Academic literature on the topic 'Peritectic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Peritectic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Peritectic"

1

Su, Yan Qing, Dong Mei Liu, Xin Zhong Li, Liang Shun Luo, Jing Jie Guo, and H. Z. Fu. "Microstructure Evolution of Directionally Solidified Al-25at.%Ni Peritectic Alloy." Advanced Materials Research 79-82 (August 2009): 1655–58. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.1655.

Full text
Abstract:
Microstructure evolution of peritectic Al-25at.%Ni alloy during directional solidification with pulling velocity ranging from 2 to 500m/s is investigated. The directional solidified alloy is composed of Al3Ni2, Al3Ni phase and eutectic (Al3Ni+Al) phase. When pulling velocity ranges from 2 to 5m/s, Al3Ni phase grows into an integral matrix. Majority of primary Al3Ni2 is consumed by peritecti reaction and transformation behind the peritectic interface with pulling velocity ranging from 2 to 20 m/s. While pulling rate increases, major Al3Ni phase direct solidifies from liquid. With cooling rate increasing, Al3Ni2 phase content firstly decreases and then increases, while the Al3Ni phase content decreases throughout.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhu, Xin Hua, Li Huang Zhu, Yu Liu, and Tian Long Liu. "Peritectic-Steel Mold Fluxes." Advanced Materials Research 567 (September 2012): 75–78. http://dx.doi.org/10.4028/www.scientific.net/amr.567.75.

Full text
Abstract:
As peritectic steel is crack sensitive steel, peritectic-steel mold flux needs a higher performance requirement, In this paper, it is analyzed in detail that various properties of peritectic steel mold flux have effects on the quality of peritectic steel billet .
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Y. Z., F. Liu, G. C. Yang, and Y. H. Zhou. "Nonequilibrium effects of primary solidification on peritectic reaction and transformation in undercooled peritectic Fe–Ni alloy." Journal of Materials Research 25, no. 6 (June 2010): 1025–29. http://dx.doi.org/10.1557/jmr.2010.0156.

Full text
Abstract:
Applying the glass fluxing method, a peritectic Fe–Ni alloy with a composition of Fe–4.35 at.% Ni was undercooled. It was found that when the initial melt undercooling (ΔT) is smaller than 130 K, the overall thickness of the peritectic phase formed in peritectic reaction (PR) and peritectic transformation (PT) decreases as ΔT increases. The nonequilibrium effects of the primary solidification on PR and PT in the undercooled peritectic Fe–Ni alloys were illuminated. With increasing ΔT, since the driving forces for PR and PT change slightly, the decrease of the overall thickness of the peritectic phase formed in PR and PT can be mainly ascribed to the reduced transformation time for PT.
APA, Harvard, Vancouver, ISO, and other styles
4

Pu, Dazhi, Guanghua Wen, Dachao Fu, Ping Tang, and Junli Guo. "Study of the Effect of Carbon on the Contraction of Hypo-Peritectic Steels during Initial Solidification by Surface Roughness." Metals 8, no. 12 (November 23, 2018): 982. http://dx.doi.org/10.3390/met8120982.

Full text
Abstract:
In the continuous casting process, the shrinkage of the peritectic phase transition during the initial solidification process has an important influence on the surface quality of peritectic steel. The initial solidification process of 0.10C%, 0.14C%, and 0.16C% peritectic steels was observed in situ by a high temperature laser confocal microscope, and the contraction degree during initial solidification was characterized by surface roughness. The results showed that under the cooling rate of 20 °C/s, the surface roughness value Ra(δ/γ) of 0.10C% peritectic steel was 32 μm, the Ra(δ/γ) value of 0.14C% peritectic steel was 25 μm, and the Ra(δ/γ) value of 0.16C% peritectic steel was 17 μm. With increasing carbon content, the contraction degree of the δ→γ transformation decreased, and the value of the surface roughness Ra(δ/γ) declined. Therefore, surface roughness can characterize the contraction degree of the δ→γ transformation in the initial solidification process of peritectic steel under the condition of a large cooling rate.
APA, Harvard, Vancouver, ISO, and other styles
5

Guo, Jun Li, Guang Hua Wen, Ping Tang, and Jiao Jiao Fu. "Analysis of Peritectic Transformation Contraction of 304 Stainless Steel Using Surface Roughness." Materials Science Forum 1005 (August 2020): 10–17. http://dx.doi.org/10.4028/www.scientific.net/msf.1005.10.

