Academic literature on the topic 'Peripheral sensory neurons'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Peripheral sensory neurons.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Peripheral sensory neurons"

1

Shin, Grace Ji-eun, Maria Elena Pero, Luke A. Hammond, Anita Burgos, Atul Kumar, Samantha E. Galindo, Tanguy Lucas, Francesca Bartolini, and Wesley B. Grueber. "Integrins protect sensory neurons in models of paclitaxel-induced peripheral sensory neuropathy." Proceedings of the National Academy of Sciences 118, no. 15 (April 5, 2021): e2006050118. http://dx.doi.org/10.1073/pnas.2006050118.

Full text
Abstract:
Chemotherapy-induced peripheral neuropathy (CIPN) is a major side effect from cancer treatment with no known method for prevention or cure in clinics. CIPN often affects unmyelinated nociceptive sensory terminals. Despite the high prevalence, molecular and cellular mechanisms that lead to CIPN are still poorly understood. Here, we used a genetically tractableDrosophilamodel and primary sensory neurons isolated from adult mouse to examine the mechanisms underlying CIPN and identify protective pathways. We found that chronic treatment ofDrosophilalarvae with paclitaxel caused degeneration and altered the branching pattern of nociceptive neurons, and reduced thermal nociceptive responses. We further found that nociceptive neuron-specific overexpression of integrins, which are known to support neuronal maintenance in several systems, conferred protection from paclitaxel-induced cellular and behavioral phenotypes. Live imaging and superresolution approaches provide evidence that paclitaxel treatment causes cellular changes that are consistent with alterations in endosome-mediated trafficking of integrins. Paclitaxel-induced changes in recycling endosomes precede morphological degeneration of nociceptive neuron arbors, which could be prevented by integrin overexpression. We used primary dorsal root ganglia (DRG) neuron cultures to test conservation of integrin-mediated protection. We show that transduction of a human integrin β-subunit 1 also prevented degeneration following paclitaxel treatment. Furthermore, endogenous levels of surface integrins were decreased in paclitaxel-treated mouse DRG neurons, suggesting that paclitaxel disrupts recycling in vertebrate sensory neurons. Altogether, our study supports conserved mechanisms of paclitaxel-induced perturbation of integrin trafficking and a therapeutic potential of restoring neuronal interactions with the extracellular environment to antagonize paclitaxel-induced toxicity in sensory neurons.
APA, Harvard, Vancouver, ISO, and other styles
2

McHugh, Jeannette M., and William B. McHugh. "Diabetes and Peripheral Sensory Neurons." AACN Clinical Issues: Advanced Practice in Acute and Critical Care 15, no. 1 (January 2004): 136–49. http://dx.doi.org/10.1097/00044067-200401000-00012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Marvaldi, Letizia, Nicolas Panayotis, Stefanie Alber, Shachar Y. Dagan, Nataliya Okladnikov, Indrek Koppel, Agostina Di Pizio, et al. "Importin α3 regulates chronic pain pathways in peripheral sensory neurons." Science 369, no. 6505 (August 13, 2020): 842–46. http://dx.doi.org/10.1126/science.aaz5875.

Full text
Abstract:
How is neuropathic pain regulated in peripheral sensory neurons? Importins are key regulators of nucleocytoplasmic transport. In this study, we found that importin α3 (also known as karyopherin subunit alpha 4) can control pain responsiveness in peripheral sensory neurons in mice. Importin α3 knockout or sensory neuron–specific knockdown in mice reduced responsiveness to diverse noxious stimuli and increased tolerance to neuropathic pain. Importin α3–bound c-Fos and importin α3–deficient neurons were impaired in c-Fos nuclear import. Knockdown or dominant-negative inhibition of c-Fos or c-Jun in sensory neurons reduced neuropathic pain. In silico screens identified drugs that mimic importin α3 deficiency. These drugs attenuated neuropathic pain and reduced c-Fos nuclear localization. Thus, perturbing c-Fos nuclear import by importin α3 in peripheral neurons can promote analgesia.
APA, Harvard, Vancouver, ISO, and other styles
4

Oakley, R. A., A. S. Garner, T. H. Large, and E. Frank. "Muscle sensory neurons require neurotrophin-3 from peripheral tissues during the period of normal cell death." Development 121, no. 5 (May 1, 1995): 1341–50. http://dx.doi.org/10.1242/dev.121.5.1341.

Full text
Abstract:
To determine if muscle sensory neurons require neurotrophin-3 (NT3) during the period of normal cell death, we used an NT3-specific antiserum to deplete NT3 from peripheral tissues during this period in chick embryos. DiI staining of dorsal roots indicated that limb injections of anti-NT3 reduced the spinal projection of muscle spindle afferents. In contrast, injection of the antiserum into the spinal cord had no demonstrable effect, indicating that the reduced projection following limb injection was due to peripheral blockade of NT3 signaling. Counts of neurons retrogradely labeled from muscle and cutaneous nerves showed that peripheral blockade of NT3 selectively reduced the survival of muscle sensory neurons without affecting the survival of cutaneous sensory neurons or motoneurons. In situ hybridization with trkC probes indicated that, during the period of cell death, most large diameter muscle sensory neurons express trkC transcripts, whereas few cutaneous neurons express this receptor for NT3. We conclude that large diameter muscle afferents, including spindle afferents, require NT3 from peripheral tissues to survive the normal period of sensory neuron death in vivo.
APA, Harvard, Vancouver, ISO, and other styles
5

Tucker, Budd A., and Karen M. Mearow. "Peripheral Sensory Axon Growth: From Receptor Binding to Cellular Signaling." Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 35, no. 5 (November 2008): 551–66. http://dx.doi.org/10.1017/s0317167100009331.

Full text
Abstract:
Regeneration following axonal injury of the adult peripheral sensory nervous system is heavily influenced by factors located in a neuron's extracellular environment. These factors include neurotrophins, such as Nerve Growth Factor (NGF) and the extracellular matrix, such as laminin. The presence of these molecules in the peripheral nervous system (PNS) is a major contributing factor for the dichotomy between regenerative capacities of central vs. peripheral neurons. Although PNS neurons are capable of spontaneous regeneration, this response is critically dependent on many different factors including the type, location and severity of the injury. In this article, we will focus on the plasticity of adult dorsal root ganglion (DRG) sensory neurons and how trophic factors and the extracellular environment stimulate the activation of intracellular signaling cascades that promote axonal growth in adult dorsal root ganglion neurons.
APA, Harvard, Vancouver, ISO, and other styles
6

Yadav, Smita, Susan H. Younger, Linghua Zhang, Katherine L. Thompson-Peer, Tun Li, Lily Y. Jan, and Yuh Nung Jan. "Glial ensheathment of the somatodendritic compartment regulates sensory neuron structure and activity." Proceedings of the National Academy of Sciences 116, no. 11 (February 25, 2019): 5126–34. http://dx.doi.org/10.1073/pnas.1814456116.

