To see the other types of publications on this topic, follow the link: Periodic mesoporous organosilicas (PMOs).

Journal articles on the topic 'Periodic mesoporous organosilicas (PMOs)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Periodic mesoporous organosilicas (PMOs).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Liu, Wanlu, Anna M. Kaczmarek, Karel Folens, Gijs Du Laing, Pascal Van Der Voort, and Rik Van Deun. "Rational design of lanthanide nano periodic mesoporous organosilicas (Ln-nano-PMOs) for near-infrared emission." Dalton Transactions 50, no. 8 (2021): 2774–81. http://dx.doi.org/10.1039/d1dt00032b.

Full text
Abstract:
Three nano-sized Periodic Mesoporous Organosilicas (PMOs) were synthesized and post-modification was employed to two PMOs to introduce Ln<sup>3+</sup> coordination sites. Two PMOs (DPA-PMO and ePMO) showed characteristic NIR (Nd<sup>3+</sup>, Yb<sup>3+</sup>) emission.
APA, Harvard, Vancouver, ISO, and other styles
2

Ide, Matthias, Els De Canck, Isabel Van Driessche, Frédéric Lynen, and Pascal Van Der Voort. "Developing a new and versatile ordered mesoporous organosilica as a pH and temperature stable chromatographic packing material." RSC Advances 5, no. 8 (2015): 5546–52. http://dx.doi.org/10.1039/c4ra15837g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kaczmarek, Anna M., and Pascal Van Der Voort. "Light-Emitting Lanthanide Periodic Mesoporous Organosilica (PMO) Hybrid Materials." Materials 13, no. 3 (2020): 566. http://dx.doi.org/10.3390/ma13030566.

Full text
Abstract:
Periodic mesoporous organosilicas (PMOs) have a well ordered mesoporous structure, a high thermal and mechanical stability and a uniform distribution of organic functionalities in the pore walls. The organic groups allow PMOs to be modified and functionalized by using a wide range of organic reactions. Since their first report in 1999, PMOs have found a vast range of applications, such as for catalysis, adsorbents, low-k films, biomedical supports and also for optical applications. Optical applications are very interesting as PMOs offer the possibility of designing advanced luminescent hybrid
APA, Harvard, Vancouver, ISO, and other styles
4

Hoffmann, Frank, Maximilian Cornelius, Jürgen Morell, and Michael Fröba. "Periodic Mesoporous Organosilicas (PMOs): Past, Present, and Future." Journal of Nanoscience and Nanotechnology 6, no. 2 (2006): 265–88. http://dx.doi.org/10.1166/jnn.2006.902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

López, María I., Dolores Esquivel, César Jiménez-Sanchidrián, Pascal Van Der Voort, and Francisco J. Romero-Salguero. "Thiol-Functionalized Ethylene Periodic Mesoporous Organosilica as an Efficient Scavenger for Palladium: Confirming the Homogeneous Character of the Suzuki Reaction." Materials 13, no. 3 (2020): 623. http://dx.doi.org/10.3390/ma13030623.

Full text
Abstract:
This work describes the synthesis of thiol-functionalized periodic mesoporous organosilicas (PMOs) prepared using the precursor 1-thiol-1,2-bis(triethoxysilyl)ethane, alone or mixed with 1,2-bis(triethoxysilyl)ethane. The thiol groups incorporated into the structure were found to be efficient for palladium binding. This has allowed these materials to be used as catalysts in the Suzuki cross-coupling reaction of bromobenzene and phenylboronic acid. Their performance has been compared to palladium-supported periodic mesoporous (organo)silicas and important differences have been observed between
APA, Harvard, Vancouver, ISO, and other styles
6

Karimi, Babak, Nasim Ganji, Omid Pourshiani, and Werner R. Thiel. "Periodic mesoporous organosilicas (PMOs): From synthesis strategies to applications." Progress in Materials Science 125 (April 2022): 100896. http://dx.doi.org/10.1016/j.pmatsci.2021.100896.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wahab, M. Abdul, I. Kim, and C. S. Ha. "Framework Functionalization of Periodic Mesoporous Organosilica with 1,2-bis[3-(triethoxysilylpropyl)ureido] cyclohexane Function via Basic Co-condensation Self-Assembly." Journal of Nanoscience and Nanotechnology 8, no. 7 (2008): 3532–38. http://dx.doi.org/10.1166/jnn.2008.110.

Full text
Abstract:
The synthesized bis silylated long alkyl chain containing organosilicate precursor, 1,2-bis(3-(triethoxysilylpropyl)ureido)cyclohexane (BSPUCh) has been used as co-precursor with 1,2-bis (triethoxysilyl)ethane (BTSE) for the preparation of functional periodic mesoporous organosilicas (PMOs) via surfactant-mediated basic co-condensation self-assembly method. The various characterization techniques such as X-ray diffraction patterns (XRD), transmission electron microscope (TEM), N2 adsorption–desorption isotherms (BET), FT-IR, and 13C and 29Si CPMAS NMR spectroscopies were used to characterize t
APA, Harvard, Vancouver, ISO, and other styles
8

Zienkiewicz, M., Stanislaw Pikus, E. Olszewska, and M. Barczak. "Mesoporous Ordered Organosilicas Containing Zr and Ti Species." Solid State Phenomena 163 (June 2010): 55–58. http://dx.doi.org/10.4028/www.scientific.net/ssp.163.55.

Full text
Abstract:
Periodic mesoporous organosilica materials (PMOs) are the new class of porous and hybrid organic-inorganic materials. They represent exceptional and functional bridged polysilsesquioxanes prepared by sol-gel processing of monomers using triblock copolymers or ionic surfactants as the structure directing agents. By changing the monomer type, various organic functional groups may be incorporated into the framework of PMO materials. Moreover it is possible to introduce heteroatoms in the structure of mesoporous materials via isomorphous substitution of the silicon atoms. In the present study, we
APA, Harvard, Vancouver, ISO, and other styles
9

Rebbin, V., A. Rothkirch, N. Ohta, and S. S. Funari. "Formation Mechanism Studies of Phenylene-Bridged Periodic Mesoporous Organosilicas (PMOs)." Langmuir 26, no. 11 (2010): 9017–22. http://dx.doi.org/10.1021/la904837v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rebbin, Vivian, André Rothkirch, Noboru Ohta, Takaaki Hikima, and Sérgio S. Funari. "Size Limit on the Formation of Periodic Mesoporous Organosilicas (PMOs)." Langmuir 30, no. 7 (2014): 1900–1905. http://dx.doi.org/10.1021/la404060a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Liang, Yucang, Egil Sev Erichsen, Marianne Hanzlik, and Reiner Anwander. "Ethylene-bridged Mesoporous Organosilicas with Hexagonal and Cubic Symmetry." Zeitschrift für Naturforschung B 64, no. 11-12 (2009): 1289–304. http://dx.doi.org/10.1515/znb-2009-11-1207.

Full text
Abstract:
A series of ordered periodic mesoporous organosilicas (PMOs) with cubic and hexagonal symmetries were fabricated by using divalent surfactants [CH3(CH2)15NMe2(CH2)3NMe3]2+ 2Br− (C16-3-1) or binary surfactant mixtures [CH3(CH2)15NMe3]+ Br− (C16TABr) and C16-3-1 as structure-directing agents (SDAs) and 1,2-bis(triethoxysilyl)ethane (BTEE) as an organosilica source under various basic conditions. The shape/structure of surfactant, molar ratio of binary surfactant mixtures, and base concentration crucially affect the formation of distinct mesophases. Face-centered cubic Fm3̄̅m mesoporous organosil
APA, Harvard, Vancouver, ISO, and other styles
12

