Academic literature on the topic 'Periodontal tissue regeneration'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Periodontal tissue regeneration.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Periodontal tissue regeneration"

1

Shimono, M., T. Inoue, and T. Yamamura. "Regeneration of Periodontal Tissues." Advances in Dental Research 2, no. 2 (1988): 223–27. http://dx.doi.org/10.1177/08959374880020020501.

Full text
Abstract:
To elucidate the regenerative capability of the periodontal tissues, we carried out two experiments: (1) Regeneration of the gingival tissue following gingivectomy in rats. Ultrastructurally, regenerating junctional epithelium was similar in morphology to that of untreated animals and appeared to attach to the enamel after five days. Basal lamina and hemidesmosomes were produced faster at the enamel interface than at the connective tissue interface. Gingival tissue was completely regenerated seven days after the gingivectomy. (2) Regeneration of the cementum, periodontal ligament, and alveolar bone following intradentinal cavity preparation in dogs. In the early stages, the cavity was filled with an exudate and granulation tissue. Seven days after the operation, osteoblasts and cementoblasts were arranged regularly on the cut surface of the alveolar bone and dentin, respectively. Newly formed bone and cementum, and periodontal ligament grew to resemble pre-existing bone and cementum after 28-42 days. From these results, it is suggested that the periodontal tissues have an extremely high capability of regeneration.
APA, Harvard, Vancouver, ISO, and other styles
2

Mancini, Leonardo, Adriano Fratini, and Enrico Marchetti. "Periodontal Regeneration." Encyclopedia 1, no. 1 (2021): 87–98. http://dx.doi.org/10.3390/encyclopedia1010011.

Full text
Abstract:
Periodontal regeneration is a technique that aims to regenerate the damaged tissue around periodontally compromised teeth. The regenerative process aims to use scaffolds, cells, and growth factors to enhance biological activity.
APA, Harvard, Vancouver, ISO, and other styles
3

Cahaya, Cindy, and Sri Lelyati C. Masulili. "Perkembangan Terkini Membran Guided Tissue Regeneration/Guided Bone Regeneration sebagai Terapi Regenerasi Jaringan Periodontal." Majalah Kedokteran Gigi Indonesia 1, no. 1 (2015): 1. http://dx.doi.org/10.22146/majkedgiind.8810.

Full text
Abstract:
Periodontitis adalah salah satu penyakit patologis yang mempengaruhi integritas sistem periodontal yang menyebabkan kerusakan jaringan periodontal yang berlanjut pada kehilangan gigi. Beberapa tahun belakangan ini banyak ketertarikan untuk melakukan usaha regenerasi jaringan periodontal, tidak saja untuk menghentikan proses perjalanan penyakit namun juga mengembalikan jaringan periodontal yang telah hilang. Sasaran dari terapi regeneratif periodontal adalah menggantikan tulang, sementum dan ligamentum periodontal pada permukaan gigi yang terkena penyakit. Prosedur regenerasi antara lain berupa soft tissue graft, bone graft, biomodifikasi akar gigi, guided tissue regeneration sertakombinasi prosedur-prosedur di atas, termasuk prosedur bedah restoratif yang berhubungan dengan rehabilitasi oral dengan penempatan dental implan. Pada tingkat selular, regenerasi periodontal adalah proses kompleks yang membutuhkan proliferasi yang terorganisasi, differensiasi dan pengembangan berbagai tipe sel untuk membentuk perlekatan periodontal. Rasionalisasi penggunaan guided tissue regeneration sebagai membran pembatas adalah menahan epitel dan gingiva jaringan pendukung, sebagai barrier membrane mempertahankan ruang dan gigi serta menstabilkan bekuan darah. Pada makalah ini akan dibahas sekilas mengenai 1. Proses penyembuhan terapi periodontal meliputi regenerasi, repair ataupun pembentukan perlekatan baru. 2. Periodontal spesific tissue engineering. 3. Berbagai jenis membran/guided tissue regeneration yang beredar di pasaran dengan keuntungan dan kerugian sekaligus karakteristik masing-masing membran. 4. Perkembangan membran terbaru sebagai terapi regenerasi penyakit periodontal. Tujuan penulisan untuk memberi gambaran masa depan mengenai terapi regenerasi yang menjanjikan sebagai perkembangan terapi penyakit periodontal. Latest Development of Guided Tissue Regeneration and Guided Bone Regeneration Membrane as Regenerative Therapy on Periodontal Tissue. Periodontitis is a patological state which influences the integrity of periodontal system that could lead to the destruction of the periodontal tissue and end up with tooth loss. Currently, there are so many researches and efforts to regenerate periodontal tissue, not only to stop the process of the disease but also to reconstruct the periodontal tissue. Periodontal regenerative therapy aims at directing the growth of new bone, cementum and periodontal ligament on the affected teeth. Regenerative procedures consist of soft tissue graft, bone graft, roots biomodification, guided tissue regeneration and combination of the procedures, including restorative surgical procedure that is connected with oral rehabilitation with implant placement. At cellular phase, periodontal regeneration is a complex process with well-organized proliferation, distinction, and development of various type of cell to form attachment of periodontal tissue. Rationalization of the use of guided tissue regeneration as barrier membrane is to prohibit the penetration of epithelial and connective tissue migration into the defect, to maintain space, and to stabilize the clot. This research discusses: 1. Healing process on periodontal therapy including regeneration, repair or formation of new attachment. 2. Periodontal specific tissue engineering. 3. Various commercially available membrane/guided tissue regeneration in the market with its advantages and disadvantages and their characteristics. 4. Recent advancement of membrane as regenerative therapy on periodontal disease. In addition, this review is presented to give an outlook for promising regenerative therapy as a part of developing knowledge and skills to treat periodontal disease.
APA, Harvard, Vancouver, ISO, and other styles
4