Full text
Abstract:
Sensory neurons perceive environmental cues and are important of organismal survival. Peripheral sensory neurons interact intimately with glial cells. While the function of axonal ensheathment by glia is well studied, less is known about the functional significance of glial interaction with the somatodendritic compartment of neurons. Herein, we show that three distinct glia cell types differentially wrap around the axonal and somatodendritic surface of the polymodal dendritic arborization (da) neuron of the Drosophila peripheral nervous system for detection of thermal, mechanical, and light stimuli. We find that glial cell-specific loss of the chromatin modifier gene dATRX in the subperineurial glial layer leads to selective elimination of somatodendritic glial ensheathment, thus allowing us to investigate the function of such ensheathment. We find that somatodendritic glial ensheathment regulates the morphology of the dendritic arbor, as well as the activity of the sensory neuron, in response to sensory stimuli. Additionally, glial ensheathment of the neuronal soma influences dendritic regeneration after injury.
APA, Harvard, Vancouver, ISO, and other styles
7

Hanani, Menachem. "How Is Peripheral Injury Signaled to Satellite Glial Cells in Sensory Ganglia?" Cells 11, no. 3 (February 1, 2022): 512. http://dx.doi.org/10.3390/cells11030512.

Full text
Abstract:
Injury or inflammation in the peripheral branches of neurons of sensory ganglia causes changes in neuronal properties, including excessive firing, which may underlie chronic pain. The main types of glial cell in these ganglia are satellite glial cells (SGCs), which completely surround neuronal somata. SGCs undergo activation following peripheral lesions, which can enhance neuronal firing. How neuronal injury induces SGC activation has been an open question. Moreover, the mechanisms by which the injury is signaled from the periphery to the ganglia are obscure and may include electrical conduction, axonal and humoral transport, and transmission at the spinal level. We found that peripheral inflammation induced SGC activation and that the messenger between injured neurons and SGCs was nitric oxide (NO), acting by elevating cyclic guanosine monophosphate (cGMP) in SGCs. These results, together with work from other laboratories, indicate that a plausible (but not exclusive) mechanism for neuron-SGCs interactions can be formulated as follows: Firing due to peripheral injury induces NO formation in neuronal somata, which diffuses to SGCs. This stimulates cGMP synthesis in SGCs, leading to their activation and to other changes, which contribute to neuronal hyperexcitability and pain. Other mediators such as proinflammatory cytokines probably also contribute to neuron-SGC communications.
APA, Harvard, Vancouver, ISO, and other styles
8

McCallum, J. Bruce, Wai-Meng Kwok, Damir Sapunar, Andreas Fuchs, and Quinn H. Hogan. "Painful Peripheral Nerve Injury Decreases Calcium Current in Axotomized Sensory Neurons." Anesthesiology 105, no. 1 (July 1, 2006): 160–68. http://dx.doi.org/10.1097/00000542-200607000-00026.

Full text
Abstract:
Background Reports of Ca(2+) current I(Ca) loss after injury to peripheral sensory neurons do not discriminate between axotomized and spared neurons. The spinal nerve ligation model separates axotomized from spared neurons innervating the same site. The authors hypothesized that I(Ca) loss is a result of neuronal injury, so they compared axotomized L5 dorsal root ganglion neurons to spared L4 neurons, as well as neurons from rats undergoing skin incision alone. Methods After behavioral testing, dissociated neurons from L4 and L5 dorsal root ganglia were studied in both current and voltage patch clamp modes. The biophysical consequence of I(Ca) loss on the action potential was confirmed using selective I(Ca) antagonists. Data were grouped into small, medium, and large cells for comparison. Results Reduced I(Ca) was predominantly a consequence of axotomy (L5 after spinal nerve ligation) and was most evident in small and medium neurons. ICa losses were associated with action potential prolongation in small and medium cells, whereas the amplitude and duration of after hyperpolarization was reduced in medium and large neurons. Blockade with Ca(2+) channel antagonists showed that action potential prolongation and after hyperpolarization diminution were alike, attributable to the loss of I(Ca). Conclusion Axotomy is required for I(Ca) loss. I(Ca) loss correlated with changes in the biophysical properties of sensory neuron membranes during action potential generation, which were due to I(Ca) loss leading to decreased outward Ca(2+)-sensitive K currents. Taken together, these results suggest that neuropathic pain may be mediated, in part, by loss of I(Ca) and the cellular processes dependent on Ca(2+).
APA, Harvard, Vancouver, ISO, and other styles
9

Tanaka, Yasumusa, Yoshikazu Yoshida, and Minoru Hirano. "CGRP-immunoreactive cells supplying laryngeal sensory nerve fibres in the cat's nodose ganglion." Journal of Laryngology & Otology 107, no. 10 (October 1993): 916–19. http://dx.doi.org/10.1017/s0022215100124788.

Full text
Abstract:
AbstractThrough a combination of retrograde staining by wheat germ agglutinin (WGA) and immunohistochemistry, calcitonin gene-related peptide (CGRP)-reactive sensory neurons projecting from the laryngeal mucosa were detected in the feline nodose ganglion. The size of the CGRP-immunoreactive cell which was regarded as a laryngeal sensory neuron, was about 60 ±m in diameter: the shape of the immunoreactive laryngeal sensory neuron was unipolar. CGRP-reacted laryngeal sensory cells were found in the rostral part of the nodose ganglion extending to the middle part. They aggregated in the most rostral part, were sparse in other parts and were approximately 50 per cent of WGA-reactive laryngeal sensory neurons in number. Our results suggest that this neurotransmitter might play an important role in laryngeal peripheral sensory innervation.
APA, Harvard, Vancouver, ISO, and other styles
10

Gheorghe, Roxana-Olimpia, Andreea Violeta Grosu, Melania Bica-Popi, and Violeta Ristoiu. "The Yin/Yang Balance of Communication between Sensory Neurons and Macrophages in Traumatic Peripheral Neuropathic Pain." International Journal of Molecular Sciences 23, no. 20 (October 16, 2022): 12389. http://dx.doi.org/10.3390/ijms232012389.

Full text
Abstract:
Traumatic peripheral neuropathic pain is a complex syndrome caused by a primary lesion or dysfunction of the peripheral nervous system. Secondary to the lesion, resident or infiltrating macrophages proliferate and initiate a cross-talk with the sensory neurons, at the level of peripheral nerves and sensory ganglia. The neuron–macrophage interaction, which starts very early after the lesion, is very important for promoting pain development and for initiating changes that will facilitate the chronicization of pain, but it also has the potential to facilitate the resolution of injury-induced changes and, consequently, promote the reduction of pain. This review is an overview of the unique characteristics of nerve-associated macrophages in the peripheral nerves and sensory ganglia and of the molecules and signaling pathways involved in the neuro-immune cross-talk after a traumatic lesion, with the final aim of better understanding how the balance between pro- and anti-nociceptive dialogue between neurons and macrophages may be modulated for new therapeutic approaches.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Peripheral sensory neurons"

1

Nguyen, Hoai T. "Spontaneous Dynamics and Information Transfer in Sensory Neurons." Ohio University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1343516201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Spigelman, Igor. "Sensory transmission in peripheral neurons : effects of K+ channel blockers and autacoids." Thesis, University of British Columbia, 1988. http://hdl.handle.net/2429/29437.

