Academic literature on the topic 'Peripheral sensory neurons'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Peripheral sensory neurons.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Peripheral sensory neurons"
Shin, Grace Ji-eun, Maria Elena Pero, Luke A. Hammond, Anita Burgos, Atul Kumar, Samantha E. Galindo, Tanguy Lucas, Francesca Bartolini, and Wesley B. Grueber. "Integrins protect sensory neurons in models of paclitaxel-induced peripheral sensory neuropathy." Proceedings of the National Academy of Sciences 118, no. 15 (April 5, 2021): e2006050118. http://dx.doi.org/10.1073/pnas.2006050118.
Full textMcHugh, Jeannette M., and William B. McHugh. "Diabetes and Peripheral Sensory Neurons." AACN Clinical Issues: Advanced Practice in Acute and Critical Care 15, no. 1 (January 2004): 136–49. http://dx.doi.org/10.1097/00044067-200401000-00012.
Full textMarvaldi, Letizia, Nicolas Panayotis, Stefanie Alber, Shachar Y. Dagan, Nataliya Okladnikov, Indrek Koppel, Agostina Di Pizio, et al. "Importin α3 regulates chronic pain pathways in peripheral sensory neurons." Science 369, no. 6505 (August 13, 2020): 842–46. http://dx.doi.org/10.1126/science.aaz5875.
Full textOakley, R. A., A. S. Garner, T. H. Large, and E. Frank. "Muscle sensory neurons require neurotrophin-3 from peripheral tissues during the period of normal cell death." Development 121, no. 5 (May 1, 1995): 1341–50. http://dx.doi.org/10.1242/dev.121.5.1341.
Full textTucker, Budd A., and Karen M. Mearow. "Peripheral Sensory Axon Growth: From Receptor Binding to Cellular Signaling." Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 35, no. 5 (November 2008): 551–66. http://dx.doi.org/10.1017/s0317167100009331.
Full textYadav, Smita, Susan H. Younger, Linghua Zhang, Katherine L. Thompson-Peer, Tun Li, Lily Y. Jan, and Yuh Nung Jan. "Glial ensheathment of the somatodendritic compartment regulates sensory neuron structure and activity." Proceedings of the National Academy of Sciences 116, no. 11 (February 25, 2019): 5126–34. http://dx.doi.org/10.1073/pnas.1814456116.
Full textHanani, Menachem. "How Is Peripheral Injury Signaled to Satellite Glial Cells in Sensory Ganglia?" Cells 11, no. 3 (February 1, 2022): 512. http://dx.doi.org/10.3390/cells11030512.
Full textMcCallum, J. Bruce, Wai-Meng Kwok, Damir Sapunar, Andreas Fuchs, and Quinn H. Hogan. "Painful Peripheral Nerve Injury Decreases Calcium Current in Axotomized Sensory Neurons." Anesthesiology 105, no. 1 (July 1, 2006): 160–68. http://dx.doi.org/10.1097/00000542-200607000-00026.
Full textTanaka, Yasumusa, Yoshikazu Yoshida, and Minoru Hirano. "CGRP-immunoreactive cells supplying laryngeal sensory nerve fibres in the cat's nodose ganglion." Journal of Laryngology & Otology 107, no. 10 (October 1993): 916–19. http://dx.doi.org/10.1017/s0022215100124788.
Full textGheorghe, Roxana-Olimpia, Andreea Violeta Grosu, Melania Bica-Popi, and Violeta Ristoiu. "The Yin/Yang Balance of Communication between Sensory Neurons and Macrophages in Traumatic Peripheral Neuropathic Pain." International Journal of Molecular Sciences 23, no. 20 (October 16, 2022): 12389. http://dx.doi.org/10.3390/ijms232012389.
Full textDissertations / Theses on the topic "Peripheral sensory neurons"
Nguyen, Hoai T. "Spontaneous Dynamics and Information Transfer in Sensory Neurons." Ohio University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1343516201.
Full textSpigelman, Igor. "Sensory transmission in peripheral neurons : effects of K+ channel blockers and autacoids." Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/29437.
Full textMedicine, Faculty of
Anesthesiology, Pharmacology and Therapeutics, Department of
Graduate
Bongenhielm, Ulf. "Structure and function of trigeminal primary sensory neurons after peripheral nerve injury /." Stockholm, 1999. http://diss.kib.ki.se/1999/91-628-3954-3/.
Full textCao, Xian. "Role of NADPH oxidase in peripheral sympathetic and sensory neurons in hypertension." Diss., Connect to online resource - MSU authorized users, 2008.