Villar, Cristina C., and David L. Cochran. "Regeneration of Periodontal Tissues: Guided Tissue Regeneration." Dental Clinics of North America 54, no. 1 (2010): 73–92. http://dx.doi.org/10.1016/j.cden.2009.08.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Goker, Funda, Lena Larsson, Massimo Del Fabbro, and Farah Asa’ad. "Gene Delivery Therapeutics in the Treatment of Periodontitis and Peri-Implantitis: A State of the Art Review." International Journal of Molecular Sciences 20, no. 14 (2019): 3551. http://dx.doi.org/10.3390/ijms20143551.

Full text
Abstract:
Background: Periodontal disease is a chronic inflammatory condition that affects supporting tissues around teeth, resulting in periodontal tissue breakdown. If left untreated, periodontal disease could have serious consequences; this condition is in fact considered as the primary cause of tooth loss. Being highly prevalent among adults, periodontal disease treatment is receiving increased attention from researchers and clinicians. When this condition occurs around dental implants, the disease is termed peri-implantitis. Periodontal regeneration aims at restoring the destroyed attachment apparatus, in order to improve tooth stability and thus reduce disease progression and subsequent periodontal tissue breakdown. Although many biomaterials have been developed to promote periodontal regeneration, they still have their own set of disadvantages. As a result, regenerative medicine has been employed in the periodontal field, not only to overcome the drawbacks of the conventional biomaterials but also to ensure more predictable regenerative outcomes with minimal complications. Regenerative medicine is considered a part of the research field called tissue engineering/regenerative medicine (TE/RM), a translational field combining cell therapy, biomaterial, biomedical engineering and genetics all with the aim to replace and restore tissues or organs to their normal function using in vitro models for in vivo regeneration. In a tissue, cells are responding to different micro-environmental cues and signaling molecules, these biological factors influence cell differentiation, migration and cell responses. A central part of TE/RM therapy is introducing drugs, genetic materials or proteins to induce specific cellular responses in the cells at the site of tissue repair in order to enhance and improve tissue regeneration. In this review, we present the state of art of gene therapy in the applications of periodontal tissue and peri-implant regeneration. Purpose: We aim herein to review the currently available methods for gene therapy, which include the utilization of viral/non-viral vectors and how they might serve as therapeutic potentials in regenerative medicine for periodontal and peri-implant tissues.
APA, Harvard, Vancouver, ISO, and other styles
6

Malhotra, Ranjan, Anoop Kapoor, Vishakha Grover, Nitin Verma, and Jasjit Kaur Sahota. "Future of Periodontal Regeneration." Journal of Oral Health and Community Dentistry 4, Spl (2010): 38–47. http://dx.doi.org/10.5005/johcd-4-spl-38.