Full text
Abstract:
Sensory transmission was studied in trigeminal root ganglia (TRG) of guinea pigs, using intracellular recording techniques. One approach was to examine in detail the effects of applications of different K⁺-channel blockers on the membrane voltage responses and outward currents of TRG neurons, in order to better understand the fundamental processes that affect their excitabilities and repetitive spike discharge. The second approach was to examine several endogenous substances for their effects on the excitabilities of TRG neurons. In addition, a strategy was developed for electrophysiological recording from neurons in human sympathetic ganglia. Successful investigations of these neurons revealed properties similar to certain reported characteristics of sympathetic neurons in experimental animals, including high (~29 MΩ input resistances, pharmacological sensitivity of spikes to the specific Na⁺-channel blocker tetrodotoxin (TTX, 1 µM) and to selective K⁺-channel blockers -- 4-aminopyridine (4-AP, 1 mM) and tetraethylammonium (TEA, 10 mM). The investigations demonstrated the potential value of these in vitro preparations for studies of the human condition. The investigations in TRG neurons demonstrated that bath applications of TEA (0.1-10 mM) and 4-AP (0.05-5 mM) or Cs⁺ applied internally from the recording electrode, produced an increase in input resistance and a decrease threshold for spike generation in all neurons. Also, applications of 4-AP increased subthreshold oscillations of the membrane potential and enhanced the repetitive spike firing evoked by intracellular injections of current pulses, or elicited spontaneous firing. In contrast, TEA or Cs⁺ applications blocked the oscillations and the spike afterhyperpolarizations (AHPs) without exaggerating repetitive discharge. These investigations suggestedthat several pharmacologically distinct K -currents contribute to the control of excitability in TRG neurons. Comparison of combined actions of 4-AP and TEA with those of Cs⁺, suggested that other ions in addition to K⁺ may contribute to postspike events. Single electrode voltage-clamp analyses revealed transient outward currents that were evoked at the termination of hyperpolarizing voltage commands from holding potentials near -40 mV. The activation was rapid (<5ms) and inactivation (T≃19 ms) complete at potentials within the activation range (-40 to -75 mV). During combined application of TTX (1 µM) and TEA (10 mM), fast activating, sustained currents (>1 s) were evoked by depolarizing commands from holding potentials near -70 mV. These currents were blocked completely by the additional applications of 4-AP (5 mM). Applications of TEA (0.1 mM to 10 mM) produced dose-dependent reductions of the transient outward currents. Applications of Cs⁺ also blocked the currents. However, administrations of 4-AP (0.05 to 5 mM) only slightly reduced these currents and high doses of muscarinic agonists had no effect. The high sensitivity to TEA, and not to 4-AP, suggest a fundamental distinction from similar currents observed previously in other neurons of vertebrates and invertebrates, and hence this transient outward current in TRG neurons, is termed I(T)- The kinetics of I(T) suggest its involvement in the spike AHPs. Therefore, blockade of I(T) by TEA may interfere indirectly with the re-activation of voltage-dependent Na⁺-channels, leading to decreases in repetitive discharge ability. The TEA-insensitive sustained outward current presumably has an inhibiting influence on repetitive discharge. Conditions that interfere with this current, such as blockade of K⁺-channels by 4-AP without a significant blockade of I(T), strongly favour the generation of repetitive discharge in TRG neurons. The investigations using electrical stimulation of axons revealed that changes in the resting potential could inhibit the invasion of spikes into the perikarya, or facilitate the generation of ectopic spike discharges. Applications of 4-AP (1 mM) facilitated the perikaryal invasion of spikes evoked by axonal stimulation, and also resulted in the appearance of fast (~10 ms) depolarizations that reached spike threshold in the absence of applied stimuli. These investigations provided direct evidence that the perikarya of sensory neurons are capable of spike generation, and suggest that this behavior may occur in normal or pathophysiological conditions. The most notable effects of autacoids were those of substance P and histamine, whereas bradykinin did not affect neuronal membrane properties. Applications of substance P in micromolar doses evoked large (up to 45 mV), reversible depolarizations in the majority of neurons, whereas histamine applications produced similar depolarizations only in a small portion of the TRG neurons. Increases in the repetitive discharge abilities of neurons were evident during substance P-induced depolarizations. Studies on the ionic mechanism of substance P action revealed that the peptide-applications resulted in activation of inward currents as well as blockade of outward currents. In addition, it was shown that Na⁺ and Mg²⁺ were involved in the mechanism of action. These findings represent the first demonstration of the profound actions of substance P on the perikaryal membranes of sensory neurons in mammals. The excitatory actions of this endogenous peptide also give rise to the possibility of physiological actions of substance P at multiple sites in the trigeminal system.
Medicine, Faculty of
Anesthesiology, Pharmacology and Therapeutics, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
3

Bongenhielm, Ulf. "Structure and function of trigeminal primary sensory neurons after peripheral nerve injury /." Stockholm, 1999. http://diss.kib.ki.se/1999/91-628-3954-3/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cao, Xian. "Role of NADPH oxidase in peripheral sympathetic and sensory neurons in hypertension." Diss., Connect to online resource - MSU authorized users, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Calls, Cobos Aina. "Molecular mechanisms involved in Platinum-Induced Peripheral Neuropathy. An exploratory study." Doctoral thesis, Universitat Autònoma de Barcelona, 2021. http://hdl.handle.net/10803/673816.

