023): e0288025. http://dx.doi.org/10.1371/journal.pone.0288025.
Full textYu, Yanrong, Renjian Xie, Yueteng He, et al. "Dual-core coaxial bioprinting of double-channel constructs with a potential for perfusion and interaction of cells." Biofabrication 14, no. 3 (2022): 035012. http://dx.doi.org/10.1088/1758-5090/ac6e88.
Full textBogorad, Max I., and Peter C. Searson. "Real-time imaging and quantitative analysis of doxorubicin transport in a perfusable microvessel platform." Integrative Biology 8, no. 9 (2016): 976–84. http://dx.doi.org/10.1039/c6ib00082g.
Full textHuang, Shixing, Dong Lei, Qi Yang, et al. "A perfusable, multifunctional epicardial device improves cardiac function and tissue repair." Nature Medicine 27, no. 3 (2021): 480–90. http://dx.doi.org/10.1038/s41591-021-01279-9.
Full textDavoodi, Elham, Hossein Montazerian, Masoud Zhianmanesh, et al. "Template‐Enabled Biofabrication of Thick 3D Tissues with Patterned Perfusable Macrochannels." Advanced Healthcare Materials 11, no. 7 (2022): 2102123. http://dx.doi.org/10.1002/adhm.202102123.
Full textBichsel, Colette A., Sean R. R. Hall, Ralph A. Schmid, Olivier T. Guenat, and Thomas Geiser. "Primary Human Lung Pericytes Support and Stabilize In Vitro Perfusable Microvessels." Tissue Engineering Part A 21, no. 15-16 (2015): 2166–76. http://dx.doi.org/10.1089/ten.tea.2014.0545.
Full textQu, Jin, Rose M. Van Hogezand, Chunfeng Zhao, Benjamin J. Kuo, and Brian T. Carlsen. "Decellularization of a Fasciocutaneous Flap for Use as a Perfusable Scaffold." Annals of Plastic Surgery 75, no. 1 (2015): 112–16. http://dx.doi.org/10.1097/sap.0000000000000157.
Full text