Full text
Abstract:
ABSTRACT The management of periodontal defects has been an ongoing challenge in clinical periodontics. In the recent past, attention has been focused more on regenerative and reconstructive therapies i.e. bone grafts, guided tissue regeneration, root conditioning, polypeptide growth factors, rather than on respective therapies. These therapeutic measures are shown to be limited in the predictability of healing and regenerative response in the modern clinical practice because oral environment presents several complicating factors that border regeneration. The 21st century appears to represent a time in history when there is a convergence between clinical dentistry and medicine, human genetics, developmental and molecular biology, biotechnology, bioengineering, and bioinformatics, resulting in the emergence of novel regenerative therapeutic approaches viz. tissue engineering, gene therapy and RNA interference. The focus of this review paper is to furnish and update the current knowledge of periodontal tissue engineering, gene therapy and RNA interference i.e. the future of periodontal regeneration.
APA, Harvard, Vancouver, ISO, and other styles
7

Carmagnola, Daniela, Gaia Pellegrini, Claudia Dellavia, Lia Rimondini, and Elena Varoni. "Tissue engineering in periodontology: Biological mediators for periodontal regeneration." International Journal of Artificial Organs 42, no. 5 (2019): 241–57. http://dx.doi.org/10.1177/0391398819828558.

Full text
Abstract:
Teeth and the periodontal tissues represent a highly specialized functional system. When periodontal disease occurs, the periodontal complex, composed by alveolar bone, root cementum, periodontal ligament, and gingiva, can be lost. Periodontal regenerative medicine aims at recovering damaged periodontal tissues and their functions by different means, including the interaction of bioactive molecules, cells, and scaffolds. The application of growth factors, in particular, into periodontal defects has shown encouraging effects, driving the wound healing toward the full, multi-tissue periodontal regeneration, in a precise temporal and spatial order. The aim of the present comprehensive review is to update the state of the art concerning tissue engineering in periodontology, focusing on biological mediators and gene therapy.
APA, Harvard, Vancouver, ISO, and other styles
8

Ledesma-Martínez, Edgar, Víctor Manuel Mendoza-Núñez, and Edelmiro Santiago-Osorio. "Mesenchymal Stem Cells for Periodontal Tissue Regeneration in Elderly Patients." Journals of Gerontology: Series A 74, no. 9 (2018): 1351–58. http://dx.doi.org/10.1093/gerona/gly227.

Full text
Abstract:
Abstract Mesenchymal stem cell (MSC) grafting is a highly promising alternative strategy for periodontal regeneration in periodontitis, which is one of the primary causes of tooth loss in the elderly. However, aging progressively decreases the proliferative and differentiation potential of MSCs and diminishes their regenerative capacity, which represents a limiting factor for their endogenous use in elderly patients. Therefore, tissue regeneration therapy with MSCs in this age group may require a cellular source without the physiological limitations that MSCs exhibit in aging. In this sense, exogenous or allogeneic MSCs could have a better chance of success in regenerating periodontal tissue in elderly patients. This review examines and synthesizes recent data in support of the use of MSCs for periodontal regenerative therapy in patients. Additionally, we analyze the progress of the therapeutic use of exogenous MSCs in humans.
APA, Harvard, Vancouver, ISO, and other styles
9

Tobita, Morikuni, and Hiroshi Mizuno. "Periodontal Disease and Periodontal Tissue Regeneration." Current Stem Cell Research & Therapy 5, no. 2 (2010): 168–74. http://dx.doi.org/10.2174/157488810791268672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Munjal, Neha, Shalini Kapoor, Amit Bhardwaj, Gaurav Thakur, and Preeti Karhana. "Regeneration Therapy in Furcation Defect." Journal of Evolution of Medical and Dental Sciences 10, no. 15 (2021): 1091–94. http://dx.doi.org/10.14260/jemds/2021/233.