Full text
Abstract:
La neuropatia perifèrica induïda per platins (NPIP) és un dels efectes adversos més freqüents del cisplatí, l’oxaliplatí i el carboplatí, agents quimioteràpics de tipus platins administrats pel tractament de càncers altament prevalents. Degut a la seva severitat, la NPIP pot causar reduccions en la dosis de quimioteràpia o inclús una aturada precoç del tractament, derivant en una disminució de les probabilitats de supervivència dels pacients oncològics. S’ha demostrat que la severitat de la NPIP es correlaciona amb la quantitat de platí acumulat en les neurones sensorials del gangli raquidi de l’arrel dorsal (GRD). Així mateix, s’han descrit varis mecanismes fisiopatològics involucrats en l’aparició de la NPIP, incloent el dany a l’ADN i les mitocòndries de les neurones sensorials, juntament amb alteracions en la funció dels canals iònics, entre altres. Malgrat el gran esforç dels clínics i els investigadors per trobar un tractament per la NPIP, els resultats obtinguts en models experimentals no s’han pogut traslladar a la clínica de forma exitosa. L’objectiu d’aquesta tesi doctoral era determinar els mecanismes moleculars més rellevants involucrats en el desenvolupament de la NPIP i així poder testar noves dianes terapèutiques. Mitjançant seqüenciació de l’ARN de cèl·lules aïllades, hem estudiat el perfil d’expressió gènica de les neurones sensorials del GRD en 2 models de ratolí de NPIP òptimament caracteritzats a nivell neurofisiològic. Un model es va desenvolupar mitjançant l’administració de cisplatí i l’altre, d’oxaliplatí. Hem demostrat que el tractament amb cisplatí causa una lesió permanent a l’ADN de les neurones sensorials, juntament amb un increment de l’expressió del gen Cdkn1a i el seu producte proteic p21. Mentre que les vies d’apoptosis no s’activen en resposta a aquest dany de l’ADN, les neurones sensorials sí expressen una sèrie de marcadors relacionats amb processos de senescència cel·lular, incloent l’enzim beta-galactosidasa, la fosforilació de la histona H2AX i la proteïna Nfkb-p65. El fenotip senescent de les neurones sensorials persisteix inclús 6 setmanes després de finalitzar el tractament amb cisplatí. Pel que fa a l’estudi amb oxaliplatí, els resultats de la seqüenciació mostren un increment en l’expressió dels gens Lxn i Klk5, juntament amb una disminució en l’expressió del gen Kyat3. Tots tres gens estan relacionats amb processos de inflamació, modulació del sistema immunitari i dolor. Tot i que no vam poder demostrar l’increment dels productes proteics dels gens Lxn i Klk5 en les neurones sensorials, els nivells de citocines pro-inflamatòries estaven augmentats en el GRD i el nervi ciàtic dels ratolins tractats amb oxaliplatí, juntament amb un increment del número de cèl·lules infiltrades. Basant-nos en aquests resultats, vam analitzar la possible activació de la resposta de mort cel·lular immunogènica, la qual s’activa en cèl·lules tumorals en resposta al tractament amb oxaliplatí. No obstant, no vam trobar evidències de l’activació d’aquesta via en el GRD. Per altra banda, i a diferència dels resultats obtinguts amb el cisplatí, el dany a l’ADN generat a les neurones sensorials per oxaliplatí és ràpidament reparat un cop finalitzat el tractament, fet que podria explicar la manca d’establiment d’un fenotip senescent. Tenint en compte les dades obtingudes en els models animals, les quals indiquen que la senescència pot jugar un paper important en el desenvolupament de la NPIP, finalment vam desenvolupar un model in vitro de senescència neuronal induïda per cisplatí, el qual serà de gran utilitat per testar noves dianes terapèutiques de forma ràpida i econòmica.
La neuropatía periférica inducida por platinos (NPIP) es uno de los efectos adversos mas frecuentes del cisplatino, el oxaliplatino i el carboplatino, fármacos de tipo platino administrados para el tratamiento de neoplasias malignas altamente prevalentes. Debido a su severidad, la NPIP puede causar reducciones en la dosis de quimioterapia e incluso el cese precoz del tratamiento, hecho que influye negativamente en la probabilidad de supervivencia de los pacientes oncológicos. Se ha demostrado que la severidad de la NPIP se correlaciona con la cantidad de platino acumulado en las neuronas sensoriales de los ganglios de la raíz dorsal (GRD). Así mismo, se han descrito varios mecanismos fisiopatológicos involucrados en la aparición de la NPIP, incluyendo la lesión del ADN y las mitocondrias de dichas neuronas, juntamente con una alteración en sus canales iónicos, entre otros. A pesar de los muchos esfuerzos de los clínicos e investigadores para encontrar un tratamiento frente la NPIP, los resultados obtenidos en modelos experimentales no se han podido trasladar a la clínica de forma exitosa. El objetivo de esta tesis doctoral era determinar los mecanismos moleculares mas relevantes involucrados en el desarrollo de la NPIP y así poder encontrar nuevas dianas terapéuticas. Mediante secuenciación del ARN de células aisladas, hemos estudiado el perfil de expresión génica de las neuronas sensoriales del GRD en 2 modelos de ratón de NPIP, óptimamente caracterizados a nivel neurofisiológico. Uno de los modelos se desarrolló a partir de la administración de cisplatino y el otro, de oxaliplatino. Hemos demostrado que el tratamiento con cisplatino causa una lesión permanente en el ADN de las neuronas sensoriales, juntamente con un incremento en la expresión del gen Cdkn1a y su producto proteico p21. Mientras que las vías de apoptosis no se activan en respuesta a la lesión del ADN, las neuronas sensoriales sí expresan marcadores de senescencia celular como la enzima -galactosidasa, la fosforilación de la histona H2AX y la proteína Nfkb-p65. Estos cambios perduran incluso 6 semanas después de finalizar el tratamiento con cisplatino. Referente al estudio con oxaliplatino, los resultados de la secuenciación muestran un incremento en la expresión de los genes Lxn y Klk5, juntamente con una disminución de la expresión del gen Kyat3, en los animales tratados con oxaliplatino. Los tres genes están relacionados con procesos de inflamación, modulación del sistema inmunitario y dolor. A pesar de que no pudimos demostrar un aumento de los productos proteicos de los genes Klk5 y Lxn en las neuronas sensoriales, los niveles de citoquinas pro-inflamatorias estaban elevados en el GRD y el nervio ciático de los ratones tratados con oxaliplatino, juntamente con un incremento en el numero de células infiltradas. En base a estos resultados, analizamos la posible activación de la respuesta de muerte celular immunogénica, la cual se activa en células tumorales en respuesta al tratamiento con oxaliplatino. No obstante, no encontramos evidencias de la activación de esta vía en el GDR. Por otro lado, y a diferencia de los resultados obtenidos con el cisplatino, la lesión del ADN producida por el oxaliplatino es rápidamente reparada al finalizar el tratamiento, hecho que pudiera explicar la falta de establecimiento del fenotipo senescente. Teniendo en cuenta que los resultados obtenidos con los modelos animales apuntan a que la senescencia podría jugar un papel importante en el desarrollo de la NPIP, finalmente desarrollamos un modelo in vitro de senescencia neuronal inducida por cisplatino, el cual nos servirá para testar nuevas dianas terapéuticas de una forma rápida y económica.
Platinum-Induced Peripheral Neuropathy (PIPN) is a frequent serious dose-limiting adverse event of the platinum-based cytostatic agent cisplatin, oxaliplatin and carboplatin, which are given as a first line treatment against high prevalent cancers. Due to its severity, PIPN often causes cancer treatment reduction or even cessation, thus decreasing the survival probabilities of oncologic patients. It has been extensively reported that PIPN severity correlates with the amount of platinum drugs cumulated in sensory neurons of the dorsal root ganglia (DRG). Several pathophysiological mechanisms have been described for PIPN development, including DNA damage, mytotoxicity and channels dysfunction in DRG sensory neurons, among others. Despite the efforts of clinicians and researchers during the last decades, no successful translation from pre-clinical settings to the clinics has been achieved. The aim of this study was to determine the exact molecular mechanisms involved in the development of PIPN following a non-hypothesis driven methodology to find new therapeutical targets. By single-cell RNA sequencing (scRNA-seq), we studied the transcriptomic profile of DRG sensory neurons from 2 well characterized neurophysiological mice models of PIPN: one induced by cisplatin administration, and the second by oxaliplatin. We demonstrated that cisplatin treatment induced persistent DNA damage and the up-regulation of the Cdkn1a gene and its protein product p21 in the DRG neuronal population. While apoptosis activation pathways were not observed in DRG sensory neurons of cisplatin-treated mice, these neurons did express several senescence hallmarks, including senescence-associated beta-galactosidase (SA-bGAL), phosphor(p)-H2AX and nuclear Nfkb-p65 proteins. The senescent phenotype seen in sensory neurons persisted up to 6 weeks after cisplatin treatment discontinuation. Regarding oxaliplatin study, results of scRNA-seq showed an up-regulation of Lxn and Klk5 genes, and a down-regulation of the Kyat3 gene in oxaliplatin treated animals, among others. All three genes have been involved in the modulation of inflammatory responses, the immune system and pain behaviors. Although the protein products of Klk5 and Lxn did not appear up-regulated in the DRG of oxaliplatin-treated mice, we did see an increase in the pro-inflammatory cytokine profile in both the DRG and the sciatic nerves of oxaliplatin-treated mice, altogether with increased number of infiltrated cells. Based on these results, we checked for factors involved of the so-called Immunogenic Cell Death (ICD) response, which is activated in tumor cells after oxaliplatin treatment. However, we did not find any evidence of ICD activation in DRG of oxaliplatin-treated mice at any time point evaluated. On the other hand, and in contrast to cisplatin, the rapid repair of DNA damage after oxaliplatin treatment cessation could explain the lack of establishment of a senescence phenotype in the DRG. In vivo data showed that senescence pathways could play a key role in platinum neurotoxicity. Thus, we finally set up an in vitro model of cisplatin-induced neuronal senescence in which to start the screening of potential neuroprotective targets in a cost- and time-effective way.
Universitat Autònoma de Barcelona. Programa de Doctorat en Neurociències
APA, Harvard, Vancouver, ISO, and other styles
6

Stötzner, Philip [Verfasser]. "Opioids in neuropathic pain - the role of potassium channels in peripheral sensory neurons / Philip Stötzner." Berlin : Medizinische Fakultät Charité - Universitätsmedizin Berlin, 2018. http://d-nb.info/1160515018/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wiberg, Rebecca. "An exploration of the mechanisms behind peripheral nerve injury." Doctoral thesis, Umeå universitet, Anatomi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-127357.

Full text
Abstract:
Despite surgical innovation, the sensory and motor outcome after peripheral nerve injury is incomplete. In this thesis, the biological pathways potentially responsible for the poor functional recoveries were investigated in both the distal nerve stump/target organ, spinal motoneurons and dorsal root ganglia (DRG). The effect of delayed nerve repair was determined in a rat sciatic nerve transection model. There was a dramatic decline in the number of regenerating motoneurons and myelinated axons found in the distal nerve stumps of animals undergoing nerve repair after a delay of 3 and 6 months. RT-PCR of the distal nerve stumps showed a decline in expression of Schwann cells (SC) markers, with a progressive increase in fibrotic and proteoglycan scar markers, with increased delayed repair time. Furthermore, the yield of SC which could be isolated from the distal nerve segments progressively fell with increased delay in repair time. Consistent with the impaired distal nerve stumps the target medial gastrocnemius (MG) muscles at 3- and 6-months delayed repair were atrophied with significant declines in wet weights (61% and 27% compared with contralateral sides). The role of myogenic transcription factors, muscle specific microRNAs and musclespecific E3 ubiquitin ligases in the muscle atrophy was investigated in both gastrocnemius and soleus muscles following either crush or nerve transection injury. In the crush injury model, the soleus muscle showed significantly increased recovery in wet weight at days 14 and 28 (compared with day 7) which was not the case for the gastrocnemius muscle which continued to atrophy. There was a significantly more pronounced up-regulation of MyoD expression in the denervated soleus muscle compared with the gastrocnemius muscle. Conversely, myogenin was more markedly elevated in the gastrocnemius versus soleus muscles. The muscles also showed significantly contrasting transcriptional regulation of the microRNAs miR-1 and miR-206. MuRF1 and Atrogin-1 showed the highest levels of expression in the denervated gastrocnemius muscle. Morphological and molecular changes in spinal motoneurons were compared after L4-L5 ventral root avulsion (VRA) and distal peripheral nerve axotomy (PNA). Neuronal degeneration was indicated by decreased immunostaining for microtubule-associated protein-2 in dendrites and synaptophysin in presynaptic boutons after both VRA and PNA. Immunostaining for ED1-reactive microglia and GFAPpositive astrocytes was significantly elevated in all experimental groups. qRT-PCR analysis and Western blotting of the ventral horn from L4-L5 spinal cord segments revealed a significant upregulation of apoptotic cell death mediators including caspases-3 and -8 and a range of related death receptors following VRA. In contrast, following PNA, only caspase-8 was moderately upregulated. The mechanisms of primary sensory neuron degeneration were also investigated in the DRG following peripheral nerve axotomy, where several apoptotic pathways including those involving the endoplasmic reticulum were shown to be upregulated. In summary, these results show that the critical time point after which the outcome of regeneration becomes too poor appears to be 3-months. Both proximal and distal injury affect spinal motoneurons morphologically, but VRA induces motoneuron degeneration mediated through both intrinsic and extrinsic apoptotic pathways. Primary sensory neuron degeneration involves several different apoptotic pathways, including the endoplasmic reticulum.
APA, Harvard, Vancouver, ISO, and other styles
8

Luo, Miaw-Chyi, Dong-Qin Zhang, Shou-Wu Ma, Yuan-Yuan Huang, Sam Shuster, Frank Porreca, and Josephine Lai. "An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons." BioMed Central, 2005. http://hdl.handle.net/10150/610210.

Full text
Abstract:
We have developed a highly effective method for in vivo gene silencing in the spinal cord and dorsal root ganglia (DRG) by a cationic lipid facilitated delivery of synthetic, small interfering RNA (siRNA). A siRNA to the delta opioid receptor (DOR), or a mismatch RNA, was mixed with the transfection reagent, i-FectTM (vehicle), and delivered as repeated daily bolus doses (0.5 mug to 4 mug) via implanted intrathecal catheter to the lumbar spinal cord of rats. Twenty-four hours after the last injection, rats were tested for antinociception by the DOR selective agonist, D-Ala2, Glu4]deltorphin II (DELT), or the mu opioid receptor (MOR) selective agonist, D-Ala2, N-Me-Phe4, Gly-ol5]enkephalin (DAMGO). Pretreatment with the siRNA, but not the mismatch RNA or vehicle alone, blocked DELT antinociception dose-dependently. The latter was concomitant with a reduction in the spinal immunoreactivity and receptor density of DOR, and in DOR transcripts in the lumbar DRG and spinal dorsal horn. Neither siRNA nor mismatch RNA pretreatment altered spinal immunoreactivity of MOR or antinociception by spinal DAMGO, and had no effect on the baseline thermal nociceptive threshold. The inhibition of function and expression of DOR by siRNA was reversed by 72 hr after the last RNA injection. The uptake of fluorescence-tagged siRNA was detected in both DRG and spinal cord. The low effective dose of siRNA/i-FectTM complex reflects an efficient delivery of the siRNA to peripheral and spinal neurons, produced no behavioral signs of toxicity. This delivery method may be optimized for other gene targets.
APA, Harvard, Vancouver, ISO, and other styles
9

Allodi, Ilary. "Changing the Intrinsic Growth Capacity of motor and sensory neurons to promote axonal growth after injury." Doctoral thesis, Universitat Autònoma de Barcelona, 2012. http://hdl.handle.net/10803/96355.