Na, Wei, Qi Wei, Jia-Ning Lan, Zuo-Ren Nie, He Sun, and Qun-Yan Li. "Effective immobilization of enzyme in glycidoxypropyl-functionalized periodic mesoporous organosilicas (PMOs)." Microporous and Mesoporous Materials 134, no. 1-3 (2010): 72–78. http://dx.doi.org/10.1016/j.micromeso.2010.05.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hunks, William J., and Geoffrey A. Ozin. "Challenges and advances in the chemistry of periodic mesoporous organosilicas (PMOs)." Journal of Materials Chemistry 15, no. 35-36 (2005): 3716. http://dx.doi.org/10.1039/b504511h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Lin, Chia-Hui, Ranjith Kumar Kankala, Prabhakar Busa, and Chia-Hung Lee. "Hydrophobicity-Tuned Periodic Mesoporous Organo-Silica Nanoparticles for Photodynamic Therapy." International Journal of Molecular Sciences 21, no. 7 (2020): 2586. http://dx.doi.org/10.3390/ijms21072586.

Full text
Abstract:
Since their invention, periodic mesoporous organosilicas (PMOs), an innovative class of materials based on organic as well as inorganic hybrid nanocomposites, have gathered enormous interest owing to their advantageous physicochemical attributes over the pristine mesoporous silica nanoparticles (MSNs). To further increase the interactions with the therapeutic guest species and subsequent compatibility as well as the physicochemical properties of PMOs, we demonstrate the post-hydroxylation of benzene-bridged PMO-based nanoparticles for photodynamic therapy (PDT). Initially, the hydrophobic benz
APA, Harvard, Vancouver, ISO, and other styles
15

Muth, Olaf, Carsten Schellbach, and Michael Fröba. "Triblock copolymer assisted synthesis of periodic mesoporous organosilicas (PMOs) with large pores." Chemical Communications, no. 19 (2001): 2032–33. http://dx.doi.org/10.1039/b106636f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Rebbin, Vivian, Michaela Jakubowski, Steffen Pötz, and Michael Fröba. "Spherical Periodic Mesoporous Organosilicas (sph-PMOs) in a Wide Particle Size Range." Zeitschrift für anorganische und allgemeine Chemie 630, no. 11 (2004): 1755. http://dx.doi.org/10.1002/zaac.200470123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Thiel, Indre, Alexey Fedorov, Rene Verel, Sergii Yakunin, Maksym V. Kovalenko, and Christophe Copéret. "Probing the molecular character of periodic mesoporous organosilicates via photoluminescence of Lewis acid–base adducts." Physical Chemistry Chemical Physics 18, no. 20 (2016): 13746–49. http://dx.doi.org/10.1039/c6cp02176j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hoffmann, Frank, Martin Güngerich, Peter J. Klar, and Michael Fröba. "Vibrational Spectroscopy of Periodic Mesoporous Organosilicas (PMOs) and Their Precursors: A Closer Look." Journal of Physical Chemistry C 111, no. 15 (2007): 5648–60. http://dx.doi.org/10.1021/jp0668596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Rebbin, Vivian, André Rothkirch, Michael Fröba, and Sérgio S. Funari. "In situ SAXD Studies on Phenylene- and Thiophene-Bridged Periodic Mesoporous Organosilicas (PMOs)." Chemistry of Materials 22, no. 12 (2010): 3746–51. http://dx.doi.org/10.1021/cm100673s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Cornelius, Maximilian, Jürgen Morell, Vivian Rebbin, and Michael Fröba. "Periodic Mesoporous Organosilicas (PMOs): A New Class of Porous Inorganic-organic Hybrid Materials." Zeitschrift für anorganische und allgemeine Chemie 630, no. 11 (2004): 1715. http://dx.doi.org/10.1002/zaac.200470048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dag, Ö., and G. A. Ozin. "Organization of Bridging Organics in Periodic Mesoporous Organosilicas (PMOs)—Polarization Micro-Raman Spectroscopy." Advanced Materials 13, no. 15 (2001): 1182–85. http://dx.doi.org/10.1002/1521-4095(200108)13:15<1182::aid-adma1182>3.0.co;2-#.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Gao, Meng, Shuhua Han, Yongfeng Hu, James J. Dynes, Xiangguo Liu, and Dongniu Wang. "A pH-driven molecular shuttle based on rotaxane-bridged periodic mesoporous organosilicas with responsive release of guests." RSC Advances 6, no. 33 (2016): 27922–32. http://dx.doi.org/10.1039/c5ra27955k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Asefa, Tewodros, Michal Kruk, Neil Coombs, et al. "Novel Route to Periodic Mesoporous Aminosilicas, PMAs: Ammonolysis of Periodic Mesoporous Organosilicas." Journal of the American Chemical Society 125, no. 38 (2003): 11662–73. http://dx.doi.org/10.1021/ja036080z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Rebbin, Vivian, Michaela Jakubowski, Steffen Pötz, and Michael Fröba. "Synthesis and characterisation of spherical periodic mesoporous organosilicas (sph-PMOs) with variable pore diameters." Microporous and Mesoporous Materials 72, no. 1-3 (2004): 99–104. http://dx.doi.org/10.1016/j.micromeso.2004.04.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lin, Feng, Xiangyan Meng, Elena Kukueva, et al. "Direct-synthesis method towards copper-containing periodic mesoporous organosilicas: detailed investigation of the copper distribution in the material." Dalton Transactions 44, no. 21 (2015): 9970–79. http://dx.doi.org/10.1039/c4dt03719g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Poscher, Vanessa, and Yolanda Salinas. "Trends in Degradable Mesoporous Organosilica-Based Nanomaterials for Controlling Drug Delivery: A Mini Review." Materials 13, no. 17 (2020): 3668. http://dx.doi.org/10.3390/ma13173668.

Full text
Abstract:
The last few years of enhancing the design of hybrid mesoporous organosilica nanoparticleshas allowed their degradation under specific pathologic conditions, which finally is showing a lightin their potential use as drug delivery systems towards clinical trials. Nevertheless, the issueof controlling the degradation on-demand at cellular level still remains a major challenge, even if ithas lately been addressed through the incorporation of degradable organo-bridged alkoxysilanesinto the silica framework. On this basis, this mini review covers some of the most recent examplesof dierent degradabl
APA, Harvard, Vancouver, ISO, and other styles
27

Lee, Sang Don, Byunghwan Lee, and Kwang-Ho Choo. "Perchlorate removal in aqueous solutions using periodic mesoporous organosilicas (PMOs) functionalized with quaternary ammonium groups." Korean Journal of Chemical Engineering 28, no. 6 (2011): 1393–99. http://dx.doi.org/10.1007/s11814-011-0092-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Morell, Jürgen, Georg Wolter, and Michael Fröba. "Synthesis and Characterisation of Highly-ordered Thiophene-bridged Periodic Mesoporous Organosilicas (PMOs) with Large Pores." Zeitschrift für anorganische und allgemeine Chemie 630, no. 11 (2004): 1745. http://dx.doi.org/10.1002/zaac.200470103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Yoshina-Ishii, Chiaki, Tewodros Asefa, Neil Coombs, Mark J. MacLachlan, and Geoffrey A. Ozin. "Periodic mesoporous organosilicas, PMOs: fusion of organic and inorganic chemistry ‘inside’ the channel walls of hexagonal mesoporous silica." Chemical Communications, no. 24 (1999): 2539–40. http://dx.doi.org/10.1039/a908252b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Thommes, Matthias, Jürgen Morell, Katie A. Cychosz, and Michael Fröba. "Combining Nitrogen, Argon, and Water Adsorption for Advanced Characterization of Ordered Mesoporous Carbons (CMKs) and Periodic Mesoporous Organosilicas (PMOs)." Langmuir 29, no. 48 (2013): 14893–902. http://dx.doi.org/10.1021/la402832b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Qiao, Shiz Zhang, Lian Zhou Wang, Qiu Hong Hu, Zhong Hua Zhu, and Gao Qing Max Lu. "Synthesis of Highly Ordered Large-Pore Periodic Mesoporous Organosilica Rods." Solid State Phenomena 121-123 (March 2007): 381–84. http://dx.doi.org/10.4028/www.scientific.net/ssp.121-123.381.

Full text
Abstract:
Highly ordered rods of large-pore periodic mesoporous organosilica (PMO) were successfully synthesized at low acid concentrations and in the presence of inorganic salt using triblock copolymer P123 as template. The roles of inorganic salt, acidity and temperature in the production of highly ordered mesostructure and the morphology control of PMOs were examined and elucidated. It was found that the addition of inorganic salt can dramatically widen the range of the synthesis parameters to produce highly ordered 2D hexagonal pore structure of p6mm symmetry. However, the uniform rods of PMOs can o
APA, Harvard, Vancouver, ISO, and other styles
32

Zhai, Shang-Ru, Sung Soo Park, Mina Park, M. Habib Ullah, and Chang-Sik Ha. "Role of inorganic salts in the formation of ordered periodic mesoporous organosilicas (PMOs) without extra acids." Microporous and Mesoporous Materials 113, no. 1-3 (2008): 47–55. http://dx.doi.org/10.1016/j.micromeso.2007.11.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kaczmarek, Anna M., Yoshifumi Maegawa, Anatolii Abalymov, Andre G. Skirtach, Shinji Inagaki, and Pascal Van Der Voort. "Lanthanide-Grafted Bipyridine Periodic Mesoporous Organosilicas (BPy-PMOs) for Physiological Range and Wide Temperature Range Luminescence Thermometry." ACS Applied Materials & Interfaces 12, no. 11 (2020): 13540–50. http://dx.doi.org/10.1021/acsami.0c01470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Li, Ying, Bing Yan, and Ya-Juan Li. "Sulfide functionalized lanthanide (Eu/Tb) periodic mesoporous organosilicas (PMOs) hybrids with covalent bond: Physical characterization and photoluminescence." Microporous and Mesoporous Materials 132, no. 1-2 (2010): 87–93. http://dx.doi.org/10.1016/j.micromeso.2010.01.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kaczmarek, Anna M., and Pascal Van Der Voort. "Chemical sensors based on nano-sized lanthanide-grafted periodic mesoporous organosilica hybrid materials." Journal of Materials Chemistry C 7, no. 26 (2019): 8109–19. http://dx.doi.org/10.1039/c9tc01328h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Sisodiya, Sheetal, S. Shylesh, and A. P. Singh. "Tin incorporated periodic mesoporous organosilicas (Sn–PMOs): Synthesis, characterization, and catalytic activity in the epoxidation reaction of olefins." Catalysis Communications 12, no. 7 (2011): 629–33. http://dx.doi.org/10.1016/j.catcom.2010.11.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Motealleh, Andisheh, Pooya Dorri, and Nermin Seda Kehr. "Self-assembled monolayers of chiral periodic mesoporous organosilica as a stimuli responsive local drug delivery system." Journal of Materials Chemistry B 7, no. 14 (2019): 2362–71. http://dx.doi.org/10.1039/c8tb02507j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Yan, Bing, and Yan-Jing Gu. "A novel white-luminescent ternary europium hybrids with phenanthroline functionalized periodic mesoporous organosilicas (PMOs) and 2-methyl-9-hydroxyphenalenone." Inorganic Chemistry Communications 34 (August 2013): 75–78. http://dx.doi.org/10.1016/j.inoche.2013.05.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Shahzad, Khurram, Muhammad Imran Khan, Shabnam Shahida, et al. "TiO2 subsidized periodic mesoporous organosilicate (TiO2@PMOS) for facile photodegradation of methyl orange dye." DESALINATION AND WATER TREATMENT 223 (2021): 403–13. http://dx.doi.org/10.5004/dwt.2021.27137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Shahzad, Khurram, Javier Fernandez-Garcia, Muhammad Imran Khan, Abdallah Shanableh, Naseem Ahmad Khan, and Aziz ur ur Rehman. "Formulation of Bismuth (Bi2O3) and Cerium Oxides (CeO2) Nanosheets for Boosted Visible Light Degradation of Methyl Orange and Methylene Blue Dyes in Water." Catalysts 12, no. 10 (2022): 1197. http://dx.doi.org/10.3390/catal12101197.