Full text
Abstract:
One of the main objectives of periodontal therapy is to regenerate tissues lost as a result of periodontal disease.1 Regeneration is the growth and differentiation of the new cells and intercellular substances to form its precursor or regeneration occurs through same type of tissue that has been destroyed from same type of precursor. It is a continuous-physiological phenomenon of new cells along with tissues which are constantly formed and manifested by mitotic activity in epithelium and connective tissue, new bone formation, and continuous cementum deposition. Histological and clinical studies have reported the potential of guided tissue regeneration (GTR) to regenerate alveolar bone, cementum and the periodontal ligament.2,3 The furcation area represents a unique periodontal site with specific anatomic and pathogenic characteristics and with important clinical and therapeutic implications. The progression of chronic inflammation during periodontitis may affect the bifurcation or trifurcation of multirooted teeth. Furcation morphology may restrict access for adequate debridement and root instrumentation and may have a reduced source of available cells and blood supply from the periodontal ligament and bone defect. One important factor for successful regeneration at furcation and nonfurcation sites is the amount of periodontium that remains apical and lateral to the defect. Coronal migration of cells originating from the periodontal ligament and bone marrow spaces is particularly critical to the healing outcome following periodontal regenerative procedures in furcation defects.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Periodontal tissue regeneration"

1

Mondésert, Hugues. "Mineralization of PLGA nanofibers for periodontal tissue regeneration." Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/15298.

Full text
Abstract:
Mestrado em Ciência e Engenharia de Materiais
Periodontal diseases induce a loss of soft and hard tissues surrounding the teeth after inflammation. Defects created by the infection would be replaced by the synthetic scaffold allowing progressive tissue regeneration. Mineralized PLGA (poly(lactic-­‐co-­‐glycolic acid)) nanofibers developed by electrospinningor jet spraying techniques are efficient biomaterials to maintain temporarily a physical structure and to enhance biocompatibility for hard tissue regeneration. The aim of this work was to mineralize PLGA nanofibers by two different methods: Simulated Body Fluid (SBF) immersion and projection by jet spraying (JS). SBF method consists in soaking PLGA matrices intohigh ions concentrated solutions (SBFx1 or SBFx5) to deposit mineral layers. With the new JS technique, we target a formation of a nanocomposite of PLGA and hydroxyapatite nanoparticles (nHA): first with the help of a blend solution (PLGA + nHA) directly projected (JS) and then with a simultaneous co projection of PLGA solution and nHA suspension in water (Co-­‐JS). From material characterization perspective, samples produced by SBFx1 protocol showed a very weak mineral deposition, low crystalline sodium chloride whereas SBFx5 solutions allowed the formation of a consequent CaP mineral layer on electrospun PLGA matrices. SEM images allowed the observation of different mineral structures strongly depending on SBF concentration and immersion time. XRD patterns confirmed the presence of HA into JS PLGA matrices. Morphologically, JS scaffolds varied with the concentration of HA nanoparticles incorporated into the initial mixture. HA nanoparticles were successfully incorporated inside the polymer fibers with the first Jet spraying technique (JS) whereas nHAs were successfully deposited on the surface of the PLGA fibers with Co JS method.
A doença periodontal induz uma inflamação que pode levar à destruição dos tecidos de suporte do dente. A degradação provocada pela doença pode ser tratada com o recurso a suportes sintéticos que permitam a regeneração progressiva dos tecidos. As nanofibras de ácido polilactico co-­‐glicolico (PLGA), mineralizadas, produzidas por electrofiação ou pela técnica de pulverização por jacto, são biomateriais adequados para funcionarem como suporte físico temporário e assegurarem a biocompatibilidade necessária à regeneração de tecidos. O presente trabalho tem como objetivo o estudo da mineralização de nano-­‐fibras de PLGA para optimizar a regeneração de tecidos duros. São propostos dois métodos de mineralização: o método baseado no fluido fisiológico simulado (SBF) e o método baseado na pulverização por jacto (JS). A técnica de SBF consiste em mergulhar matrizes de PLGA, produzidas por electrofiação, numa solução concentrada de sais ao passo que a técnica de JS consiste em pulverizar uma suspensão preparada com nanopartículas de hidroxiapatite (Ca5(PO4)3(OH), HA) e uma solução polimérica. Os materiais produzidos foram caracterizados por difração de Raios-­‐ X e por microscopia electrónica de varrimento (MEV).Para as amostras processadas pela técnica de SBF os resultados de DRX evidenciaram a presença de fosfatos de cálcio de baixa ristalinidade, correspondentes à fase de hidroxiapatite. As imagens de MEV permitiram observar a formação de estruturas minerais fortemente dependentes do tempo de imersão. Nas matrizes de PLGA tratadas por JS, a DRX confirmou a presença de HA e a MEV revelou que a morfologia das amostras depende da concentração das nanopartículas de HA adicionadas à solução polimérica inicial. O método de SBF permitiu uma deposição superficial de fosfatos de cálcio ao passo que, pelo método de JS, foi possível incorporar nanopartículas de HA no seio da matriz polimérica. A combinação dos dois métodos parece pois ser uma técnica promissora para fabricar suportes mineralizados para regeneração de tecido periodontal.
APA, Harvard, Vancouver, ISO, and other styles
2

Gottlow, Jan. "New attachment formation by guided tissue regeneration." Göteborg : Dept. of Periodontology, University of Göteborg, 1986. http://catalog.hathitrust.org/api/volumes/oclc/17242123.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mayfield, Lisa. "Regeneration in periodontal and endosseous implant treatment." Malmö, Sweden : Dept. of Periodontology, Faculty of Odontology, Lund University, 1998. http://catalog.hathitrust.org/api/volumes/oclc/39457632.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pereira, Sergio Luis da Silva. "Avaliação histologica e histometrica do uso de membramas não reabsorviveis e reabsorviveis em defeitos periodontais cirurgicamente criados em cães." [s.n.], 1999. http://repositorio.unicamp.br/jspui/handle/REPOSIP/290833.

Full text
Abstract:
Orientadores: Enilson Antonio Sallum, Antonio Wilson Sallum
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba
Made available in DSpace on 2018-07-26T05:10:48Z (GMT). No. of bitstreams: 1 Pereira_SergioLuisdaSilva_D.pdf: 3339204 bytes, checksum: 5e8546b985b4441bbc62f16e7bbb50a7 (MD5) Previous issue date: 1999
Resumo: O objetivo deste trabalho foi comparar, histológica e histometricamente, o processo de cura de defeitos tipo deiscência tratados pela técnica de regeneração tecidual guiada (RTG) com membranas reabsorvíveis de ácido poliláctico e não reabsorvíveis de politetrafluoroetileno expandido (PTFE-e). Seis cães adultos fêmeas de raça indefinida foram utilizados. Defeitos ósseos tipo deiscência foram criados cirurgicamente nas raízes distais dos terceiros e quartos pré molares mandibulares de ambos os lados e expostos ao acúmulo de placa por 3 meses. Após este período, os defeitos foram aleatoriamente designados para um dos tratamentos: RTG com membrana reabsorvível de ácido poliláctico (Grupo 1), RTG com membrana não reabsorvível de PTFE-e (Grupo 2), raspagem e alisamento radicular manual com acesso cirúrgico (Grupo 3) e não tratado (Grupo 4). Após 3 meses do segundo procedimento cirúrgico, os cães foram sacrificados e os espécimes processados para permitir análise histológica e histométrica, incluindo. os seguintes parâmetros: extensão linear do epitélio sulcular e juncional, adaptação do tecido conjuntivo, novo cemento, extensão vertical do novo osso e nova área óssea. Uma extensão linear de novo cemento estatisticamente superior (P<0.05) foi observada nos sítios tratados pela RTG, independente do tipo de membrana utilizada, em comparação com o Grupo 3. Não houve diferença estatisticamente significante entre o Grupo 1 e 2 em todos os parâmetros avaliados, exceto em relação à área de novo osso. O grupo 1 apresentou uma área de novo osso estatisticamente superior a dos outros grupos (P<0.05). Dentro dos limites deste estudo pôde-se concluir que ambas as membranas foram igualmente efetivas em promover nova formação cementária e que a membrana reabsorvível de ácido poliláctico (não-suturada) providenciou uma maior área óssea em relação à membrana não reabsorvível de PTFE-e
Abstract: The goal of this investigation was to compare histollogically and histometrically the healing process of dehiscence-type defects treated by guided tissue regeneration (GTR) with resorbable polylactic acid membranes and nonresorbable ePTFE membranes. Six mongrel dogs were used. Buccal osseous dehiscences were surgically created on the distal roots of the mandibular third and fourth premolars. The defects were exposed to plaque accumulation for 3 months. After this period, the defects were randomly assigned to one ofthe treatments: GTR with resorbable membrane (GTR1), GTR with nonresorbable membrane (GTR2), open flap debridement (OFD) and non-treated control (NTC). After 3 months of healing, the dogs were sacrificed and the blocks were processed. The histometric parameters evaluated included: length of sulcular and junctional epithelium, connective tissue adaptation, new cementum, new bone (vertical component) and new bone area. A superior length of new cementum was observed in the sites treated by GTR, regardless of the type of barrier used (P<0.05), in comparison with OFD. No statistically significant differences were found between GTRl and GTR2 in all the parameters with the exception ofbone area. GTRl presented a greater bone area (P<0.05) when compared to GTR2, OFD and NTC. Within the limits of this study, it can be concluded that both batriers are equally effective for new cementum formation. The resorbable membrane (non-sutured) may provide a better osseous response than the nonresorbable membrane
Doutorado
Periodontia
Doutor em Clínica Odontológica
APA, Harvard, Vancouver, ISO, and other styles
5

Borges, Ricardo Jorge Morais. "Regeneração periodontal de defeitos infra-ósseos." Master's thesis, [s.n.], 2015. http://hdl.handle.net/10284/5276.

Full text
Abstract:
Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Medicina Dentária
A doença periodontal afeta grande parte da população, e a sua progressão pode levar à perda de inserção dos tecidos conetivos do periodonto assim como perda óssea. O tratamento periodontal procura essencialmente dois objetivos: impedir a progressão da doença e reconstruir os tecidos periodontais perdidos. O tratamento regenerativo surge como método para alcançar este segundo objetivo. Neste âmbito, ao longo do tempo têm sido desenvolvidas diversas técnicas regenerativas, sendo as proteínas de matriz de esmalte e a regeneração tecidular guiada as mais investigadas em ensaios clínicos. A revisão bibliográfica inicialmente foi realizada no motor de busca PubMed recorrendo a palavras-chave como: “Periodontal Regeneration”, “Intrabony Defects”, “Guided Tissue Regeneration” e “Enamel Matrix Proteins” tendo por base meta-análises publicadas, maioritariamente, nos últimos 10 anos. Posteriormente foram incluídos artigos como base litúrgica para abordar a parte teórica deste trabalho, sendo estes publicados entre 1958 e 2015.
Periodontal disease affects a large population and its progression may lead to the loss of attachment of periodontal connective tissue as well as bone loss. The periodontal treatment essentially seeks two objectives: preventing disease progression and rebuild the lost periodontal tissues. The regenerative treatment arises as a method to achieve this second goal. In this context, from time to time there have been developed several regenerative techniques, being the proteins of enamel matrix and guided tissue regeneration, the most investigated in clinical trials. The literature review was conducted initially in the search engine PubMed using keywords like "Periodontal Regeneration", "Intrabony Defects", "Guided Tissue Regeneration" and "Enamel Matrix Proteins" on the basis of published meta-analysis, mostly in the last 10 years. Later there were included items as a liturgical basis for in order to adress the theoretical part of this study, which were published between 1958 and 2015.
APA, Harvard, Vancouver, ISO, and other styles
6

Hattingh, André Christiaan. "A protocol to study tissue regeneration in alveolar bony defects /." Access to E-Thesis, 1999. http://upetd.up.ac.za/thesis/available/etd-01052007-135643/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

França, Isabela Lima 1987. "Técnica de retalho semilunar posicionado coronariamente com ou sem associação à proteína derivada das matriz do esmalte para o tratamento de recessões gengivais : estudo clínico controlado randomizado." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/290818.

