Academic literature on the topic 'Periodontal ligament Anatomy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Periodontal ligament Anatomy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Periodontal ligament Anatomy"

1

Becker, J., D. Schuppan, J. P. Rabanus, R. Rauch, U. Niechoy, and H. R. Gelderblom. "Immunoelectron microscopic localization of collagens type I, V, VI and of procollagen type III in human periodontal ligament and cementum." Journal of Histochemistry & Cytochemistry 39, no. 1 (January 1991): 103–10. http://dx.doi.org/10.1177/39.1.1983870.

Full text
Abstract:
We examined the ultrastructural localization of collagens Type I, V, VI and of procollagen Type III in decalcified and prefixed specimens of the periodontal ligament and cementum, by immunoelectron microscopy using ultra-thin cryostat sections. Immunostaining for collagen Type I was pronounced on the major cross-striated fibrils entering cementum and in cementum proper, whereas staining for procollagen Type III was almost exclusively observed on the major fibrils in the periodontal ligament situated more remote from cementum. Reactivity for collagen Type V was limited to aggregated, unbanded f
APA, Harvard, Vancouver, ISO, and other styles
2

Häkkinen, L., O. Oksala, T. Salo, F. Rahemtulla, and H. Larjava. "Immunohistochemical localization of proteoglycans in human periodontium." Journal of Histochemistry & Cytochemistry 41, no. 11 (November 1993): 1689–99. http://dx.doi.org/10.1177/41.11.8409375.

Full text
Abstract:
Proteoglycans (PGs) are extracellular and cell surface-associated macromolecules that regulate cell adhesion, cell growth, matrix formation, and bind growth factors. In this work we studied the distribution of core proteins of four PGs (decorin, biglycan, a large molecular weight PG, and CD44) in human gingiva and periodontal ligament by immunohistochemical staining of frozen tissue sections with specific antibodies. Decorin, a major PG of this tissue, was localized on collagen fiber bundles in the gingival and periodontal connective tissues. Staining for decorin was most intense at the subepi
APA, Harvard, Vancouver, ISO, and other styles
3

de Jong, T., A. D. Bakker, V. Everts, and T. H. Smit. "The intricate anatomy of the periodontal ligament and its development: Lessons for periodontal regeneration." Journal of Periodontal Research 52, no. 6 (June 21, 2017): 965–74. http://dx.doi.org/10.1111/jre.12477.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sawada, Takashi, Yuu Sugawara, Tomohiro Asai, Natsuko Aida, Takaaki Yanagisawa, Kazumasa Ohta, and Sadayuki Inoue. "Immunohistochemical Characterization of Elastic System Fibers in Rat Molar Periodontal Ligament." Journal of Histochemistry & Cytochemistry 54, no. 10 (June 16, 2006): 1095–103. http://dx.doi.org/10.1369/jhc.5a6905.2006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Abuduwali, Nuersailike, Stefan Lossdörfer, Jochen Winter, Michael Wolf, Werner Götz, and Andreas Jäger. "Autofluorescent characteristics of human periodontal ligament cells in vitro." Annals of Anatomy - Anatomischer Anzeiger 195, no. 5 (October 2013): 449–54. http://dx.doi.org/10.1016/j.aanat.2013.03.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

McCulloch, C. A. G. "Progenitor cell populations in the periodontal ligament of mice." Anatomical Record 211, no. 3 (March 1985): 258–62. http://dx.doi.org/10.1002/ar.1092110305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cho, Moon-Il, and Philias R. Garant. "3H-mannose utilization by fibroblasts of the periodontal ligament." Anatomical Record 218, no. 1 (May 1987): 5–13. http://dx.doi.org/10.1002/ar.1092180103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Oehmke, Matthias J., Christopher R. C. Schramm, Erich Knolle, Nathalie Frickey, Thomas Bernhart, and Hans-Joachim Oehmke. "Age-dependent changes of the periodontal ligament in rats." Microscopy Research and Technique 63, no. 4 (2004): 198–202. http://dx.doi.org/10.1002/jemt.20027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nagai, Nobuhiro, Ayumi Hirakawa, Nao Otani, and Masanobu Munekata. "Development of Tissue-Engineered Human Periodontal Ligament Constructs with Intrinsic Angiogenic Potential." Cells Tissues Organs 190, no. 6 (2009): 303–12. http://dx.doi.org/10.1159/000213247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hirashima, Shingo, Tomonoshin Kanazawa, Keisuke Ohta, and Kei-ichiro Nakamura. "Three-dimensional ultrastructural imaging and quantitative analysis of the periodontal ligament." Anatomical Science International 95, no. 1 (September 10, 2019): 1–11. http://dx.doi.org/10.1007/s12565-019-00502-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Periodontal ligament Anatomy"

1

Ashworth, Jonathan F. "Immunohistochemical study of marmoset periodontal ligament microvasculature : a confocal laser scanning microscopic study." Title page, contents and summary only, 1999. http://web4.library.adelaide.edu.au/theses/09DM/09dma831.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gallardo, Venegas Camila. "Efecto del envejecimiento en la proporción de células troncales de la pulpa dental y del ligamento periodontal de ratones." Tesis, Universidad de Chile, 2017. http://repositorio.uchile.cl/handle/2250/148043.

Full text
Abstract:
Trabajo de Investigación Requisito para optar al Título de Cirujano Dentista<br>Introducción El envejecimiento es un proceso fisiológico que genera una disminución en la capacidad funcional de los tejidos. Una de las principales hipótesis desarrolladas para explicar este fenómeno, postula que una disminución en el número y/o actividad de las células troncales a lo largo del tiempo, induciría una declinación en la capacidad del individuo para mantener la homeostasis. Actualmente, se ha descrito una reducción en el número de células troncales de múltiples tejidos durante el envejecimien
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Periodontal ligament Anatomy"

1

Atkinson, Martin E. "Radiological anatomy of the oral cavity." In Anatomy for Dental Students. Oxford University Press, 2013. http://dx.doi.org/10.1093/oso/9780199234462.003.0040.

Full text
Abstract:
The radiographs most frequently taken in general dental practice are of the teeth and their immidiate supporting tissues for detection of dental caries or assessment of bone loss in periodontal disease. Intraoral radiographs are taken by placing the X-ray-sensitive film or receptor in the mouth close to the teeth being investigated. Extraoral radiographs use larger films or receptors positioned externally and produce a view of the entire dentition and its supporting structures on a single film; they are used to ascertain the state of development of the dentitions prior to orthodontic treatment, for example. Dental panoramic tomographs (DPTs) are the most frequent extraoral radiographs. A radiograph is a negative photographic record. Dense structures such as bone are designated as radio-opaque; they absorb some X-rays and appear white on radiographs. More X-rays pass through less dense radiolucent structures such as air-filled cavities which show up as black areas. The contrast between different tissues of the structures which the X-ray beam passes through is determined by their radiodensity which, in turn, is largely due to their content of metallic elements. Calcium and iron are the prevalent heavy metals in the body. Calcium is combined with phosphate to form hydroxyapatite crystals in bones and mineralized tissues in teeth. Iron is present in haemoglobin in blood, but only large concentrations of blood, such as those found within the heart chambers, show up on X-rays. In sequence from densest to most lucent, the radiodensity of the dental and periodontal tissues are: enamel, dentine, cementum, compact bone, cancellous bone, demineralized carious enamel and dentine, dental soft tissues such as pulp and periodontal ligament, and air; gold and silver–mercury amalgam metallic restorative materials are even denser than enamel. A radiograph is a two-dimensional representation of a three-dimensional situation. The orientation of anatomical structures relative to the X-ray beam is a major factor determining their appearance on the film. For example, a beam travelling through the long axis of a radiodense structure will produce a whiter image on the film than one passing through its shorter axis because more X-rays are absorbed; the structure will also have a different shape.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!