Full text
Abstract:
Annealing of periodic mesoporous organosilica supported with bismuth (Bi@PMOS) and cerium (Ce@PMOS) nanoparticles was carried out to derive bismuth oxide (Bi2O3) and cerium oxide (CeO2) nanosheets. The hydrothermal sol-gel method was used to synthesize hexagonal Bi@PMOS and Ce@PMOS. These PMOS provided an opportunity for bismuth and cerium to retain a hexagonal configuration alongside their traditional crystalline phases (tetragonal and cubic) in Bi2O3 and CeO2 nanosheets. All produced materials were found to be dynamic under sunlight irradiation for the degradation of methylene blue (MB) and
APA, Harvard, Vancouver, ISO, and other styles
41

Wei, Qi, Zhen-Xing Zhong, Zuo-Ren Nie, Jian-Lin Li, Fei Wang, and Qun-Yan Li. "Catalytically active gold nanoparticles confined in periodic mesoporous organosilica (PMOs) by a modified external passivation route." Microporous and Mesoporous Materials 117, no. 1-2 (2009): 98–103. http://dx.doi.org/10.1016/j.micromeso.2008.06.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Li, Ying, ChunYan Zhang, Hao Hu, JieLin Wang, and Xia Wang. "Novel photoactive lanthanide hybrids covalently grafted on functionalized periodic mesoporous organosilicons (PMOs) by Schiff-base derivative." Journal of Porous Materials 24, no. 2 (2016): 487–96. http://dx.doi.org/10.1007/s10934-016-0284-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Karimi, Babak, Fariborz Mansouri, and Mojtaba Khorasani. "Recent Progress in Design and Application of Functional Ordered/Periodic Mesoporous Silicas (OMSs) and Organosilicas (PMOs) as Catalyst Support in Carbon-Carbon Coupling Reactions." Current Organic Chemistry 20, no. 4 (2015): 349–80. http://dx.doi.org/10.2174/1385272819666150423205048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Shahzad, Khurram, Muhammad Imran Khan, Noureddine Elboughdiri, Djamel Ghernaout, and Aziz Rehman. "Energizing periodic mesoporous organosilica (PMOS) with bismuth and cerium for photo‐degrading methylene blue and methyl orange in water." Water Environment Research 93, no. 7 (2021): 1116–25. http://dx.doi.org/10.1002/wer.1519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Tani, Takao, Norihiro Mizoshita, and Shinji Inagaki. "Luminescent periodic mesoporous organosilicas." Journal of Materials Chemistry 19, no. 26 (2009): 4451. http://dx.doi.org/10.1039/b820691k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Whitnall, W., T. Asefa, and G. A. Ozin. "Hybrid Periodic Mesoporous Organosilicas." Advanced Functional Materials 15, no. 10 (2005): 1696–702. http://dx.doi.org/10.1002/adfm.200500151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wang, Wendong, Daniel Grozea, Sandeep Kohli, Douglas D. Perovic, and Geoffrey A. Ozin. "Water Repellent Periodic Mesoporous Organosilicas." ACS Nano 5, no. 2 (2011): 1267–75. http://dx.doi.org/10.1021/nn102929t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Burleigh, Mark C., Michael A. Markowitz, Mark S. Spector, and Bruce P. Gaber. "Amine-Functionalized Periodic Mesoporous Organosilicas." Chemistry of Materials 13, no. 12 (2001): 4760–66. http://dx.doi.org/10.1021/cm0105763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

YANG, Qi-Hua, Jian LIU, Hua ZHONG, and Pei-Yuan WANG. "Progress in the Periodic Mesoporous Organosilicas." Journal of Inorganic Materials 24, no. 4 (2009): 641–49. http://dx.doi.org/10.3724/sp.j.1077.2009.00641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zhuang, Ting Yan, Jiao Yi Shi, Bao Chun Ma, and Wei Wang. "Chiral norbornane-bridged periodic mesoporous organosilicas." Journal of Materials Chemistry 20, no. 29 (2010): 6026. http://dx.doi.org/10.1039/c0jm01678k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!