Full text
Abstract:
Orientador: Enilson Antonio Sallum
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba
Made available in DSpace on 2018-08-26T23:34:09Z (GMT). No. of bitstreams: 1 Franca_IsabelaLima_M.pdf: 1330190 bytes, checksum: 6782efacdca31e69f907222817356c7c (MD5) Previous issue date: 2015
Resumo: O objetivo deste estudo foi avaliar, clinicamente, a utilização do Retalho Semilunar Posicionado Coronariamente (RSPC) para tratamento de recessões gengivais, com ou sem associação à proteína derivada da matriz do esmalte (EMD). Foram selecionados 30 pacientes, que foram randomizados e alocados em dois grupos: teste (RSPC + EMD) e controle (RSPC sozinho). Para serem incluídos no estudo, os indivíduos deveriam apresentar recessões gengivais vestibulares localizadas classe I de Miller com altura maior ou igual a 2,0mm e menor que 4,0 mm, em caninos ou pré-molares superiores. Parâmetros clínicos avaliados: altura da recessão gengival (ARG), largura da recessão gengival (LRG), nível de inserção clínica (NIC), profundidade de sondagem (PS), altura de tecido queratinizado (ATQ), espessura de tecido queratinizado (ETQ) e altura (AP) e largura (LP) das papilas mesial e distal, além de índice de placa (IPL) e índice gengival (IG). Estes parâmetros foram medidos nos seguintes períodos: baseline, 90 dias e 180 dias após o procedimento cirúrgico. Nenhuma diferença estatisticamente significante foi observada entre os grupos em relação à redução da retração gengival com 6 meses de acompanhamento, embora tenha sido encontrada maior porcentagem de cobertura radicular no grupo RSPC+EMD (91%), quando comparado ao RSPC (87%) (p>0,05). Cobertura radicular completa foi obtida em 60% dos sítios no RSPC enquanto no grupo RSPC+EMD foi observada em 66,67% dos sítios. Dentro dos limites do presente estudo pôde-se concluir que o RSPC, associado ou não a EMD, levou a redução da recessão gengival, sem diferença estatística entre os grupos, após 6 meses de acompanhamento pós-operatório
Abstract: The aim of this study was to evaluate clinically the use of the Semilunar Coronally Positioned Flap (SCPF) for the treatment of gingival recessions, with or without Enamel Matrix Derivative (EMD). Thirty patients were selected, randomized and allocated in two groups: test (SCPF + EMD) and control (SCPF alone). To attend the study, subjects should present buccal Miller class I gingival recessions with height greater than or equal to 2.0 mm and less than to 4.0 mm in maxillary canines or premolars. Clinical parameters evaluated: gingival recession height (GRH), gingival recession width (GRW), clinical attachment level (CAL), probing depth (PD), height (HKT) and thickness (TKT) of keratinized tissue and papillas height (HP) and width (LP), as well as plaque and gingival index. These data were collected at baseline, 90 days and 180 days after surgery. No statistically significant difference was observed between the groups regarding the reduction of gingival recession after 6 months of follow-up, although a higher percentage of root coverage was found in SCPF + EMD group (91%), when compared to the SCPF (87%) (p> 0.05). Complete root coverage was observed in 60% of the sites of the control group (SCPF alone) and in 66,67% of the sites of the test group (SCPF+EMD). Within the limits of this study it was concluded that SCPF, associated or not with EMD may provide a reduction in gingival recession, with no statistical difference between groups
Mestrado
Periodontia
Mestra em Clínica Odontológica
APA, Harvard, Vancouver, ISO, and other styles
8

Moore, Edward Andrew. "Cell attachment and spreading on physical barriers used in periodontal guided tissue regeneration /." Oklahoma City : [s.n.], 2002. http://library.ouhsc.edu/epub/theses/Moore-William-A.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mizuno, Hirokazu, Hideaki Kagami, Junji Mase, Daiki Mizuno, and Minoru Ueda. "Efficacy of Membranous Cultured Periosteum for the Treatment of Patients with Severe Periodontitis: a Proof-of-Concept Study." Nagoya University School of Medicine, 2010. http://hdl.handle.net/2237/12910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gay, Isabel C. "Isolation and characterization of human periodontal ligament stem cells." Thesis, Birmingham, Ala. : University of Alabama at Birmingham, 2007. http://www.mhsl.uab.edu/dt/2007m/gay.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Periodontal tissue regeneration"

1

Regenerative dentistry. Morgan & Claypool, 2010.

APA, Harvard, Vancouver, ISO, and other styles
2

Gottlow, Jan. New attachment formation by guided tissue regeneration. University of Göteborg, Faculty of Odontology, Dept. of Periodontology, 1986.

APA, Harvard, Vancouver, ISO, and other styles
3

Periodontal regeneration enhanced: Clinical applications of enamel matrix proteins. Quintessence Pub. Co., 1999.

APA, Harvard, Vancouver, ISO, and other styles
4

Implant and regenerative therapy. Wiley-Blackwell, 2009.

APA, Harvard, Vancouver, ISO, and other styles
5

Dumitrescu, Alexandrina L. Chemicals in Surgical Periodontal Therapy. Springer-Verlag Berlin Heidelberg, 2011.

APA, Harvard, Vancouver, ISO, and other styles
6

Raigrodski, Ariel J. Soft tissue management: The restorative perspective : putting concepts into practice. Quintessence Publishing Co, Inc., 2015.

APA, Harvard, Vancouver, ISO, and other styles
7

Debby, Hwang, and Saadoun Andre P, eds. Implant site development. Wiley-Blackwell, 2012.

APA, Harvard, Vancouver, ISO, and other styles
8

Dibart, Serge, and Jean-Pierre Dibart. Practical osseous surgery in periodontics and implant dentistry. Wiley-Blackwell, 2011.

APA, Harvard, Vancouver, ISO, and other styles
9

M, Polson Alan, ed. Periodontal regeneration: Current status and directions. Quintessence Books, 1994.

APA, Harvard, Vancouver, ISO, and other styles
10

Anders, Hugoson, Lundgren Dan, Lindgren Birgitta, and Institute for Postgraduate Dental Education (Jönköping, Sweden), eds. Guided periodontal tissue regeneration: Factors significant for the predictability of a successful treatment result. Förlagshuset Gothia, 1995.

APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Periodontal tissue regeneration"

1

Dibart, Serge. "Guided Tissue Regeneration." In Practical Periodontal Plastic Surgery. John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119014775.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ivanovski, Saso, P. Mark Bartold, Stan Gronthos, and Dietmar W. Hutmacher. "Periodontal tissue engineering." In Tissue Engineering and Regeneration in Dentistry. John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119282181.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dumitrescu, Alexandrina L. "Guided Tissue Regeneration Barriers." In Chemicals in Surgical Periodontal Therapy. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18225-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rath, Avita, Preena Sidhu, Priyadarshini Hesarghatta Ramamurthy, Bennete Aloysius Fernandesv, Swapnil Shankargouda, and Sultan Orner Sheriff. "Gingiva and Periodontal Tissue Regeneration." In Current Advances in Oral and Craniofacial Tissue Engineering. CRC Press, 2020. http://dx.doi.org/10.1201/9780429423055-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Iranparvar, Aysel, Amin Nozariasbmarz, Sara DeGrave, and Lobat Tayebi. "Tissue Engineering in Periodontal Regeneration." In Applications of Biomedical Engineering in Dentistry. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21583-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dumitrescu, Alexandrina L. "Enamel Matrix Derivative for Periodontal Tissue Regeneration." In Chemicals in Surgical Periodontal Therapy. Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18225-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tanaka, Eiji, Toshihiro Inubushi, and Tarek El-Bialy. "Application of LIPUS to Periodontal Tissue Regeneration." In Therapeutic Ultrasound in Dentistry. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-66323-4_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Diogenes, Anibal, Vanessa Chrepa, and Nikita B. Ruparel. "Clinical strategies for dental and periodontal disease management." In Tissue Engineering and Regeneration in Dentistry. John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781119282181.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tobita, Morikuni, and Hiroshi Mizuno. "Adipose-Derived Stem Cells for Periodontal Tissue Regeneration." In Adipose-Derived Stem Cells. Humana Press, 2010. http://dx.doi.org/10.1007/978-1-61737-960-4_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Du, Juan, and Minqi Li. "Functions of Periostin in Dental Tissues and Its Role in Periodontal Tissue Regeneration." In Advances in Experimental Medicine and Biology. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6657-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Periodontal tissue regeneration"

1

Setyawati, Ernie Maduratna, and Nahdhiya Amalia Puspita Klana. "Concise review: Periodontal tissue regeneration using pericardium membrane as guided bone regeneration." In THE 2ND INTERNATIONAL CONFERENCE ON PHYSICAL INSTRUMENTATION AND ADVANCED MATERIALS 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0036635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Andriani, Ika, Atiek Driana Rahmawati, Maulida Nurhasanah, and M. Ihza Humanindito. "The Effects of Antimicrobial Peptide Gel on Angiogenesis and Fibroblast Cells in Periodontal Tissue Regeneration in a Periodontitis Rats Model Exposed by Nicotine." In 4th International Conference on Sustainable Innovation 2020–Health Science and Nursing (ICoSIHSN 2020). Atlantis Press, 2021. http://dx.doi.org/10.2991/ahsr.k.210115.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Unrau, Bernard. "GT (Guided Tissue Regeneration) Incorporating a Modified Microgravity Surgical Chamber and Kavo-3-Mini Unit for the Treatment of Advanced Periodontal Disease Encountered in Extended Space Missions." In International Conference On Environmental Systems. SAE International, 1991. http://dx.doi.org/10.4271/911337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography