Journal articles on the topic 'Perisynaptic Schwann cell'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 25 journal articles for your research on the topic 'Perisynaptic Schwann cell.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sugiura, Yoshie, and Weichun Lin. "Neuron–glia interactions: the roles of Schwann cells in neuromuscular synapse formation and function." Bioscience Reports 31, no. 5 (2011): 295–302. http://dx.doi.org/10.1042/bsr20100107.
Full textWeis, J., S. M. Fine, C. David, S. Savarirayan, and J. R. Sanes. "Integration site-dependent expression of a transgene reveals specialized features of cells associated with neuromuscular junctions." Journal of Cell Biology 113, no. 6 (1991): 1385–97. http://dx.doi.org/10.1083/jcb.113.6.1385.
Full textAlvarez-Suarez, Paloma, Marta Gawor, and Tomasz J. Prószyński. "Perisynaptic schwann cells - The multitasking cells at the developing neuromuscular junctions." Seminars in Cell & Developmental Biology 104 (August 2020): 31–38. http://dx.doi.org/10.1016/j.semcdb.2020.02.011.
Full textYoung, Paul, Jing Nie, Xueyong Wang, C. Jane McGlade, Mark M. Rich, and Guoping Feng. "LNX1 is a perisynaptic Schwann cell specific E3 ubiquitin ligase that interacts with ErbB2." Molecular and Cellular Neuroscience 30, no. 2 (2005): 238–48. http://dx.doi.org/10.1016/j.mcn.2005.07.015.
Full textBrill, Monika S., Jeff W. Lichtman, Wesley Thompson, Yi Zuo, and Thomas Misgeld. "Spatial constraints dictate glial territories at murine neuromuscular junctions." Journal of Cell Biology 195, no. 2 (2011): 293–305. http://dx.doi.org/10.1083/jcb.201108005.
Full textCovault, J., and J. R. Sanes. "Distribution of N-CAM in synaptic and extrasynaptic portions of developing and adult skeletal muscle." Journal of Cell Biology 102, no. 3 (1986): 716–30. http://dx.doi.org/10.1083/jcb.102.3.716.
Full textKapitza, Christopher, Rittika Chunder, Anja Scheller, et al. "Murine Esophagus Expresses Glial-Derived Central Nervous System Antigens." International Journal of Molecular Sciences 22, no. 6 (2021): 3233. http://dx.doi.org/10.3390/ijms22063233.
Full textDowdall, M., A. Green, and C. Richardson. "Dynamic imaging of functional nerve terminals and Schwann cells in presynaptic 'nerve plates' isolated from the skate electric organ." Journal of Experimental Biology 200, no. 1 (1997): 161–71. http://dx.doi.org/10.1242/jeb.200.1.161.
Full textKo, Chien-Ping, and Richard Robitaille. "Perisynaptic Schwann Cells at the Neuromuscular Synapse: Adaptable, Multitasking Glial Cells." Cold Spring Harbor Perspectives in Biology 7, no. 10 (2015): a020503. http://dx.doi.org/10.1101/cshperspect.a020503.
Full textDuregotti, Elisa, Samuele Negro, Michele Scorzeto, et al. "Mitochondrial alarmins released by degenerating motor axon terminals activate perisynaptic Schwann cells." Proceedings of the National Academy of Sciences 112, no. 5 (2015): E497—E505. http://dx.doi.org/10.1073/pnas.1417108112.
Full textVoigt, Tilman, Wolfgang Dauber, and Ulrike Kohler. "Perisynaptic Schwann cells of the vertebrate motor endplate bear modified cilia." Microscopy Research and Technique 63, no. 3 (2004): 149–54. http://dx.doi.org/10.1002/jemt.20023.
Full textJahromi, Babak S., Richard Robitaille, and Milton P. Charlton. "Transmitter release increases intracellular calcium in perisynaptic schwann cells in situ." Neuron 8, no. 6 (1992): 1069–77. http://dx.doi.org/10.1016/0896-6273(92)90128-z.
Full textBourque, Marie-Josée, and Richard Robitaille. "Endogenous peptidergic modulation of perisynaptic Schwann cells at the frog neuromuscular junction." Journal of Physiology 512, no. 1 (1998): 197–209. http://dx.doi.org/10.1111/j.1469-7793.1998.197bf.x.
Full textGeorgiou, John, and Milton P. Charlton. "Non-myelin-forming perisynaptic Schwann cells express protein zero and myelin-associated glycoprotein." Glia 27, no. 2 (1999): 101–9. http://dx.doi.org/10.1002/(sici)1098-1136(199908)27:2<101::aid-glia1>3.0.co;2-h.
Full textNegro, Samuele, Francesca Lessi, Elisa Duregotti та ін. "CXCL 12α/ SDF ‐1 from perisynaptic Schwann cells promotes regeneration of injured motor axon terminals". EMBO Molecular Medicine 9, № 8 (2017): 1000–1010. http://dx.doi.org/10.15252/emmm.201607257.
Full textKoirala, Samir, Huahong Qiang, and Chien-Ping Ko. "Reciprocal interactions between perisynaptic Schwann cells and regenerating nerve terminals at the frog neuromuscular junction." Journal of Neurobiology 44, no. 3 (2000): 343–60. http://dx.doi.org/10.1002/1097-4695(20000905)44:3<343::aid-neu5>3.0.co;2-o.
Full textCunningham, Madeleine E., Gavin R. Meehan, Sophie Robinson, Denggao Yao, Rhona McGonigal, and Hugh J. Willison. "Perisynaptic Schwann cells phagocytose nerve terminal debris in a mouse model of Guillain‐Barré syndrome." Journal of the Peripheral Nervous System 25, no. 2 (2020): 143–51. http://dx.doi.org/10.1111/jns.12373.
Full textRobitaille, Richard, Babak S. Jahromi, and Milton P. Charlton. "Muscarinic Ca2+responses resistant to muscarinic antagonists at perisynaptic schwann cells of the frog neuromuscular junction." Journal of Physiology 504, no. 2 (1997): 337–47. http://dx.doi.org/10.1111/j.1469-7793.1997.337be.x.
Full textNoronha‐Matos, José B., Laura Oliveira, Ana R. Peixoto та ін. "Nicotinic α7 receptor‐induced adenosine release from perisynaptic Schwann cells controls acetylcholine spillover from motor endplates". Journal of Neurochemistry 154, № 3 (2020): 263–83. http://dx.doi.org/10.1111/jnc.14975.
Full textHerrera, Albert A., Huahong Qiang, and Chien-Ping Ko. "The role of perisynaptic Schwann cells in development of neuromuscular junctions in the frog (xenopus laevis)." Journal of Neurobiology 45, no. 4 (2000): 237–54. http://dx.doi.org/10.1002/1097-4695(200012)45:4<237::aid-neu5>3.0.co;2-j.
Full textTam, S. L., and T. Gordon. "Neuromuscular activity impairs axonal sprouting in partially denervated muscles by inhibiting bridge formation of perisynaptic Schwann cells." Journal of Neurobiology 57, no. 2 (2003): 221–34. http://dx.doi.org/10.1002/neu.10276.
Full textAuld, Daniel S., and Richard Robitaille. "Perisynaptic Schwann Cells at the Neuromuscular Junction: Nerve- and Activity-Dependent Contributions to Synaptic Efficacy, Plasticity, and Reinnervation." Neuroscientist 9, no. 2 (2003): 144–57. http://dx.doi.org/10.1177/1073858403252229.
Full textHalstead, S. K. "Anti-disialoside antibodies kill perisynaptic Schwann cells and damage motor nerve terminals via membrane attack complex in a murine model of neuropathy." Brain 127, no. 9 (2004): 2109–23. http://dx.doi.org/10.1093/brain/awh231.
Full textHeredia, Dante J., Cheng-Yuan Feng, Grant W. Hennig, Robert B. Renden, and Thomas W. Gould. "Activity-induced Ca2+ signaling in perisynaptic Schwann cells of the early postnatal mouse is mediated by P2Y1 receptors and regulates muscle fatigue." eLife 7 (January 31, 2018). http://dx.doi.org/10.7554/elife.30839.
Full textCastro, Ryan, Thomas Taetzsch, Sydney K. Vaughan, et al. "Specific labeling of synaptic schwann cells reveals unique cellular and molecular features." eLife 9 (June 25, 2020). http://dx.doi.org/10.7554/elife.56935.
Full text