Find full textCalls, Cobos Aina. "Molecular mechanisms involved in Platinum-Induced Peripheral Neuropathy. An exploratory study." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/673816.
Full textLa neuropatía periférica inducida por platinos (NPIP) es uno de los efectos adversos mas frecuentes del cisplatino, el oxaliplatino i el carboplatino, fármacos de tipo platino administrados para el tratamiento de neoplasias malignas altamente prevalentes. Debido a su severidad, la NPIP puede causar reducciones en la dosis de quimioterapia e incluso el cese precoz del tratamiento, hecho que influye negativamente en la probabilidad de supervivencia de los pacientes oncológicos. Se ha demostrado que la severidad de la NPIP se correlaciona con la cantidad de platino acumulado en las neuronas sensoriales de los ganglios de la raíz dorsal (GRD). Así mismo, se han descrito varios mecanismos fisiopatológicos involucrados en la aparición de la NPIP, incluyendo la lesión del ADN y las mitocondrias de dichas neuronas, juntamente con una alteración en sus canales iónicos, entre otros. A pesar de los muchos esfuerzos de los clínicos e investigadores para encontrar un tratamiento frente la NPIP, los resultados obtenidos en modelos experimentales no se han podido trasladar a la clínica de forma exitosa. El objetivo de esta tesis doctoral era determinar los mecanismos moleculares mas relevantes involucrados en el desarrollo de la NPIP y así poder encontrar nuevas dianas terapéuticas. Mediante secuenciación del ARN de células aisladas, hemos estudiado el perfil de expresión génica de las neuronas sensoriales del GRD en 2 modelos de ratón de NPIP, óptimamente caracterizados a nivel neurofisiológico. Uno de los modelos se desarrolló a partir de la administración de cisplatino y el otro, de oxaliplatino. Hemos demostrado que el tratamiento con cisplatino causa una lesión permanente en el ADN de las neuronas sensoriales, juntamente con un incremento en la expresión del gen Cdkn1a y su producto proteico p21. Mientras que las vías de apoptosis no se activan en respuesta a la lesión del ADN, las neuronas sensoriales sí expresan marcadores de senescencia celular como la enzima -galactosidasa, la fosforilación de la histona H2AX y la proteína Nfkb-p65. Estos cambios perduran incluso 6 semanas después de finalizar el tratamiento con cisplatino. Referente al estudio con oxaliplatino, los resultados de la secuenciación muestran un incremento en la expresión de los genes Lxn y Klk5, juntamente con una disminución de la expresión del gen Kyat3, en los animales tratados con oxaliplatino. Los tres genes están relacionados con procesos de inflamación, modulación del sistema inmunitario y dolor. A pesar de que no pudimos demostrar un aumento de los productos proteicos de los genes Klk5 y Lxn en las neuronas sensoriales, los niveles de citoquinas pro-inflamatorias estaban elevados en el GRD y el nervio ciático de los ratones tratados con oxaliplatino, juntamente con un incremento en el numero de células infiltradas. En base a estos resultados, analizamos la posible activación de la respuesta de muerte celular immunogénica, la cual se activa en células tumorales en respuesta al tratamiento con oxaliplatino. No obstante, no encontramos evidencias de la activación de esta vía en el GDR. Por otro lado, y a diferencia de los resultados obtenidos con el cisplatino, la lesión del ADN producida por el oxaliplatino es rápidamente reparada al finalizar el tratamiento, hecho que pudiera explicar la falta de establecimiento del fenotipo senescente. Teniendo en cuenta que los resultados obtenidos con los modelos animales apuntan a que la senescencia podría jugar un papel importante en el desarrollo de la NPIP, finalmente desarrollamos un modelo in vitro de senescencia neuronal inducida por cisplatino, el cual nos servirá para testar nuevas dianas terapéuticas de una forma rápida y económica.
Platinum-Induced Peripheral Neuropathy (PIPN) is a frequent serious dose-limiting adverse event of the platinum-based cytostatic agent cisplatin, oxaliplatin and carboplatin, which are given as a first line treatment against high prevalent cancers. Due to its severity, PIPN often causes cancer treatment reduction or even cessation, thus decreasing the survival probabilities of oncologic patients. It has been extensively reported that PIPN severity correlates with the amount of platinum drugs cumulated in sensory neurons of the dorsal root ganglia (DRG). Several pathophysiological mechanisms have been described for PIPN development, including DNA damage, mytotoxicity and channels dysfunction in DRG sensory neurons, among others. Despite the efforts of clinicians and researchers during the last decades, no successful translation from pre-clinical settings to the clinics has been achieved. The aim of this study was to determine the exact molecular mechanisms involved in the development of PIPN following a non-hypothesis driven methodology to find new therapeutical targets. By single-cell RNA sequencing (scRNA-seq), we studied the transcriptomic profile of DRG sensory neurons from 2 well characterized neurophysiological mice models of PIPN: one induced by cisplatin administration, and the second by oxaliplatin. We demonstrated that cisplatin treatment induced persistent DNA damage and the up-regulation of the Cdkn1a gene and its protein product p21 in the DRG neuronal population. While apoptosis activation pathways were not observed in DRG sensory neurons of cisplatin-treated mice, these neurons did express several senescence hallmarks, including senescence-associated beta-galactosidase (SA-bGAL), phosphor(p)-H2AX and nuclear Nfkb-p65 proteins. The senescent phenotype seen in sensory neurons persisted up to 6 weeks after cisplatin treatment discontinuation. Regarding oxaliplatin study, results of scRNA-seq showed an up-regulation of Lxn and Klk5 genes, and a down-regulation of the Kyat3 gene in oxaliplatin treated animals, among others. All three genes have been involved in the modulation of inflammatory responses, the immune system and pain behaviors. Although the protein products of Klk5 and Lxn did not appear up-regulated in the DRG of oxaliplatin-treated mice, we did see an increase in the pro-inflammatory cytokine profile in both the DRG and the sciatic nerves of oxaliplatin-treated mice, altogether with increased number of infiltrated cells. Based on these results, we checked for factors involved of the so-called Immunogenic Cell Death (ICD) response, which is activated in tumor cells after oxaliplatin treatment. However, we did not find any evidence of ICD activation in DRG of oxaliplatin-treated mice at any time point evaluated. On the other hand, and in contrast to cisplatin, the rapid repair of DNA damage after oxaliplatin treatment cessation could explain the lack of establishment of a senescence phenotype in the DRG. In vivo data showed that senescence pathways could play a key role in platinum neurotoxicity. Thus, we finally set up an in vitro model of cisplatin-induced neuronal senescence in which to start the screening of potential neuroprotective targets in a cost- and time-effective way.
Universitat Autònoma de Barcelona. Programa de Doctorat en Neurociències
Stötzner, Philip [Verfasser]. "Opioids in neuropathic pain - the role of potassium channels in peripheral sensory neurons / Philip Stötzner." Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2018. http://d-nb.info/1160515018/34.
Full textWiberg, Rebecca. "An exploration of the mechanisms behind peripheral nerve injury." Doctoral thesis, Umeå universitet, Anatomi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-127357.
Full textLuo, Miaw-Chyi, Dong-Qin Zhang, Shou-Wu Ma, Yuan-Yuan Huang, Sam Shuster, Frank Porreca, and Josephine Lai. "An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons." BioMed Central, 2005. http://hdl.handle.net/10150/610210.
Full textAllodi, Ilary. "Changing the Intrinsic Growth Capacity of motor and sensory neurons to promote axonal growth after injury." Doctoral thesis, Universitat Autònoma de Barcelona, 2012. http://hdl.handle.net/10803/96355.
Full textPeripheral nerves injuries result in paralysis, anesthesia and lack of autonomic control of the affected body areas. After injury, axons distal to the lesion are disconnected from the neuronal body and degenerate, leading to denervation of the peripheral organs. Wallerian degeneration creates a microenvironment distal to the injury site that supports axonal regrowth, while the neuron body changes in phenotype to promote axonal regeneration. However, the lack of specificity of nerve regeneration, in terms of motor and sensory axons regrowth, pathfinding and target reinnervation, is one the main shortcomings for recovery. The molecular mechanisms implicated in axonal regeneration and pathfinding after injury are complex, and take into account the cross-talk between axons and glial cells, neurotrophic factors, extracellular matrix molecules and their receptors. For these reasons, we characterized a model that allows us to compare under the same conditions motor and sensory neuron regeneration. We set up an in vitro model, based on organotypic cultures of spinal cord slices and dorsal root ganglia explants from P7 rats, embedded in a collagen matrix. By adding different neurotrophic factors in the collagen matrix, we evaluated the reliability of DRG and spinal cord preparations. Moreover, we also set up a co-culture with dissociated Schwann cells to further mimic the permissive environment of the peripheral nerve. Later, we screened in vitro the different capabilities of trophic factors with promising effect on specific reinnervation of target organs after peripheral nerve regeneration. Trophic factors which promoted in vitro neuritogenesis of sensory and motor neurons were up-regulated in Schwann cells obtained from axotomized sensory and motor branches respectively. We found that FGF-2 (18 kDa) was the trophic factor that exerted the most selective effect in promoting neurite outgrowth of spinal motoneurons both in terms of elongation and arborization. The mechanism underling this effect in neuritogenesis seems related to FGF-2 enhancing the interaction between FGFR-1 and PSA-NCAM. The interaction of these two receptors is important during early stages of neuritogenesis and pathfinding, while integrin alpha7B subunit seems to play a role during neurite stabilization. With the aim to further explore the potential capacity of FGF-2 to selectiveley promote motor regeneration in vivo, we produced a lentiviral (LV) vector to overexpress FGF-2 and we characterized it in vitro and in vivo. Addition of cultured Schwann cells infected with FGF-2 into a collagen matrix embedding spinal cords or DRG significantly increased motor neurite growth but not sensory outgrowth when compared to co-cultures with LV-GFP, thus demonstrating that the LV construct was as effective as direct addition of the trophic factor to selectively promote motor neuron growth. By injecting the LV construct direclty into the sciatic nerve in vivo, we corroborated the localization of the secreted FGF-2 in the basal lamina of Schwann cells. Levels of FGF-2 from homogenated sciatic nerves one week after injection of 1μl LV-FGF-2 were higher than from nerves injected with vehicle or LV-GFP. Therefore, the LV vector can be used in vivo to verify our in vitro results and further study the capacity of FGF-2 to enhance motor nerve regeneration. In the last part of our work, we compare the abilities of Olfactory Enshealting cells and Schwann cells in sustaining in vitro motor and sensory neuritogenesis. Co-culture of cells with DRG explants and spinal cord organotypic slices was set up. SCs were promoting motoneuron growth, whereas OEC were significantly increasing neurite outgrowth in DRGs. In contrast, when OEC were added into motoneuron culture, we saw cell clusters and motoneuron outgrowth inhibition. This behaviour of OEC could be due to the maintained cytoarchitecture of the spinal cord in vitro where astrocytes and endogenous Schwann cells were also present. Interactions of SC, OEC and astrocytes through FGFR1-FGF2-HSPG complex can cause cell clustering. In fact, high levels of HSPG were found into the boundary formations, and this can explain the chemorepellent role of the cluster on neurite outgrowth.
Lucas, Olivier. "Rôle et régulation des co-transporteurs cation-chlorure NKCC1 et KCC3 dans les neurones sensitifs." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20043/document.
Full textChloride homeostasis (CH) is a major component of nerve transmission. Interaction between the neurotransmitter GABA and his receptor, GABAA, allows chloride movements depending on electrochemical potential. In dorsal root ganglia (DRG) sensory neurons, the cation-chloride cotransporter NKCC1 is responsible for intracellular accumulation of chloride ions and depolarizing effects of GABA. After injury, an increase of intracellulaire chloride concentration ([Cl-]i) allows an improvement of neuronal regenerative capacities. In a first time, I worked on regulation of CH by interleukine 6 (IL6) in response to nerve injury. Axotomy of the sciatic nerve induces expression of IL6 and his receptor IL6-Rα in sensory neurons from lombar L4-L5 DRG. Perforated patch measurements of sensory neurons have demonstrated an increase of [Cl-]i depending on IL6 in a sub-population of mechano- and proprioceptors in response to lesion. This regulation is provided by phosphorylation at the neuronal plasma membrane of NKCC1. The cation-chloride cotransporter KCC3 is implicated in a hereditary syndrome leading after birth to sensorymotors defects. This is why I have studied his role in regulation of CH in sensory neurons during development and in adulthood. Data have shown the existence of a peripheral developmental “chloride switch”. This switch is abolished in KCC3-/- sensory neurons, in which a part of neurons has already decreased [Cl-]i. In adulthood, we also observed an [Cl-]i twice as much as WT in 30% of sensory neurons from KCC3-/- mice. This percentage is correlated to the proportion of WT neurons expressing KCC3. These results demonstrate for the first time that KCC3 is implicated in regulation of CH in sensory neurons during development and in adulthood
Books on the topic "Peripheral sensory neurons"
Irina, Kiseleva, and SpringerLink (Online service), eds. Mechanosensitivity of the Nervous System: Forewords by Nektarios Tavernarakis and Pontus Persson. Dordrecht: Springer Science+Business Media B.V., 2009.
Find full textTakao, Kumazawa, Kruger Lawrence, and Mizumura Kazue, eds. The polymodal receptor: A gateway to pathological pain. Amsterdam: Elsevier, 1996.
Find full textDesroches, Julie. Peripheral analgesia involves cannabinoid receptors. Edited by Paul Farquhar-Smith, Pierre Beaulieu, and Sian Jagger. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198834359.003.0034.
Full textPak, Daniel J., and Neel Mehta. Pain Anatomy and Physiology. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190217518.003.0001.
Full textPrice, Chane, Zahid Huq, Eellan Sivanesan, and Constantine Sarantopoulos. Pain Pathways and Pain Physiology. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190457006.003.0001.
Full textMcDougall, Jason J., and Joel A. Vilensky. The innervation of the joint and its role in osteoarthritis pain. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199668847.003.0007.
Full textKerr, Bradley J. The link between an Nav1.7 mutation and erythromelalgia. Edited by Paul Farquhar-Smith, Pierre Beaulieu, and Sian Jagger. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198834359.003.0081.
Full textBook chapters on the topic "Peripheral sensory neurons"
Dray, Andy. "Influences of the Chemical Environment on Peripheral Afferent Neurons." In Cellular Mechanisms of Sensory Processing, 273–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78762-1_17.
Full textNeureiter, Anika, Esther Eberhardt, and Angelika Lampert. "Differentiation of iPS-Cells into Peripheral Sensory Neurons." In Methods in Molecular Biology, 175–88. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-1979-7_11.
Full textCuello, A. C. "Effector Roles of Substance P in Peripheral Branches of Sensory Neurons." In Substance P and Neurokinins, 182–86. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4672-5_60.
Full textSeiger, Å., and C. Ayer-LeLievre. "Neuronal Interactions Between Peripheral Sensory and Central Monoamine Neurons Grafted to the Anterior Eye Chamber." In Processes of Recovery from Neural Trauma, 195–204. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70699-8_17.
Full textSaijilafu, Bo-Yin Zhang, and Feng-Quan Zhou. "In Vivo Electroporation of Adult Mouse Sensory Neurons for Studying Peripheral Axon Regeneration." In Methods in Molecular Biology, 167–75. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0777-9_14.
Full textGoldstein, Ronald S., Oz Pomp, Irina Brokhman, and Lina Ziegler. "Generation of Neural Crest Cells and Peripheral Sensory Neurons from Human Embryonic Stem Cells." In Methods in Molecular Biology, 283–300. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60761-369-5_15.
Full textSeitz, Viola, Philip Stötzner, Dominika Labuz, and Halina Machelska. "Patch Clamp Analysis of Opioid-Induced Kir3 Currents in Mouse Peripheral Sensory Neurons Following Nerve Injury." In Methods in Molecular Biology, 127–37. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0884-5_12.
Full textMoshourab, Rabih, Yvonne Schmidt, and Halina Machelska. "Skin–Nerve Preparation to Assay the Function of Opioid Receptors in Peripheral Endings of Sensory Neurons." In Methods in Molecular Biology, 215–28. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1708-2_17.
Full textDalsgaard, C. J., W. Stains, H. Björklund, A. Haegerstrand, A. Hultgardh-Nilsson, J. Kjartansson, J. Nilsson, and T. Hökfelt. "Sensory Transmitter Candidates and Their Role in the Periphery." In Histochemistry and Cell Biology of Autonomic Neurons and Paraganglia, 39–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72749-8_7.
Full textDubner, R., J. L. K. Hylden, R. L. Nahin, and R. J. Traub. "Neuronal Plasticity in the Superficial Dorsal Horn Following Peripheral Tissue Inflammation and Nerve Injury." In Processing of Sensory Information in the Superficial Dorsal Horn of the Spinal Cord, 429–42. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0825-6_43.
Full textConference papers on the topic "Peripheral sensory neurons"
Benzina, Ouafa, Vivien Szabo, Olivier Lucas, Marie-belle Saab, Thierry Cloitre, Frédérique Scamps, Csilla Gergely, and Marta Martin. "Changes induced by peripheral nerve injury in the morphology and nanomechanics of sensory neurons." In European Conferences on Biomedical Optics, edited by Emmanuel Beaurepaire and Peter T. C. So. SPIE, 2013. http://dx.doi.org/10.1117/12.2032465.
Full textLoCoco, Peter M., Teresa C. Chavera, Raehannah J. Jamshidi, Susan L. Mooberry, Kelly A. Berg, and William P. Clarke. "Abstract P3-12-06: Subpopulations of peripheral sensory neurons are differentially sensitive to the microtubule-targeting agent, paclitaxel." In Thirty-Seventh Annual CTRC-AACR San Antonio Breast Cancer Symposium; December 9-13, 2014; San Antonio, TX. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.sabcs14-p3-12-06.
Full text