Full text
Abstract:
Les lesions dels nervis perifèrics provoquen paràlisis, anestèsia i pèrdua del control autonòmic de la zona afectada. Després de lesió, la part distal dels axons queda desconectat del soma i degenera, provocant la denervació dels òrgans diana. La degeneració walleriana crea un microambient favorable per al creixement axonal, alhora que la neurona canvia a un fenotip proregeneratiu. Malauradament, la manca d’especificitat de la regeneració, en termes de creixement motor i sensorial i reinnervació, és un dels grans limitats de la recuperació. Els mecanismes moleculars mplicats en la regeneració axonal i després de lesió són complexes i les interaccions entre els axons i la glia, els factors tròfics, la matriu extracel.lular i els seus receptors són fonamentals. Per aquestes raons, hem caracteritzat un model qeu ens permet comparar sota les mateixes condicions, creixement neurític motor i sensorial. Hem posat a punt un model in vitro, basat en cultius organotípics de medul.la espinal i explants de ganglis de les arrels dorsals de rates postnatals de 7 dies, embeguts en una matriu de col.lagen. Afegitn difernets factors tròfics a la matriu, hem avaluat la fiabilitat de les preparacions de gangli i de medul.la espinal. A més a més, també hem posat a punt un co-cultiu amb cèl.lules de Schwann dissociades que mimetizen millor l’ambient permissiu del nervi perifèric. Amb aquest model, hem analitzat els efectes de diferents factors tròfics que potencialment podien afavorir la especificitat de la regeneració, i com aquests factors podien ser sobre-regulats de manera diferencial per branques de nervis motors i sensorials després de la lesió. Hem observat que l’FGF-2 (18 kDa) és el factor tròfic que exerceix un efecte més selectiu en el creixement de les motoneurones espinals, tant a nivell d’elongació com d’arborització de neurites. El mecanisme que provocaia aquest efecte sembla estar relacionat amb la capacitat de l’FGF-2 d’incrementar la interacció entre l’FGFR-1 i el PSA-NCAM. Les interaccions dels dos receptors són importants durant els estadis més primerencs de la neuritogènesis, mentres que la subunitat alfa7B de les integrines estaria més relacionada amb l’estabilització de les neurites. Amb l’objectiu d’explorar amb més detall la potencial habilitat de l’FGF-2 de promoure de manera selectiva la regeneració in vivo, hem produit un vector lentiviral (LV) que sobreexpressa FGF-2 i l’hem caracteritzat in vitro i in vivo. L’addició de cèl.lules de Schwann infectades amb el LV-FGF2 en la matriu de col.lagen que cobreix els explants de gangli o les medul.les espinals, incrementa el creixement de les neurites motores però no de les sensorials en comparació als co-cultius amb LV-GFP. Per tant, la sobreexpressió de l’FGF2 mitjançant el LV és tan eficaç com l’addició directe del factor en la matriu en la promoció selective de la regeneració motora. Quan el LV-FGF2 es va injectar directament al nervi ciàtic in vivo, vam corroborar que l’FGF2 se secretava a nivell de la lamina basal de les cèl.lules de Schwann. Els nivells de FGF-2 en els homogentats de nervi ciàtic una setmana després d’injectar 1μl LVFGF- 2 eren més alts que els dels nervis injectats amb vehicle o LV-GFP. Per tant, el vector LV pot ser utilitzat in vivo per tal de verificar les troballes in vitro i per investigar amb més detall la capacitate de l’FGF2 de promoure regeneració motora. En aquest treball també hem comparat la capacitat de la glia embolcalladora olfactiva i les cèl.lules de Schwann, en donar suport a la regeneració in vitro de neurites motores i sensorials. En els co-cultius de cèl.lules de Schwann i els explants de gangli i medul.les espinals, s’observava un increment de la regeneració motora, menters que la glia embolcalladora incrementava signifiativament el creixement neurític de les neurones sensorials. Per contra, quan la glia embolcalladora s’afegia al cultiu motor, s’observava una agregació d’aquestes cèl.lules. El comportament de la glia embolcalladora podria estar determinat pel manteniment de la citoarquitectura de les medul.les espinals, on trobem astròcits i cèl.lules Schwann endògenes. Les interaccions entre la cèl.lula de Schwnn, la glia olafctòria i els astròcits, a través del complexe FGFR1-FGF2-HSPG, poden provocar agregació cel.lular. De fet, els nivells elevats d’HSPG van detectar-se al costat de la barrera, i això pot explicar el paper complex d’aquestes neurones. Els nivells elevats d HSPG és van detecar a la zona de lesió , i això pot explicar el paper quimio-repelent dels agregats cel.lulars.
Peripheral nerves injuries result in paralysis, anesthesia and lack of autonomic control of the affected body areas. After injury, axons distal to the lesion are disconnected from the neuronal body and degenerate, leading to denervation of the peripheral organs. Wallerian degeneration creates a microenvironment distal to the injury site that supports axonal regrowth, while the neuron body changes in phenotype to promote axonal regeneration. However, the lack of specificity of nerve regeneration, in terms of motor and sensory axons regrowth, pathfinding and target reinnervation, is one the main shortcomings for recovery. The molecular mechanisms implicated in axonal regeneration and pathfinding after injury are complex, and take into account the cross-talk between axons and glial cells, neurotrophic factors, extracellular matrix molecules and their receptors. For these reasons, we characterized a model that allows us to compare under the same conditions motor and sensory neuron regeneration. We set up an in vitro model, based on organotypic cultures of spinal cord slices and dorsal root ganglia explants from P7 rats, embedded in a collagen matrix. By adding different neurotrophic factors in the collagen matrix, we evaluated the reliability of DRG and spinal cord preparations. Moreover, we also set up a co-culture with dissociated Schwann cells to further mimic the permissive environment of the peripheral nerve. Later, we screened in vitro the different capabilities of trophic factors with promising effect on specific reinnervation of target organs after peripheral nerve regeneration. Trophic factors which promoted in vitro neuritogenesis of sensory and motor neurons were up-regulated in Schwann cells obtained from axotomized sensory and motor branches respectively. We found that FGF-2 (18 kDa) was the trophic factor that exerted the most selective effect in promoting neurite outgrowth of spinal motoneurons both in terms of elongation and arborization. The mechanism underling this effect in neuritogenesis seems related to FGF-2 enhancing the interaction between FGFR-1 and PSA-NCAM. The interaction of these two receptors is important during early stages of neuritogenesis and pathfinding, while integrin alpha7B subunit seems to play a role during neurite stabilization. With the aim to further explore the potential capacity of FGF-2 to selectiveley promote motor regeneration in vivo, we produced a lentiviral (LV) vector to overexpress FGF-2 and we characterized it in vitro and in vivo. Addition of cultured Schwann cells infected with FGF-2 into a collagen matrix embedding spinal cords or DRG significantly increased motor neurite growth but not sensory outgrowth when compared to co-cultures with LV-GFP, thus demonstrating that the LV construct was as effective as direct addition of the trophic factor to selectively promote motor neuron growth. By injecting the LV construct direclty into the sciatic nerve in vivo, we corroborated the localization of the secreted FGF-2 in the basal lamina of Schwann cells. Levels of FGF-2 from homogenated sciatic nerves one week after injection of 1μl LV-FGF-2 were higher than from nerves injected with vehicle or LV-GFP. Therefore, the LV vector can be used in vivo to verify our in vitro results and further study the capacity of FGF-2 to enhance motor nerve regeneration. In the last part of our work, we compare the abilities of Olfactory Enshealting cells and Schwann cells in sustaining in vitro motor and sensory neuritogenesis. Co-culture of cells with DRG explants and spinal cord organotypic slices was set up. SCs were promoting motoneuron growth, whereas OEC were significantly increasing neurite outgrowth in DRGs. In contrast, when OEC were added into motoneuron culture, we saw cell clusters and motoneuron outgrowth inhibition. This behaviour of OEC could be due to the maintained cytoarchitecture of the spinal cord in vitro where astrocytes and endogenous Schwann cells were also present. Interactions of SC, OEC and astrocytes through FGFR1-FGF2-HSPG complex can cause cell clustering. In fact, high levels of HSPG were found into the boundary formations, and this can explain the chemorepellent role of the cluster on neurite outgrowth.
APA, Harvard, Vancouver, ISO, and other styles
10

Lucas, Olivier. "Rôle et régulation des co-transporteurs cation-chlorure NKCC1 et KCC3 dans les neurones sensitifs." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20043/document.

Full text
Abstract:
L'homéostasie chlorure (HC) est un acteur essentiel dans la transmission nerveuse. Le GABA, via son récepteur GABAA, permet les mouvements d'ions chlorures en fonction de leur potentiel électrochimique. Dans les neurones sensitifs de ganglions rachidiens dorsaux (GRD), le co-transporteur cation-chlorure NKCC1 est responsable de l'accumulation intracellulaire des ions Cl- et de l'effet dépolarisant du GABA. Suite à une lésion, l'augmentation de la concentration intracellulaire en ions Cl- ([Cl-]i) permet une amélioration des capacités régénératives neuronales. Au cours de ma thèse, je me suis en premier lieu intéressé à la régulation de l'HC par interleukine 6 (IL6) en réponse à une lésion nerveuse. L'axotomie du nerf sciatique induit l'expression de l'IL6 et son récepteur IL6-Rα dans les neurones sensitifs des GRD lombaires L4-L5. Des mesures par patch perforé sur des neurones sensitifs en culture ont montré une augmentation de la [Cl-]i dépendante de l'IL6 dans une sous-population de neurones mécano- et proprioceptifs en réponse à l'axotomie. Cette régulation est permise par la phosphorylation à la membrane plasmique neuronale de NKCC1. Le co-transporteur KCC3 est impliqué dans une maladie génétique conduisant dès la naissance à une perte sensorimotrice, ce qui m'a conduit à étudier son rôle dans la régulation de l'HC des neurones sensitifs au cours du développement et chez l'adulte. Nos données ont démontré l'existence d'un « switch chlorure » développemental, diminuant la [Cl-]i. Ce switch est altéré chez la souris KCC3-/-, dans laquelle une partie des neurones a déjà diminué sa [Cl-]i. Au stade adulte, nous avons également observé un doublement de la [Cl-]i dans 30% des neurones sensitifs de souris KCC3-/-, pourcentage corrélé à la proportion de neurones WT exprimant KCC3. Ces données prouvent que KCC3 est impliqué, de manière directe ou non, dans la régulation de l'HC des neurones sensitifs au cours du développement et chez l'adulte
Chloride homeostasis (CH) is a major component of nerve transmission. Interaction between the neurotransmitter GABA and his receptor, GABAA, allows chloride movements depending on electrochemical potential. In dorsal root ganglia (DRG) sensory neurons, the cation-chloride cotransporter NKCC1 is responsible for intracellular accumulation of chloride ions and depolarizing effects of GABA. After injury, an increase of intracellulaire chloride concentration ([Cl-]i) allows an improvement of neuronal regenerative capacities. In a first time, I worked on regulation of CH by interleukine 6 (IL6) in response to nerve injury. Axotomy of the sciatic nerve induces expression of IL6 and his receptor IL6-Rα in sensory neurons from lombar L4-L5 DRG. Perforated patch measurements of sensory neurons have demonstrated an increase of [Cl-]i depending on IL6 in a sub-population of mechano- and proprioceptors in response to lesion. This regulation is provided by phosphorylation at the neuronal plasma membrane of NKCC1. The cation-chloride cotransporter KCC3 is implicated in a hereditary syndrome leading after birth to sensorymotors defects. This is why I have studied his role in regulation of CH in sensory neurons during development and in adulthood. Data have shown the existence of a peripheral developmental “chloride switch”. This switch is abolished in KCC3-/- sensory neurons, in which a part of neurons has already decreased [Cl-]i. In adulthood, we also observed an [Cl-]i twice as much as WT in 30% of sensory neurons from KCC3-/- mice. This percentage is correlated to the proportion of WT neurons expressing KCC3. These results demonstrate for the first time that KCC3 is implicated in regulation of CH in sensory neurons during development and in adulthood
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Peripheral sensory neurons"

1

Cole, Jonathan. Pride and a daily marathon. Cambridge, Mass: MIT Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pride and a daily marathon. London: Duckworth, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Irina, Kiseleva, and SpringerLink (Online service), eds. Mechanosensitivity of the Nervous System: Forewords by Nektarios Tavernarakis and Pontus Persson. Dordrecht: Springer Science+Business Media B.V., 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Takao, Kumazawa, Kruger Lawrence, and Mizumura Kazue, eds. The polymodal receptor: A gateway to pathological pain. Amsterdam: Elsevier, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Desroches, Julie. Peripheral analgesia involves cannabinoid receptors. Edited by Paul Farquhar-Smith, Pierre Beaulieu, and Sian Jagger. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198834359.003.0034.

Full text
Abstract:
This landmark paper by Agarwal and colleagues was published in 2007, when the exact contribution of the activation of the cannabinoid type 1 receptor (CB1) receptors expressed on the peripheral terminals of nociceptors in pain modulation was still uncertain. At that time, while it was clearly demonstrated that the central nervous system (CNS) was involved in the antinociceptive effects induced by the activation of the CB1 receptor, many strains of mice in which the gene encoding the CB1 receptor was deleted by conditional mutagenesis were used to study the specific role of these receptors in pain. Creating an ingenious model of genetically modified mice with a conditional deletion of the CB1 receptor gene exclusively in the peripheral nociceptors, Agarwal and colleagues were the first to unequivocally demonstrate the major role of this receptor in the control of pain at the peripheral level. In fact, these mutant mice lacking CB1 receptors only in sensory neurons (those expressing the sodium channel Nav1.8) have been designed to highlight that CB1 receptors on nociceptors, and not those within the CNS, constitute an important target for mediating local or systemic (but not intrathecal) cannabinoid analgesia. Overall, they have clarified the anatomical locus of cannabinoid-induced analgesia, highlighted the potential significance of peripheral CB1-mediated cannabinoid analgesia, and revealed important insights into how the peripheral endocannabinoid system works in controlling both inflammatory pain and neuropathic pain.
APA, Harvard, Vancouver, ISO, and other styles
6

Pak, Daniel J., and Neel Mehta. Pain Anatomy and Physiology. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190217518.003.0001.

Full text
Abstract:
This chapter focuses on pain anatomy and physiology to provide a comprehensive review of the mechanisms of nociception for preparation for the ABA Pain Medicine (PM) Examination. It reviews the anatomy of pain pathways (particularly the spinothalamic sensory tract), and the process of pain conduction from peripheral nociceptors to the cerebral cortex. It also reviews the different mechanisms of sensitization and inhibition at peripheral nociceptors (manifested as primary and secondary hyperalgesia), the spinal cord (wind-up and sensitization of second-order neurons) and supraspinal structures, which all affect the processing of nociceptive signals in the nervous system and ultimately, the perception of pain.
APA, Harvard, Vancouver, ISO, and other styles
7

Price, Chane, Zahid Huq, Eellan Sivanesan, and Constantine Sarantopoulos. Pain Pathways and Pain Physiology. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190457006.003.0001.

Full text
Abstract:
Pain is a multidimensional sensory experience that is mediated by complex peripheral and central neuroanatomical pathways and mechanisms. Typically, noxious stimuli activate specific peripheral nerve terminals onto Aδ‎ and C nerve fibers that convey pain and generate signals that are relayed and processed in the spinal cord and then conveyed via the spinothalamic tracts to the contralateral thalamus and from there to the brain. Acute pain is self-limited and resolves with the healing process, but conditions of extensive injury or inflammation sensitize the pain pathways and generate aberrant, augmented responses. Peripheral and central sensitization of neurons (as a result of spatially and temporally excessive inflammation or intense afferent signal traffic) may result in hyperexcitability and chronicity of pain, with spontaneous pain and abnormal evoked responses to stimuli (allodynia, hyperalgesia). Finally, neuropathic pain follows injury or disease to nerves as a result of hyperexcitability augmented by various sensitizing mechanisms.
APA, Harvard, Vancouver, ISO, and other styles
8

McDougall, Jason J., and Joel A. Vilensky. The innervation of the joint and its role in osteoarthritis pain. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199668847.003.0007.

Full text
Abstract:
Diarthrodial joints possess an extensive network of sensory and sympathetic nerve fibres whose physiological functions are varied and complex. Nerves are primarily located in the synovium but also innervate the subchondral bone, the outer third of menisci, and the superficial surface of tendons and ligaments. Large-diameter, myelinated neurons are involved in joint position sense while small-diameter neurons with thin or no myelin typically sense pain. The small-diameter nerves in conjunction with sympathetic fibres control synovial blood flow and maintain joint homeostasis. In patients with osteoarthritis (OA), the sensory nerves become sensitized and increase their firing rate in response to normal movement. This peripheral sensitization is mediated by numerous algogenic agents released into the OA knee including neuropeptides, eicosanoids, and proteinases. A portion of joint afferents fire in the absence of mechanical stimuli and encode pain at rest. Interestingly, the firing rate of joint afferents does not correlate with OA severity, indicating that pain is a poor predictor of joint pathology. Evidence is accumulating to suggest that a subpopulation of OA patients who are unresponsive to classical non-steroidal anti-inflammatory drugs may be suffering from neuropathic pain in which there is damage to the joint nerves themselves. Better understanding of the biology of joint nerves could help in the development of patient-targeted therapies to alleviate OA pain and inflammation.
APA, Harvard, Vancouver, ISO, and other styles
9

PRIDE AND A DAILY MARATHON. Duckworth, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kerr, Bradley J. The link between an Nav1.7 mutation and erythromelalgia. Edited by Paul Farquhar-Smith, Pierre Beaulieu, and Sian Jagger. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198834359.003.0081.

Full text
Abstract:
The landmark paper discussed in this chapter is ‘Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons’, published by Dib-Hajj et al. in 2005. The voltage-dependent sodium channels Nav1.7, Nav1.8, and Nav1.9 have a restricted pattern of expression in sensory neurons in the periphery and are concentrated in small nociceptive neurons of the dorsal root ganglion, the trigeminal ganglion, and the nodose ganglion. In this paper, Dib-Hajj and colleagues studied a family with erythromelalgia (Weir Mitchell disease), an autosomal-dominant, inherited pain disorder in which burning pain in the extremities can be triggered by warming of the skin or moderate exertion. By identifying a novel mutation in SCN9A, which encodes Nav1.7, they established the critical role of this specific ion channel in this patient population. These findings represent an important first step towards developing isoform-specific channel blockers for the treatment of an inherited chronic pain condition.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Peripheral sensory neurons"

1

Dray, Andy. "Influences of the Chemical Environment on Peripheral Afferent Neurons." In Cellular Mechanisms of Sensory Processing, 273–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78762-1_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Neureiter, Anika, Esther Eberhardt, and Angelika Lampert. "Differentiation of iPS-Cells into Peripheral Sensory Neurons." In Methods in Molecular Biology, 175–88. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-1979-7_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cuello, A. C. "Effector Roles of Substance P in Peripheral Branches of Sensory Neurons." In Substance P and Neurokinins, 182–86. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4672-5_60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Seiger, Å., and C. Ayer-LeLievre. "Neuronal Interactions Between Peripheral Sensory and Central Monoamine Neurons Grafted to the Anterior Eye Chamber." In Processes of Recovery from Neural Trauma, 195–204. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70699-8_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Saijilafu, Bo-Yin Zhang, and Feng-Quan Zhou. "In Vivo Electroporation of Adult Mouse Sensory Neurons for Studying Peripheral Axon Regeneration." In Methods in Molecular Biology, 167–75. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0777-9_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Goldstein, Ronald S., Oz Pomp, Irina Brokhman, and Lina Ziegler. "Generation of Neural Crest Cells and Peripheral Sensory Neurons from Human Embryonic Stem Cells." In Methods in Molecular Biology, 283–300. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60761-369-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Seitz, Viola, Philip Stötzner, Dominika Labuz, and Halina Machelska. "Patch Clamp Analysis of Opioid-Induced Kir3 Currents in Mouse Peripheral Sensory Neurons Following Nerve Injury." In Methods in Molecular Biology, 127–37. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0884-5_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Moshourab, Rabih, Yvonne Schmidt, and Halina Machelska. "Skin–Nerve Preparation to Assay the Function of Opioid Receptors in Peripheral Endings of Sensory Neurons." In Methods in Molecular Biology, 215–28. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1708-2_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dalsgaard, C. J., W. Stains, H. Björklund, A. Haegerstrand, A. Hultgardh-Nilsson, J. Kjartansson, J. Nilsson, and T. Hökfelt. "Sensory Transmitter Candidates and Their Role in the Periphery." In Histochemistry and Cell Biology of Autonomic Neurons and Paraganglia, 39–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72749-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dubner, R., J. L. K. Hylden, R. L. Nahin, and R. J. Traub. "Neuronal Plasticity in the Superficial Dorsal Horn Following Peripheral Tissue Inflammation and Nerve Injury." In Processing of Sensory Information in the Superficial Dorsal Horn of the Spinal Cord, 429–42. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0825-6_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Peripheral sensory neurons"

1

Benzina, Ouafa, Vivien Szabo, Olivier Lucas, Marie-belle Saab, Thierry Cloitre, Frédérique Scamps, Csilla Gergely, and Marta Martin. "Changes induced by peripheral nerve injury in the morphology and nanomechanics of sensory neurons." In European Conferences on Biomedical Optics, edited by Emmanuel Beaurepaire and Peter T. C. So. SPIE, 2013. http://dx.doi.org/10.1117/12.2032465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

LoCoco, Peter M., Teresa C. Chavera, Raehannah J. Jamshidi, Susan L. Mooberry, Kelly A. Berg, and William P. Clarke. "Abstract P3-12-06: Subpopulations of peripheral sensory neurons are differentially sensitive to the microtubule-targeting agent, paclitaxel." In Thirty-Seventh Annual CTRC-AACR San Antonio Breast Cancer Symposium; December 9-13, 2014; San Antonio, TX. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.sabcs14-p3-12-06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography