Academic literature on the topic 'Periodontal tissue'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Periodontal tissue.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Periodontal tissue"
Naz, Irum, Aamir Mehmood Butt, Uzma Bashir, and Hina Memon. "PERIODONTAL TISSUE;." Professional Medical Journal 24, no. 06 (June 5, 2017): 930–34. http://dx.doi.org/10.29309/tpmj/2017.24.06.1115.
Full textTobita, Morikuni, and Hiroshi Mizuno. "Periodontal Disease and Periodontal Tissue Regeneration." Current Stem Cell Research & Therapy 5, no. 2 (June 1, 2010): 168–74. http://dx.doi.org/10.2174/157488810791268672.
Full textGonçalves, Gabriela Sumie Yaguinuma, Tayna Natsumi Takakura, Anderson Catelan, Rosalinda Tanuri Zaninotto Venturim, Carolina dos Santos Santinoni, and Christine Men Martins. "Tratar ou extrair? Tratamento de lesão endoperiodontal, um relato de caso clínico." ARCHIVES OF HEALTH INVESTIGATION 9, no. 6 (April 20, 2020): 535–40. http://dx.doi.org/10.21270/archi.v9i6.4814.
Full textIwata, Takanori, Masayuki Yamato, Isao Ishikawa, Tomohiro Ando, and Teruo Okano. "Tissue Engineering in Periodontal Tissue." Anatomical Record 297, no. 1 (December 2, 2013): 16–25. http://dx.doi.org/10.1002/ar.22812.
Full textALI, SARAH, NOMAAN NASIR, and BRIG® KABIR AHMED. "PERIODONTAL TISSUE DESTRUCTION." Professional Medical Journal 19, no. 04 (August 7, 2012): 522–26. http://dx.doi.org/10.29309/tpmj/2012.19.04.2273.
Full textMancini, Leonardo, Adriano Fratini, and Enrico Marchetti. "Periodontal Regeneration." Encyclopedia 1, no. 1 (January 13, 2021): 87–98. http://dx.doi.org/10.3390/encyclopedia1010011.
Full textNokhbehsaim, Marjan, Anna Damanaki, Andressa Vilas Boas Nogueira, Sigrun Eick, Svenja Memmert, Xiaoyan Zhou, Shanika Nanayakkara, et al. "Regulation of Ghrelin Receptor by Periodontal Bacteria In Vitro and In Vivo." Mediators of Inflammation 2017 (2017): 1–11. http://dx.doi.org/10.1155/2017/4916971.
Full textKawai, Mariko Yamamoto, Ryosuke Ozasa, Takuya Ishimoto, Takayoshi Nakano, Hiromitsu Yamamoto, Marina Kashiwagi, Shigeki Yamanaka, et al. "Periodontal Tissue as a Biomaterial for Hard-Tissue Regeneration following bmp-2 Gene Transfer." Materials 15, no. 3 (January 27, 2022): 993. http://dx.doi.org/10.3390/ma15030993.
Full textCarmagnola, Daniela, Gaia Pellegrini, Claudia Dellavia, Lia Rimondini, and Elena Varoni. "Tissue engineering in periodontology: Biological mediators for periodontal regeneration." International Journal of Artificial Organs 42, no. 5 (April 2, 2019): 241–57. http://dx.doi.org/10.1177/0391398819828558.
Full textKim, Min Guk, and Chan Ho Park. "Tooth-Supporting Hard Tissue Regeneration Using Biopolymeric Material Fabrication Strategies." Molecules 25, no. 20 (October 19, 2020): 4802. http://dx.doi.org/10.3390/molecules25204802.
Full textDissertations / Theses on the topic "Periodontal tissue"
Pereira, Sergio Luis da Silva. "Avaliação histologica e histometrica do uso de membramas não reabsorviveis e reabsorviveis em defeitos periodontais cirurgicamente criados em cães." [s.n.], 1999. http://repositorio.unicamp.br/jspui/handle/REPOSIP/290833.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba
Made available in DSpace on 2018-07-26T05:10:48Z (GMT). No. of bitstreams: 1 Pereira_SergioLuisdaSilva_D.pdf: 3339204 bytes, checksum: 5e8546b985b4441bbc62f16e7bbb50a7 (MD5) Previous issue date: 1999
Resumo: O objetivo deste trabalho foi comparar, histológica e histometricamente, o processo de cura de defeitos tipo deiscência tratados pela técnica de regeneração tecidual guiada (RTG) com membranas reabsorvíveis de ácido poliláctico e não reabsorvíveis de politetrafluoroetileno expandido (PTFE-e). Seis cães adultos fêmeas de raça indefinida foram utilizados. Defeitos ósseos tipo deiscência foram criados cirurgicamente nas raízes distais dos terceiros e quartos pré molares mandibulares de ambos os lados e expostos ao acúmulo de placa por 3 meses. Após este período, os defeitos foram aleatoriamente designados para um dos tratamentos: RTG com membrana reabsorvível de ácido poliláctico (Grupo 1), RTG com membrana não reabsorvível de PTFE-e (Grupo 2), raspagem e alisamento radicular manual com acesso cirúrgico (Grupo 3) e não tratado (Grupo 4). Após 3 meses do segundo procedimento cirúrgico, os cães foram sacrificados e os espécimes processados para permitir análise histológica e histométrica, incluindo. os seguintes parâmetros: extensão linear do epitélio sulcular e juncional, adaptação do tecido conjuntivo, novo cemento, extensão vertical do novo osso e nova área óssea. Uma extensão linear de novo cemento estatisticamente superior (P<0.05) foi observada nos sítios tratados pela RTG, independente do tipo de membrana utilizada, em comparação com o Grupo 3. Não houve diferença estatisticamente significante entre o Grupo 1 e 2 em todos os parâmetros avaliados, exceto em relação à área de novo osso. O grupo 1 apresentou uma área de novo osso estatisticamente superior a dos outros grupos (P<0.05). Dentro dos limites deste estudo pôde-se concluir que ambas as membranas foram igualmente efetivas em promover nova formação cementária e que a membrana reabsorvível de ácido poliláctico (não-suturada) providenciou uma maior área óssea em relação à membrana não reabsorvível de PTFE-e
Abstract: The goal of this investigation was to compare histollogically and histometrically the healing process of dehiscence-type defects treated by guided tissue regeneration (GTR) with resorbable polylactic acid membranes and nonresorbable ePTFE membranes. Six mongrel dogs were used. Buccal osseous dehiscences were surgically created on the distal roots of the mandibular third and fourth premolars. The defects were exposed to plaque accumulation for 3 months. After this period, the defects were randomly assigned to one ofthe treatments: GTR with resorbable membrane (GTR1), GTR with nonresorbable membrane (GTR2), open flap debridement (OFD) and non-treated control (NTC). After 3 months of healing, the dogs were sacrificed and the blocks were processed. The histometric parameters evaluated included: length of sulcular and junctional epithelium, connective tissue adaptation, new cementum, new bone (vertical component) and new bone area. A superior length of new cementum was observed in the sites treated by GTR, regardless of the type of barrier used (P<0.05), in comparison with OFD. No statistically significant differences were found between GTRl and GTR2 in all the parameters with the exception ofbone area. GTRl presented a greater bone area (P<0.05) when compared to GTR2, OFD and NTC. Within the limits of this study, it can be concluded that both batriers are equally effective for new cementum formation. The resorbable membrane (non-sutured) may provide a better osseous response than the nonresorbable membrane
Doutorado
Periodontia
Doutor em Clínica Odontológica
Alotaibi, Dalal. "Aligned polymer scaffolds in periodontal tissue engineering." Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/6260/.
Full textMondésert, Hugues. "Mineralization of PLGA nanofibers for periodontal tissue regeneration." Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/15298.
Full textPeriodontal diseases induce a loss of soft and hard tissues surrounding the teeth after inflammation. Defects created by the infection would be replaced by the synthetic scaffold allowing progressive tissue regeneration. Mineralized PLGA (poly(lactic-‐co-‐glycolic acid)) nanofibers developed by electrospinningor jet spraying techniques are efficient biomaterials to maintain temporarily a physical structure and to enhance biocompatibility for hard tissue regeneration. The aim of this work was to mineralize PLGA nanofibers by two different methods: Simulated Body Fluid (SBF) immersion and projection by jet spraying (JS). SBF method consists in soaking PLGA matrices intohigh ions concentrated solutions (SBFx1 or SBFx5) to deposit mineral layers. With the new JS technique, we target a formation of a nanocomposite of PLGA and hydroxyapatite nanoparticles (nHA): first with the help of a blend solution (PLGA + nHA) directly projected (JS) and then with a simultaneous co projection of PLGA solution and nHA suspension in water (Co-‐JS). From material characterization perspective, samples produced by SBFx1 protocol showed a very weak mineral deposition, low crystalline sodium chloride whereas SBFx5 solutions allowed the formation of a consequent CaP mineral layer on electrospun PLGA matrices. SEM images allowed the observation of different mineral structures strongly depending on SBF concentration and immersion time. XRD patterns confirmed the presence of HA into JS PLGA matrices. Morphologically, JS scaffolds varied with the concentration of HA nanoparticles incorporated into the initial mixture. HA nanoparticles were successfully incorporated inside the polymer fibers with the first Jet spraying technique (JS) whereas nHAs were successfully deposited on the surface of the PLGA fibers with Co JS method.
A doença periodontal induz uma inflamação que pode levar à destruição dos tecidos de suporte do dente. A degradação provocada pela doença pode ser tratada com o recurso a suportes sintéticos que permitam a regeneração progressiva dos tecidos. As nanofibras de ácido polilactico co-‐glicolico (PLGA), mineralizadas, produzidas por electrofiação ou pela técnica de pulverização por jacto, são biomateriais adequados para funcionarem como suporte físico temporário e assegurarem a biocompatibilidade necessária à regeneração de tecidos. O presente trabalho tem como objetivo o estudo da mineralização de nano-‐fibras de PLGA para optimizar a regeneração de tecidos duros. São propostos dois métodos de mineralização: o método baseado no fluido fisiológico simulado (SBF) e o método baseado na pulverização por jacto (JS). A técnica de SBF consiste em mergulhar matrizes de PLGA, produzidas por electrofiação, numa solução concentrada de sais ao passo que a técnica de JS consiste em pulverizar uma suspensão preparada com nanopartículas de hidroxiapatite (Ca5(PO4)3(OH), HA) e uma solução polimérica. Os materiais produzidos foram caracterizados por difração de Raios-‐ X e por microscopia electrónica de varrimento (MEV).Para as amostras processadas pela técnica de SBF os resultados de DRX evidenciaram a presença de fosfatos de cálcio de baixa ristalinidade, correspondentes à fase de hidroxiapatite. As imagens de MEV permitiram observar a formação de estruturas minerais fortemente dependentes do tempo de imersão. Nas matrizes de PLGA tratadas por JS, a DRX confirmou a presença de HA e a MEV revelou que a morfologia das amostras depende da concentração das nanopartículas de HA adicionadas à solução polimérica inicial. O método de SBF permitiu uma deposição superficial de fosfatos de cálcio ao passo que, pelo método de JS, foi possível incorporar nanopartículas de HA no seio da matriz polimérica. A combinação dos dois métodos parece pois ser uma técnica promissora para fabricar suportes mineralizados para regeneração de tecido periodontal.
Gottlow, Jan. "New attachment formation by guided tissue regeneration." Göteborg : Dept. of Periodontology, University of Göteborg, 1986. http://catalog.hathitrust.org/api/volumes/oclc/17242123.html.
Full textSuaid, Fabricia Ferreira. "Avaliação histométrica do efeito do transplante autógeno de células do ligamento periodontal no tratamento de defeitos de furca grau III em cães." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/290846.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba
Made available in DSpace on 2018-08-16T00:46:02Z (GMT). No. of bitstreams: 1 Suaid_FabriciaFerreira_D.pdf: 4378938 bytes, checksum: 06a24b032e38b3ae490047a4a2ba7544 (MD5) Previous issue date: 2010
Resumo: O objetivo do presente estudo foi avaliar histometricamente o efeito dotransplante autógeno de células do ligamento periodontal (PDLCs), associado à regeneração tecidual guiada (RTG), no tratamento de defeitos de furca grau III criados cirurgicamente em cães. Inicialmente, as PDLCs foram obtidas das raízes do 2º pré-molar e do 1º molar inferior extraídos, bilateralmente, de sete cães da raça beagle. Em seguida, as células foram cultivadas in vitro e caracterizadas fenotipicamente. Lesões de furca grau III foram criadas nos 3os e 4os pré-molares inferiores e os defeitos foram aleatoriamente escolhidos para receber os seguintes tratamentos: Grupo Controle - instrumentação da superfície radicular com auxílio de curetas e posicionamento coronário dos retalhos (7); Grupo RTG - regeneração tecidual guiada (7); Grupo Esponja - RTG + esponja de colágeno (7); Grupo Células - RTG + células do ligamento periodontal embebidas na esponja de colágeno, na ausência de soro fetal bovino (7). Após três meses, os animais foram sacrificados e os blocos contendo os espécimes foram processados para análise histológica. Os parâmetros histométricos avaliados foram: extensão total do defeito (ETD), extensão não preenchida do defeito (ENP), novo cemento (NC), regeneração periodontal (RP), extensão de epitélio/conjuntivo (EEC), anquilose (ANQ), área total do defeito (ATD), área não preenchida (ANP), área preenchida (AP), área de novo osso (NO), área de epitélio/tecido conjuntivo (AEC). Resultados: A caracterização fenotípica, in vitro, demonstrou que as PDLCs foram capazes de promover a formação de nódulos minerais, bem como de expressar sialoproteína óssea (BSP), colágeno do tipo I (COL I) e a fosfatase alcalina (ALP). Histometricamente, a análise de dados demonstrou que o grupo tratado com células apresentou uma maior extensão de novo cemento (1,70 ± 0,60 mm; 2,87 ± 0,74 mm; 3,66 ± 0,95 mm e 4,82 ± 0,61mm, para os grupos controle, RTG, esponja e células, respectivamente; p<0,001), uma maior extensão da regeneração periodontal (0,69 ± 0,59 mm; 1,52 ± 0,39 mm; 2,33 ± 0,95 mm e 3,43 ± 1,44 mm, para os grupos controle, RTG, esponja e células, respectivamente; p = 0,001) e uma maior área de novo osso (1,89 ± 0,95 mm2; 2,91 ± 0,56 mm2; 3,94 ± 1,52 mm2 e 5,45 ± 1,58 mm2, para os grupos controle, RTG, esponja e células, respectivamente; p = 0, 0012). Dentro dos limites deste estudo, concluiu-se que o transplante autógeno de PDLCs associadas à RTG favoreceu a regeneração periodontal em defeitos de furca grau III.
Abstract: The aim of this study was to histometrically investigate the potential use of autogenous periodontal ligament cells (PDLCs) associated with guided tissue regeneration (GTR) for tissue engineering in surgically created class III furcation defects in dogs. PDLCs were obtained from the tooth root of bilateral mandibular 2nd premolar (P2) and the 1st molar (M1) extracted from seven beagle dogs, cultured in vitro and phenotypically characterized with regard to their biological properties. Bilateral class III furcation lesions were surgically created at 3rd and 4th premolars (P3, P4) and the defects were randomly assigned to one of the following groups: Control Group: root surface was scaled and planned with curettes and the flap was coronally positioned (n=7), GTR Group: two bioabsorbable membranes were adapted to cover the buccal and lingual aspects of the defect (n=7), Sponge Group: the collagen sponge scaffold was placed in the furcation area associated with GTR (n=7), Cell Group: the collagen sponge scaffold, with the cell suspension without FBS was placed in the furcation area associated with GTR (n=7). After 3 months, the animals were sacrificed and the blocks containing the experimental specimens were processed for histological analysis. The histometric parameters evaluated were: total defect length (TDL), tissue-free defect length (TFL), new cementum (NC), periodontal regeneration (R), epithelium/connective tissue extension (ECT), Ankylosis (ANQ), total defect area (TDA), non-filled area (NFA), soft tissue area (STA) and new bone area (NBA). Results: In vitro, phenotypic characterization demonstrated that PDLCs were able to promote mineral nodule formation as well as to express bone sialoprotein (BSP), type I collagen (COL I) and alkaline phosphatase (ALP). Histometrically, data analysis demonstrated that the cell-treated group presented a superior length of new cementum (1.70 ± 0.60 mm; 2.87 ± 0.74 mm; 3.66 ± 0.95 mm and 4.82 ± 0.61 mm, for control, GTR, sponge and cell groups, respectively; p<0.001), a greater extension of periodontal regeneration (0.69 ± 0.59 mm; 1.52 ± 0.39 mm; 2.33 ± 0.95 mm and 3.43 ± 1.44 mm, for control, GTR, sponge and cell groups, respectively; p=0.001) and a larger area of new bone (1.89 ± 0,95 mm2; 2.91 ± 0,56 mm2; 3.94 ± 1,52 mm2 and 5.45 ± 1,58 mm2, for control, GTR, sponge and cell groups, respectively; p=0,0012). Within the limits of this animal study, it was concluded that PDLCs in association with GTR may be a useful option to promote periodontal tissue regeneration in class III furcation defects.
Doutorado
Periodontia
Doutor em Clínica Odontológica
Mayfield, Lisa. "Regeneration in periodontal and endosseous implant treatment." Malmö, Sweden : Dept. of Periodontology, Faculty of Odontology, Lund University, 1998. http://catalog.hathitrust.org/api/volumes/oclc/39457632.html.
Full textBorges, Ricardo Jorge Morais. "Regeneração periodontal de defeitos infra-ósseos." Master's thesis, [s.n.], 2015. http://hdl.handle.net/10284/5276.
Full textA doença periodontal afeta grande parte da população, e a sua progressão pode levar à perda de inserção dos tecidos conetivos do periodonto assim como perda óssea. O tratamento periodontal procura essencialmente dois objetivos: impedir a progressão da doença e reconstruir os tecidos periodontais perdidos. O tratamento regenerativo surge como método para alcançar este segundo objetivo. Neste âmbito, ao longo do tempo têm sido desenvolvidas diversas técnicas regenerativas, sendo as proteínas de matriz de esmalte e a regeneração tecidular guiada as mais investigadas em ensaios clínicos. A revisão bibliográfica inicialmente foi realizada no motor de busca PubMed recorrendo a palavras-chave como: “Periodontal Regeneration”, “Intrabony Defects”, “Guided Tissue Regeneration” e “Enamel Matrix Proteins” tendo por base meta-análises publicadas, maioritariamente, nos últimos 10 anos. Posteriormente foram incluídos artigos como base litúrgica para abordar a parte teórica deste trabalho, sendo estes publicados entre 1958 e 2015.
Periodontal disease affects a large population and its progression may lead to the loss of attachment of periodontal connective tissue as well as bone loss. The periodontal treatment essentially seeks two objectives: preventing disease progression and rebuild the lost periodontal tissues. The regenerative treatment arises as a method to achieve this second goal. In this context, from time to time there have been developed several regenerative techniques, being the proteins of enamel matrix and guided tissue regeneration, the most investigated in clinical trials. The literature review was conducted initially in the search engine PubMed using keywords like "Periodontal Regeneration", "Intrabony Defects", "Guided Tissue Regeneration" and "Enamel Matrix Proteins" on the basis of published meta-analysis, mostly in the last 10 years. Later there were included items as a liturgical basis for in order to adress the theoretical part of this study, which were published between 1958 and 2015.
França, Isabela Lima 1987. "Técnica de retalho semilunar posicionado coronariamente com ou sem associação à proteína derivada das matriz do esmalte para o tratamento de recessões gengivais : estudo clínico controlado randomizado." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/290818.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba
Made available in DSpace on 2018-08-26T23:34:09Z (GMT). No. of bitstreams: 1 Franca_IsabelaLima_M.pdf: 1330190 bytes, checksum: 6782efacdca31e69f907222817356c7c (MD5) Previous issue date: 2015
Resumo: O objetivo deste estudo foi avaliar, clinicamente, a utilização do Retalho Semilunar Posicionado Coronariamente (RSPC) para tratamento de recessões gengivais, com ou sem associação à proteína derivada da matriz do esmalte (EMD). Foram selecionados 30 pacientes, que foram randomizados e alocados em dois grupos: teste (RSPC + EMD) e controle (RSPC sozinho). Para serem incluídos no estudo, os indivíduos deveriam apresentar recessões gengivais vestibulares localizadas classe I de Miller com altura maior ou igual a 2,0mm e menor que 4,0 mm, em caninos ou pré-molares superiores. Parâmetros clínicos avaliados: altura da recessão gengival (ARG), largura da recessão gengival (LRG), nível de inserção clínica (NIC), profundidade de sondagem (PS), altura de tecido queratinizado (ATQ), espessura de tecido queratinizado (ETQ) e altura (AP) e largura (LP) das papilas mesial e distal, além de índice de placa (IPL) e índice gengival (IG). Estes parâmetros foram medidos nos seguintes períodos: baseline, 90 dias e 180 dias após o procedimento cirúrgico. Nenhuma diferença estatisticamente significante foi observada entre os grupos em relação à redução da retração gengival com 6 meses de acompanhamento, embora tenha sido encontrada maior porcentagem de cobertura radicular no grupo RSPC+EMD (91%), quando comparado ao RSPC (87%) (p>0,05). Cobertura radicular completa foi obtida em 60% dos sítios no RSPC enquanto no grupo RSPC+EMD foi observada em 66,67% dos sítios. Dentro dos limites do presente estudo pôde-se concluir que o RSPC, associado ou não a EMD, levou a redução da recessão gengival, sem diferença estatística entre os grupos, após 6 meses de acompanhamento pós-operatório
Abstract: The aim of this study was to evaluate clinically the use of the Semilunar Coronally Positioned Flap (SCPF) for the treatment of gingival recessions, with or without Enamel Matrix Derivative (EMD). Thirty patients were selected, randomized and allocated in two groups: test (SCPF + EMD) and control (SCPF alone). To attend the study, subjects should present buccal Miller class I gingival recessions with height greater than or equal to 2.0 mm and less than to 4.0 mm in maxillary canines or premolars. Clinical parameters evaluated: gingival recession height (GRH), gingival recession width (GRW), clinical attachment level (CAL), probing depth (PD), height (HKT) and thickness (TKT) of keratinized tissue and papillas height (HP) and width (LP), as well as plaque and gingival index. These data were collected at baseline, 90 days and 180 days after surgery. No statistically significant difference was observed between the groups regarding the reduction of gingival recession after 6 months of follow-up, although a higher percentage of root coverage was found in SCPF + EMD group (91%), when compared to the SCPF (87%) (p> 0.05). Complete root coverage was observed in 60% of the sites of the control group (SCPF alone) and in 66,67% of the sites of the test group (SCPF+EMD). Within the limits of this study it was concluded that SCPF, associated or not with EMD may provide a reduction in gingival recession, with no statistical difference between groups
Mestrado
Periodontia
Mestra em Clínica Odontológica
Hattingh, André Christiaan. "A protocol to study tissue regeneration in alveolar bony defects /." Access to E-Thesis, 1999. http://upetd.up.ac.za/thesis/available/etd-01052007-135643/.
Full textQasim, Syed Saad B. "Development of novel functionally graded guided tissue regenerative membrane for periodontal lesions." Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/11219/.
Full textBooks on the topic "Periodontal tissue"
Wikesjo, Ulf M. E. Periodontal repair in dogs: Connective tissue repair in supraalveolar periodontal defects. Loma Linda, Calif: Loma Linda University and Lund University, Malmo, Sweden, 1991.
Find full textSampath, Narayanan A., ed. Biology of the periodontal connective tissues. Chicago: Quintessence Pub. Co., 1998.
Find full textDumitrescu, Alexandrina L. Chemicals in Surgical Periodontal Therapy. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textGottlow, Jan. New attachment formation by guided tissue regeneration. Göteborg, Sweden: University of Göteborg, Faculty of Odontology, Dept. of Periodontology, 1986.
Find full textRaigrodski, Ariel J. Soft tissue management: The restorative perspective : putting concepts into practice. Chicago: Quintessence Publishing Co, Inc., 2015.
Find full textPeriodontal regeneration enhanced: Clinical applications of enamel matrix proteins. Chicago: Quintessence Pub. Co., 1999.
Find full textRegenerative dentistry. San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA): Morgan & Claypool, 2010.
Find full textDibart, Serge, and Jean-Pierre Dibart. Practical osseous surgery in periodontics and implant dentistry. Chichester, West Sussex, UK: Wiley-Blackwell, 2011.
Find full textDebby, Hwang, and Saadoun Andre P, eds. Implant site development. Chichester, West Sussex, UK: Wiley-Blackwell, 2012.
Find full textBook chapters on the topic "Periodontal tissue"
Ivanovski, Saso, P. Mark Bartold, Stan Gronthos, and Dietmar W. Hutmacher. "Periodontal tissue engineering." In Tissue Engineering and Regeneration in Dentistry, 124–44. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119282181.ch7.
Full textDibart, Serge. "Guided Tissue Regeneration." In Practical Periodontal Plastic Surgery, 65–68. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119014775.ch11.
Full textDibart, Serge, and Mamdouh Karima. "Subepithelial Connective Tissue Graft." In Practical Periodontal Plastic Surgery, 28–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119014775.ch6.
Full textAllen, Edward P., and Lewis C. Cummings. "Minimally Invasive Soft Tissue Grafting." In Minimally Invasive Periodontal Therapy, 143–64. Hoboken, NJ: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118960707.ch9.
Full textDiego Capri, D. M. "Peri-implant Soft Tissue Management." In Practical Periodontal Plastic Surgery, 93–137. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119014775.ch16.
Full textDumitrescu, Alexandrina L. "Guided Tissue Regeneration Barriers." In Chemicals in Surgical Periodontal Therapy, 1–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18225-9_1.
Full textSaadoun, André P. "Esthetic periodontal treatment." In Esthetic Soft Tissue Management of Teeth and Implants, 66–101. West Sussex, UK: John Wiley & Sons, Ltd,., 2013. http://dx.doi.org/10.1002/9781118702673.ch5.
Full textRath, Avita, Preena Sidhu, Priyadarshini Hesarghatta Ramamurthy, Bennete Aloysius Fernandesv, Swapnil Shankargouda, and Sultan Orner Sheriff. "Gingiva and Periodontal Tissue Regeneration." In Current Advances in Oral and Craniofacial Tissue Engineering, 139–58. Boca Raton : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429423055-10.
Full textIranparvar, Aysel, Amin Nozariasbmarz, Sara DeGrave, and Lobat Tayebi. "Tissue Engineering in Periodontal Regeneration." In Applications of Biomedical Engineering in Dentistry, 301–27. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21583-5_14.
Full textDumitrescu, Alexandrina L. "Enamel Matrix Derivative for Periodontal Tissue Regeneration." In Chemicals in Surgical Periodontal Therapy, 145–215. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18225-9_3.
Full textConference papers on the topic "Periodontal tissue"
Jin, Laidi, Tian Tian, Danyang Liu, Hongjv Mao, and Huiying Liu. "·Reconstituting Organ-Level Periodontal Soft Tissue on a Chip." In 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers). IEEE, 2021. http://dx.doi.org/10.1109/transducers50396.2021.9495506.
Full textRobo, Ilma, Saimir Heta, Panajot Papa, Edlira Sadiku, and Nevila Alliu. "THE IMPACT OF SMOKING ON THE HEALTH OF PERIODONTAL TISSUE." In RAD Conference. RAD Association, 2017. http://dx.doi.org/10.21175/radproc.2017.47.
Full textDemidov, Andrey V., Ekaterina V. Udaltsova, and Sergey M. Gerashchenko. "Development of the System for Assessment of Periodontal Tissue State." In 2021 IEEE Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). IEEE, 2021. http://dx.doi.org/10.1109/usbereit51232.2021.9455109.
Full textPeng, Lin, and Ren-Xi Zhuo. "Biological Evaluation of Porous Chitosan/collagen Scaffolds for Periodontal Tissue Engineering." In 2008 2nd International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2008. http://dx.doi.org/10.1109/icbbe.2008.220.
Full textSayed, Ahmed, Ahmed Mahmoud, Eros Chaves, Richard Crout, Kevin Sivaneri, and Osama Mukdadi. "Assessment of Gingival Inflammation Using Ultrasound Imaging." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89627.
Full textSetyawati, Ernie Maduratna, and Nahdhiya Amalia Puspita Klana. "Concise review: Periodontal tissue regeneration using pericardium membrane as guided bone regeneration." In THE 2ND INTERNATIONAL CONFERENCE ON PHYSICAL INSTRUMENTATION AND ADVANCED MATERIALS 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0036635.
Full textQasim, S. B., R. Delaine-Smith, A. Rawlinson, and I. U. Rehman. "Development of a Novel Bioactive Functionally Guided Tissue Graded Membrane for Periodontal Lesions." In University of Sheffield Engineering Symposium. USES, 2015. http://dx.doi.org/10.15445/01012014.07.
Full textLi, Ze-jian, Chun-ting Lu, Shu-yuan Ma, Ren-fa Lai, and Jiong Li. "Cultivation of periodontal tissue cell sheet by a new way for cell sheet engineering." In 2016 Sixth International Conference on Information Science and Technology (ICIST). IEEE, 2016. http://dx.doi.org/10.1109/icist.2016.7483376.
Full textd'Apuzzo, F., L. Perillo, G. Parente, C. Camerlingo, M. R. Rusciano, A. S. Maione, and M. Lepore. "Micro-Raman spectroscopy investigation on periodontal ligament: A preliminary study on a tissue model." In 2014 Fotonica AEIT Italian Conference on Photonics Technologies (Fotonica AEIT). IEEE, 2014. http://dx.doi.org/10.1109/fotonica.2014.6843924.
Full textYang, Yu, Wencheng Tang, and Yao jun Wang. "Experimental Analysis of the Elastic Modulus of Periodontal Ligament in Nanoindentation." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59040.
Full textReports on the topic "Periodontal tissue"
Zhang, Yuhao, Wenheng Zhao, Liyang Jia, Nan Xu, Yan Xiao, and Qiyan Li. The application of stem cells in tissue engineering for periodontal defects in randomized controlled trial: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, January 2022. http://dx.doi.org/10.37766/inplasy2022.1.0036.
Full textGarcia, Martin, and Pedro Tinedo. ADJUVANT EFFECT OF PROPOLIS TO PERIODONTAL THERAPY FOR THE TREATMENT OF PERIODONTAL DISEASE: A SYSTEMATIC REVIEW. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, March 2022. http://dx.doi.org/10.37766/inplasy2022.3.0030.
Full text