Full text
Abstract:
Peritectic transformation contraction of ferrite to austenite plays an important role in the formation of cracks for steels. In order to evaluate the peritectic transformation contraction of steels at the initial solidification, the solidification of 304 stainless steel under different cooling rates were carried out by using high temperature laser confocal microscopy, and then the surface roughness and peritectic transformation contraction were analysed in combination with the microstructure of solidified steel. The result shows that the solidification model of 304 stainless steel was ferrite-austenite model in the experiments, and peritectic transformation occurred during solidification. The residual ferrite in the as-cast structure were vermicular, skeletal and reticular in turn with the increase of cooling rate. The volume contraction caused by peritectic transformation resulted in wrinkles (surface roughness) appearing on the grain surface. The peritectic transformation contraction that was affected by surface roughness increased first and then decreased with cooling rate increasing, indicating the peritectic transformation contraction can be evaluated by the surface roughness.
APA, Harvard, Vancouver, ISO, and other styles
6

Lu, X. Y., D. Yi, and H. Chen. "A Pseudo-Binary Diagram of the (Bi,Pb)-Sr-Ca-Cu-O System." Materials Science Forum 750 (March 2013): 184–87. http://dx.doi.org/10.4028/www.scientific.net/msf.750.184.

Full text
Abstract:
A pseudo-binary phase diagram of the (Bi,Pb)-Sr-Ca-Cu-O system along the Bi1.6Pb0.4Sr2Can-1CunOx line is constructed. This resulting phase diagram shows three kinds of peritectic reactions, one eutectic reaction and one peritectoid reaction. The equilibrium solid phases in this diagram are the 2201 (n=1), 2212 (n=2), 2223 (n=3) and (Sr,Ca)CuO2 (n→∝) phases. The 2201 phase is solid solution which is stable at 1≤n≤1.2. The eutectic composition point is close to the maximum solid solution composition of the 2201 phase. The temperature interval between the peritectic reaction of L + (Sr,Ca)2CuO3 + (Sr,Ca)CuO2 → 2212 and the eutectic reaction of L → 2201 + 2212 is only about 3°C. For the composition of n=3, CaO and the liquid phase are stable at temperatures above 940°C. During the cooling, these two phases react peritectically to (Sr,Ca)2CuO3. At around 890°C, (Sr,Ca)2CuO3 reacts with the liquid to produce (Sr,Ca)CuO2. At around 865°C, (Sr,Ca)2CuO3 and (Sr,Ca)CuO2 react with the liquid to produce the 2212. The 2223 phase is transformed by a peritectoid reaction of the 2212 phase and residual (Sr,Ca)2CuO3, (Sr,Ca)CuO2.
APA, Harvard, Vancouver, ISO, and other styles
7

Qu, Tianpeng, Deyong Wang, Huihua Wang, Dong Hou, and Jun Tian. "Effect of Magnesium Treatment on the Hot Ductility of Ti-Bearing Peritectic Steel." Metals 10, no. 10 (September 25, 2020): 1282. http://dx.doi.org/10.3390/met10101282.

Full text
Abstract:
Surface cracking is a major defect in the production of continuous casting slabs of peritectic steel. The difference in crystal structure between δ phase (before peritectic transformation of steel) and γ phase (after peritectic transformation) results in volume contraction, which leads to uneven cooling of mold and thus forming slab shells with different thicknesses. Then, coupled with the concentration of local stress, surface cracking occurs on slabs. In this paper, the effect of magnesium treatment on the hot ductility of Ti-bearing peritectic steel was studied, and the characteristics of solidification structure and TiN particles were analyzed. Magnesium treatment for Ti-bearing peritectic steel could significantly improve the hot ductility of continuous casting slabs by refining the original austenite structure. After the magnesium treatment, the average grain size of the original austenite of peritectic steel decreased by about 18.7%, and the size of Mg-rich TiN particles decreased by about 41%. In addition, the minimum reduction of area at the third brittle zone after the magnesium treatment was higher than 60%, and the fracture appearance changed from intergranular fracture to ductile fracture after the treatment. The contents of Mg, Ti, O, and N in peritectic steel and the cooling conditions were adjusted reasonably to promote the formation of highly dispersed Mg-rich TiN particles with a sufficient number density and a proper size in the initial solidification stage of peritectic steel, so as to induce the high-temperature δ-ferrite nucleation. Based on the fine δ structure formed by peritectic transformation, through the use of structure heredity and the pinning effect of secondary-precipitated nano TiN particles on the austenite grain boundary, a fine and dense original austenite structure could be obtained to improve the hot ductility of peritectic steel. Industrial tests showed that through the magnesium treatment, the surface cracks of Ti-bearing peritectic steel were effectively restrained, and the corner cracks of slabs were basically eliminated.
APA, Harvard, Vancouver, ISO, and other styles
8

Dobler, S., T. S. Lo, M. Plapp, A. Karma, and W. Kurz. "Peritectic coupled growth." Acta Materialia 52, no. 9 (May 2004): 2795–808. http://dx.doi.org/10.1016/j.actamat.2004.02.026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

StJohn, D. H. "The peritectic reaction." Acta Metallurgica et Materialia 38, no. 4 (April 1990): 631–36. http://dx.doi.org/10.1016/0956-7151(90)90218-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Said, Rita Mohd, Mohd Arif Anuar Mohd Salleh, Norainiza Saud, Mohd Izrul Izwan Ramli, and Andrei Victor Sandu. "Solidification Behavior of Sn Cu Based Peritectic Alloys: A Short Review." Solid State Phenomena 273 (April 2018): 34–39. http://dx.doi.org/10.4028/www.scientific.net/ssp.273.34.

Full text
Abstract:
Microstructure evolution that exhibit from the reaction of Sn Cu pritectic alloys become an interesting phenomenon that need to be explored since the properties of the alloys depend on their microstructures. Due to less understanding on the solidification behavior on peritectic alloys, extensive research are made on this type of alloys to gain more information regarding on the microstructure formation. This paper reviews the mechanisms on peritectic solidification on Sn Cu based peritectic alloys. The changed in peritectic microstructure due to external source such as direct current (DC) field, ultrasonic field and isothermal time are discuss respectively through this paper. The focus is made on peritectic solidification of Sn Cu based alloy since it has a promising potential for high temperature lead-free solder application.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Peritectic"

1

Ha, Heon Phil. "An experimental and theoretical study of the peritectic reaction." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Howe, Andrew Aitken. "Micro-segregation in multicomponent steels involving the peritectic reaction." Thesis, University of Sheffield, 1993. http://etheses.whiterose.ac.uk/15168/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ye, Xiaoli. "Thermodynamic phase field modelling of line compounds and peritectic reactions." Thesis, University of Leeds, 2011. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.540591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nassar, Hani. "On Peritectic Reactions and Transformations and Hot Forming of Cast Structures." Doctoral thesis, Stockholm : Royal Institute of Technology, Department of Material Science and Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tadesse, Abel. "On the Volume Changes during the Solidification of Cast Irons and Peritectic Steels." Doctoral thesis, KTH, Metallernas gjutning, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202558.

Full text
Abstract:
This thesis work deals with the volume changes during the solidification of cast irons and peritectic steels. The volume changes in casting metals are related to the expansion and/or contraction of the molten metal during solidification. Often, different types of shrinkage, namely macro- and micro-shrinkage, affect the casting quality. In addition to that, exposure of the metal casting to higher contraction or expansion during the solidification might also be related to internal strain development in samples, which eventually leads to surface crack propagation in some types of steel alloys during continuous casting. In consequence, a deep understanding of the mechanisms and control of the solidification will improve casting quality and production. All of the experiments during the entire work were carried out on laboratory scale samples. Displacement changes during solidification were measured with the help of a Linear Variable Displacement Transformer (LVDT). All of the LVDT experiments were performed on samples inside a sand mould. Simultaneously, the cooling curves of the respective samples during solidification were recorded with a thermocouple. By combining the displacement and cooling curves, the volume changes was evaluated and later used to explain the influence of inoculants, carbon and cooling rates on volume shrinkages of the casting. Hypoeutectic grey cast iron (GCI) and nodular cast iron (NCI) with hypo-, hyper- and eutectic carbon compositions were considered in the experiments from cast iron group. High nickel alloy steel (Sandvik Sanbar 64) was also used from peritectic steel type. These materials were melted inside an induction furnace and treated with different types of inoculants before and during pouring in order to modify the composition. Samples that were taken from the LVDT experiments were investigated using a number of different  methods in order to support the observations from the displacement measurements:  Differential Thermal Analysis (DTA), to evaluate the different phase present; Dilatometry, to see the effect of cooling rates on contraction for the various types of alloys; metallographic studies with optical microscopy; Backscattered electrons (BSE) analysis on SEM S-3700N, to investigate the different types of oxide and sulphide nuclei; and bulk density measurements  by applying Archimedes' principle. Furthermore, the experimental volume expansion during solidification was compared with the theoretically calculated values for GCI and NCI. It was found that the casting shows hardly any shrinkage during early solidification in GCI, but in the eutectic region the casting expands until the end of solidification. The measured and the calculated volume changes are close to one another, but the former shows more expansion. The addition of MBZCAS (Si, Ca, Zr, Ba, Mn and Al) promotes more flake graphite, and ASSC (Si, Ca, Sr and Al) does not increase the number of eutectic cells by much. In addition to that, it lowers the primary austenite fraction, promotes more eutectic growth and decreases undercooled graphite and secondary dendritic arm spacing (SDAS). As a result, the volume expansion changes in the eutectic region. The expansion during the eutectic growth increase with an increase in the inoculant weight percentage. At the same time, the eutectic cells become smaller and increase in number. The effect of the inoculant and the superheat temperature shows a variation in the degree of expansion/contraction and the cooling rates for the experiments. Effective inoculation tends to homogenize the eutectic structure, reducing the undercooled and interdendritic graphite throughout the structure. In NCI experiments, it was found that the samples showed no expansion in the transversal direction due to higher micro-shrinkages in the centre, whereas in the longitudinal direction the samples shows expansion until solidification was complete.   The theoretical and measured volume changes agreed with each other. The austenite fraction and number of micro-shrinkage pores decreased with increase in carbon content. The nodule count and distribution changes with carbon content. The thermal contraction of NCI is not influenced by the variation in carbon content at lower cooling rates. The structural analysis and solidification simulation results for NCI show that the nodule size and count distribution along the cross-sections at various locations are different due to the variation in cooling rates and carbon concentration. Finer nodule graphite appears in the thinner sections and close to the mold walls. A coarser structure is distributed mostly in the last solidified location. The simulation result indicates that finer nodules are associated with higher cooling rate and a lower degree of microsegregation, whereas the coarser nodules are related to lower cooling rate and a higher degree of microsegregation. As a result, this structural variation influences the micro-shrinkage in different parts. The displacement change measurements show that the peritectic steel expands and/or contracts during the solidification. The primary austenite precipitation during the solidification in the metastable region is accompanied by gradual expansion on the casting sides. Primary δ-ferrite precipitation under stable phase diagram is complemented by a severe contraction during solidification. The microstructural analysis reveals that the only difference between the samples is grain refinement with Ti addition. Moreover, the severe contraction in solidification region might be the source for the crack formation due to strain development, and further theoretical analysis is required in the future to verify this observation.

QC 20170228

APA, Harvard, Vancouver, ISO, and other styles
6

Wen, Xuejun. "DIRECT DEPOSITION OF C-AXIS TEXTURED HIGH-TC YBCO SUPERCONDUCTING THICK FILMS UNORIENTED METALLIC SUBSTRATES." University of Cincinnati / OhioLINK, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=ucin971281869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Biswas, Kaushik. "Effect of melt convection on microstructure evolution of peritectic Nd-Fe-B and Ti-Al alloys." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1222335463187-47437.

Full text
Abstract:
In dieser Arbeit wurde der Einfluss der Schmelzkonvektion auf das erstarrende Gefüge von peritektischen Nd-Fe-B – und TiAl-Legierungen mit Hilfe neuartiger Methoden untersucht. Da die magnetischen und mechanischen Eigenschaften dieser technisch relevanten Legierungen stark vom Gefüge und insbesondere vom Volumenanteil der properitektischen Phase abhängen, sind diese Untersuchungen von großem Interesse. Auf der Basis der numerischen Simulationen der Schmelzkonvektionsmoden und des elektromagnetischen Problems in einer induktiv beheizten Schmelze, die am Forschungszentrum Dresden-Rossendorf durchgeführt wurden, wurden am IFW Dresden neuartige Versuchsaufbauten entwickelt, die die Modifizierung der Konvektion in einer Metallschmelze ermöglichen. Dies sind ein Aufbau zur erzwungenen Schmelzrotation in einem Tiegel und eine modifizierte Floating-Zone-Anlage. Die erzwungene Schmelzrotation, bei der der Schmelztiegel mit einer definierten Frequenz rotiert, führt in Übereinstimmung mit der Simulation zu einer starken Reduzierung der Konvektion in Abhängigkeit von der Frequenz. Diese Methode wurde auf Nd-Fe-B-Legierungen angewendet mit dem Ziel, die Bildung der unerwünschten weichmagnetischen Eisenphase zu unterdrücken bzw. deren Volumenanteil zu reduzieren. Im Ergebnis konnte der Volumenanteil der properitektischen Phase mit diesem Verfahren um 38.5 % reduziert werden. Das dendritische Gefüge wurde einer ausführlichen statistischen Analyse unterzogen, bei der die Abstände der sekundären Dendritenarme (SDAS) gemessen wurden. Es konnte gezeigt werden, dass die SDAS sich mit steigender Frequenz der Tiegelrotation, was einer reduzierten Schmelzkonvektion entspricht, verringern. Die Verringerung des Volumenanteils der properitektischen Eisenphase und der SDAS wird mit dem reduzierten konvektiven Massentransport unter reduzierter Schmelzkonvektion erklärt. Starke interdendritische Strömung reduziert die Dicke der Diffusionsgrenzschicht um die properitektische Phase. Dadurch wird der Stofftransport durch die Grenzschicht erleichtert. Kleinere Dendritenarme werden in die Schmelze zurückgeschmolzen, wodurch sich der Abstand zwischen den verbleibenden Dendritenarmen vergrößert. Eine Floating-Zone-Anlage, die das tiegelfreie Prozessieren von Metallschmelzen erlaubt wurde so modifiziert, dass mit Hilfe eines Doppelspulensystems eine zusätzliche wohl definierte elektromagnetische Kraft eingebracht wird, über die eine sehr intensive (Zweiphasenrührer in Parallelschaltung) bzw. stark verringerte Strömung (Doppelspule in Reihenschaltung) in der Schmelze eingestellt werden kann. Die experimentellen Ergebnisse der Untersuchungen am Nd-Fe-B-System mit der Doppelspule in Reihenschaltung zeigten, dass sich bei einem optimalen Spulenabstand von 5,1 mm die geringste Schmelzkonvektion ergab, wobei der Anteil des a-Eisen-Volumenanteils weiter verringert werden konnte. Im Gegensatz dazu wurde mit dem Zweiphasenrührer in Parallelschaltung eine sehr starke Schmelzkonvektion mit einem maximalen Volumenanteil der a-Eisen-Phase eingestellt, wobei durch die starke Rührung ein Wechsel der Morphologie von dendritisch zu globular zu beobachten war. Die Untersuchungen zum Einfluss der starken Schmelzkonvektion wurden auf ein weiteres peritektisch erstarrendes System ausgedehnt, um eine generalisierte Aussage zum Einfluss der Konvektion auf Gefüge und Eigenschaften peritektisch erstarrender Legierungen zu erhalten. Die ausgewählte Ti45Al55 - Legierung erstarrte unter starker Schmelzkonvektion ebenfalls globulitisch, wobei Reste dendritisch erstarrter properitektischer Phase gefunden wurden. Der Volumenanteil der properitektischen Phase steigt dabei mit zunehmender Rührwirkung an. Der Wechsel der Morphologie von dendritisch zu globular/dendritisch kann mit sphärischem Wachstum oder Fragmentierung der Dendritenarme erklärt werden. Die mechanischen Eigenschaften unter unterschiedlicher Schmelzkonvektion erstarrter Ti45Al55 – Legierung wurden bei Druckversuchen untersucht. Es wurde eine signifikant höhere plastische Verformbarkeit an der unter starker Schmelzkonvektion erstarrten Ti45Al55 – Legierung gefunden. Dies wird der isotropen spherischen Morphologie der lamellaren a2/g-Phase zugeordnet, während die anisotrope Orientierung der dendritisch- lamellaren Phase unerwünschte plastische Eigenschaften zeigt. Die Untersuchungen des Einflusses der Schmelzkonvektion auf das Gefüge peritektisch erstarrender Legierungen zeigten, dass ein maßgeschneidertes Gefüge durch optimale Wahl der Schmelzkonvektion möglich ist und damit magnetische bzw. mechanische Eigenschaften verbessert werden können. Die Kontrolle der Schmelzkonvektion ist daher ein geeignetes Mittel gewünschte Gefüge und Eigenschaften in Abhängigkeit von den Prozessabläufen einzustellen
In this work, the effect of melt convection on the microstructure evolution of peritectic Nd-Fe-B and Ti-Al alloy systems was studied using novel techniques. The microstructural formation including the change in volume fraction and morphology of the properitectic phase influences the magnetic and mechanical properties for the Nd-Fe-B and Ti-Al alloy systems, respectively. On the basis of numerical simulations by the research group of Dr. Gunter Gerbeth from Department of Magnetohydrodynamics, Forschungszentrum Dresden-Rossendorf, two types of specially designed facilities were developed where melt convection can be altered by changing a number of parameters. These are: forced rotation facility and modified floating zone facility. According to the numerical simulation, an additional crucible rotation suppresses the internal melt motion significantly during forced rotation experiments, where the molten alloy is rotated at a well-defined frequency. This method was applied during the solidification of Nd-Fe-B alloys with the aim to suppress the volume fraction of undesired soft magnetic a-Fe phase. As a result, the volume fraction of properitectic phase with this method can be reduced up to 38 %. A detailed statistical analysis of secondary dendritic arm spacing (SDAS) measurements of a-Fe showed that the SDAS decreases as the rotational frequency increases and melt convection decreases. The reduction in the phase fraction and SDAS of properitectic phase is attributed to the reduced convective mass transfer under reduced melt motion. At high fluid velocity and low rotational frequency, the stronger interdendritic flow reduces the solute boundary layer and increases the transfer of solute through the interface. The smaller dendrite arms dissolve into the melt and thus the SDAS becomes higher than that of the samples solidified at higher rotational frequencies with reduced melt convection. Floating zone facility, which allows contactless heating without any contamination for highly reactive melts, was modified with a double coil system so that an additional electromagnetic force is introduced inside the melt. This induces either very intensive (two-phase stirrer in parallel connection coil system) or very reduced flow (series connection coil system) inside the melt The experimental results of series connection coil system showed that a reduced melt convection state is achieved near 5.1 mm coil distance where a-Fe volume fraction becomes minimum. On the contrary, the parallel coil system experiments showed that a-Fe volume fraction becomes maximum when the phase shift between the coils is close to 90°. The morphology of the a-Fe becomes globular due to spherical growth under strong convection. The study on the effect of strong stirring was extended to another alloy to get a generalized idea about the influence of melt convection on the microstructure development and resulting properties of peritectic alloys. Peritectic Ti45Al55 alloys were investigated by the two-phase stirrer using the coils connected in parallel to study the effect of enhanced melt convection. The increase in the properitectic phase fraction together with a strong change in the morphology from dendritic to spherical were observed in the stirred samples. The increase in the properitectic phase fraction occurs due to the enhanced effective mass transfer under strong melt convection. The change in morphology of the properitectic phase is attributed to spherical growth or fragmentation of dendrite arms under strong convection. The mechanical properties of Ti45Al55 alloys, which are solidified at different convection states, were studied. There was a significantly higher plastic deformability of stirred samples compared to unstirred samples. The coarse anisotropic orientation of the dendritic lamellar phase is detrimental for the plastic deformability, which is absent in the stirred samples due to the spherical and discrete morphology of the properitectic phase. This study indicates that tailored microstructure can be obtained either by decreasing (e.g. for Nd-Fe-B alloy) or increasing (e.g. for Ti-Al alloy) the convection state using effective techniques inside the melt to improve the magnetic and mechanical properties, respectively. Thus, controlling convection is a useful way to get favorable microstructure according to the process need
APA, Harvard, Vancouver, ISO, and other styles
8

Biswas, Kaushik. "Effect of melt convection on microstructure evolution of peritectic Nd-Fe-B and Ti-Al alloys." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23731.

Full text
Abstract:
In dieser Arbeit wurde der Einfluss der Schmelzkonvektion auf das erstarrende Gefüge von peritektischen Nd-Fe-B – und TiAl-Legierungen mit Hilfe neuartiger Methoden untersucht. Da die magnetischen und mechanischen Eigenschaften dieser technisch relevanten Legierungen stark vom Gefüge und insbesondere vom Volumenanteil der properitektischen Phase abhängen, sind diese Untersuchungen von großem Interesse. Auf der Basis der numerischen Simulationen der Schmelzkonvektionsmoden und des elektromagnetischen Problems in einer induktiv beheizten Schmelze, die am Forschungszentrum Dresden-Rossendorf durchgeführt wurden, wurden am IFW Dresden neuartige Versuchsaufbauten entwickelt, die die Modifizierung der Konvektion in einer Metallschmelze ermöglichen. Dies sind ein Aufbau zur erzwungenen Schmelzrotation in einem Tiegel und eine modifizierte Floating-Zone-Anlage. Die erzwungene Schmelzrotation, bei der der Schmelztiegel mit einer definierten Frequenz rotiert, führt in Übereinstimmung mit der Simulation zu einer starken Reduzierung der Konvektion in Abhängigkeit von der Frequenz. Diese Methode wurde auf Nd-Fe-B-Legierungen angewendet mit dem Ziel, die Bildung der unerwünschten weichmagnetischen Eisenphase zu unterdrücken bzw. deren Volumenanteil zu reduzieren. Im Ergebnis konnte der Volumenanteil der properitektischen Phase mit diesem Verfahren um 38.5 % reduziert werden. Das dendritische Gefüge wurde einer ausführlichen statistischen Analyse unterzogen, bei der die Abstände der sekundären Dendritenarme (SDAS) gemessen wurden. Es konnte gezeigt werden, dass die SDAS sich mit steigender Frequenz der Tiegelrotation, was einer reduzierten Schmelzkonvektion entspricht, verringern. Die Verringerung des Volumenanteils der properitektischen Eisenphase und der SDAS wird mit dem reduzierten konvektiven Massentransport unter reduzierter Schmelzkonvektion erklärt. Starke interdendritische Strömung reduziert die Dicke der Diffusionsgrenzschicht um die properitektische Phase. Dadurch wird der Stofftransport durch die Grenzschicht erleichtert. Kleinere Dendritenarme werden in die Schmelze zurückgeschmolzen, wodurch sich der Abstand zwischen den verbleibenden Dendritenarmen vergrößert. Eine Floating-Zone-Anlage, die das tiegelfreie Prozessieren von Metallschmelzen erlaubt wurde so modifiziert, dass mit Hilfe eines Doppelspulensystems eine zusätzliche wohl definierte elektromagnetische Kraft eingebracht wird, über die eine sehr intensive (Zweiphasenrührer in Parallelschaltung) bzw. stark verringerte Strömung (Doppelspule in Reihenschaltung) in der Schmelze eingestellt werden kann. Die experimentellen Ergebnisse der Untersuchungen am Nd-Fe-B-System mit der Doppelspule in Reihenschaltung zeigten, dass sich bei einem optimalen Spulenabstand von 5,1 mm die geringste Schmelzkonvektion ergab, wobei der Anteil des a-Eisen-Volumenanteils weiter verringert werden konnte. Im Gegensatz dazu wurde mit dem Zweiphasenrührer in Parallelschaltung eine sehr starke Schmelzkonvektion mit einem maximalen Volumenanteil der a-Eisen-Phase eingestellt, wobei durch die starke Rührung ein Wechsel der Morphologie von dendritisch zu globular zu beobachten war. Die Untersuchungen zum Einfluss der starken Schmelzkonvektion wurden auf ein weiteres peritektisch erstarrendes System ausgedehnt, um eine generalisierte Aussage zum Einfluss der Konvektion auf Gefüge und Eigenschaften peritektisch erstarrender Legierungen zu erhalten. Die ausgewählte Ti45Al55 - Legierung erstarrte unter starker Schmelzkonvektion ebenfalls globulitisch, wobei Reste dendritisch erstarrter properitektischer Phase gefunden wurden. Der Volumenanteil der properitektischen Phase steigt dabei mit zunehmender Rührwirkung an. Der Wechsel der Morphologie von dendritisch zu globular/dendritisch kann mit sphärischem Wachstum oder Fragmentierung der Dendritenarme erklärt werden. Die mechanischen Eigenschaften unter unterschiedlicher Schmelzkonvektion erstarrter Ti45Al55 – Legierung wurden bei Druckversuchen untersucht. Es wurde eine signifikant höhere plastische Verformbarkeit an der unter starker Schmelzkonvektion erstarrten Ti45Al55 – Legierung gefunden. Dies wird der isotropen spherischen Morphologie der lamellaren a2/g-Phase zugeordnet, während die anisotrope Orientierung der dendritisch- lamellaren Phase unerwünschte plastische Eigenschaften zeigt. Die Untersuchungen des Einflusses der Schmelzkonvektion auf das Gefüge peritektisch erstarrender Legierungen zeigten, dass ein maßgeschneidertes Gefüge durch optimale Wahl der Schmelzkonvektion möglich ist und damit magnetische bzw. mechanische Eigenschaften verbessert werden können. Die Kontrolle der Schmelzkonvektion ist daher ein geeignetes Mittel gewünschte Gefüge und Eigenschaften in Abhängigkeit von den Prozessabläufen einzustellen.
In this work, the effect of melt convection on the microstructure evolution of peritectic Nd-Fe-B and Ti-Al alloy systems was studied using novel techniques. The microstructural formation including the change in volume fraction and morphology of the properitectic phase influences the magnetic and mechanical properties for the Nd-Fe-B and Ti-Al alloy systems, respectively. On the basis of numerical simulations by the research group of Dr. Gunter Gerbeth from Department of Magnetohydrodynamics, Forschungszentrum Dresden-Rossendorf, two types of specially designed facilities were developed where melt convection can be altered by changing a number of parameters. These are: forced rotation facility and modified floating zone facility. According to the numerical simulation, an additional crucible rotation suppresses the internal melt motion significantly during forced rotation experiments, where the molten alloy is rotated at a well-defined frequency. This method was applied during the solidification of Nd-Fe-B alloys with the aim to suppress the volume fraction of undesired soft magnetic a-Fe phase. As a result, the volume fraction of properitectic phase with this method can be reduced up to 38 %. A detailed statistical analysis of secondary dendritic arm spacing (SDAS) measurements of a-Fe showed that the SDAS decreases as the rotational frequency increases and melt convection decreases. The reduction in the phase fraction and SDAS of properitectic phase is attributed to the reduced convective mass transfer under reduced melt motion. At high fluid velocity and low rotational frequency, the stronger interdendritic flow reduces the solute boundary layer and increases the transfer of solute through the interface. The smaller dendrite arms dissolve into the melt and thus the SDAS becomes higher than that of the samples solidified at higher rotational frequencies with reduced melt convection. Floating zone facility, which allows contactless heating without any contamination for highly reactive melts, was modified with a double coil system so that an additional electromagnetic force is introduced inside the melt. This induces either very intensive (two-phase stirrer in parallel connection coil system) or very reduced flow (series connection coil system) inside the melt The experimental results of series connection coil system showed that a reduced melt convection state is achieved near 5.1 mm coil distance where a-Fe volume fraction becomes minimum. On the contrary, the parallel coil system experiments showed that a-Fe volume fraction becomes maximum when the phase shift between the coils is close to 90°. The morphology of the a-Fe becomes globular due to spherical growth under strong convection. The study on the effect of strong stirring was extended to another alloy to get a generalized idea about the influence of melt convection on the microstructure development and resulting properties of peritectic alloys. Peritectic Ti45Al55 alloys were investigated by the two-phase stirrer using the coils connected in parallel to study the effect of enhanced melt convection. The increase in the properitectic phase fraction together with a strong change in the morphology from dendritic to spherical were observed in the stirred samples. The increase in the properitectic phase fraction occurs due to the enhanced effective mass transfer under strong melt convection. The change in morphology of the properitectic phase is attributed to spherical growth or fragmentation of dendrite arms under strong convection. The mechanical properties of Ti45Al55 alloys, which are solidified at different convection states, were studied. There was a significantly higher plastic deformability of stirred samples compared to unstirred samples. The coarse anisotropic orientation of the dendritic lamellar phase is detrimental for the plastic deformability, which is absent in the stirred samples due to the spherical and discrete morphology of the properitectic phase. This study indicates that tailored microstructure can be obtained either by decreasing (e.g. for Nd-Fe-B alloy) or increasing (e.g. for Ti-Al alloy) the convection state using effective techniques inside the melt to improve the magnetic and mechanical properties, respectively. Thus, controlling convection is a useful way to get favorable microstructure according to the process need.
APA, Harvard, Vancouver, ISO, and other styles
9

Imae, Naoya. "Peritectic reactions in Mg-Si-O-H and Fe-S-H systems in the primordial solar nebula." 京都大学 (Kyoto University), 1993. http://hdl.handle.net/2433/86257.

Full text
Abstract:
要旨ファイルのタイトルは"Peritectic reactions in Mg-O-H and Fe-S-H systems in the primordial solar nebula
Kyoto University (京都大学)
0048
新制・課程博士
博士(理学)
甲第5617号
理博第1546号
新制||理||859(附属図書館)
UT51-94-J49
京都大学大学院理学研究科地質学鉱物学専攻
(主査)教授 坂野 昇平, 教授 西村 進, 教授 鎮西 清高
学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
10

Lekganyane, Kedibone Melita. "Influence of primary cooling conditions and austenite conditioning on the hot ductility of simulated continuous cast peritectic steels." Diss., University of Pretoria, 2020. http://hdl.handle.net/2263/79600.

Full text
Abstract:
Surface transverse cracking is still one of the main problems in the continuous casting of steel. The cooling rate at the corners of the slab and strand is usually the highest. Therefore, depending on the cooling regime, the initial temperature drop (primary cooling to the Tmin values) in the corner regions can result in temperatures that fall into the low-temperature range of the austenite region or the α+γ transformation zone. This can cause ferrite formation or promote the precipitation of non-metallic inclusion particles at the grain boundaries and in ferrite due to the lower solubility of these particles in ferrite than in austenite. The objective of this study was to simulate the effect of the initial austenite conditioning, the extent of primary cooling, the magnitude of the temperature rebound and the unbending temperature on the ductility properties of a plain carbon peritectic steel grade under conditions resembling the commercial continuous casting process. The austenite grain conditioning was studied using two methods, the 1350 °C treatment and the simulated in-situ melting conditionings. Both of these conditionings were utilised to accomplish the initial austenite grain sizes similar to the as-cast microstructure in the magnitudes of ± 500 μm to ± 1000 μm. Bähr DIL805 Dilatometer equipment was used to simulate the heat treatments which allowed the study of the initial austenite grain size distributions. The Gleeble 1500D thermomechanical simulator was used to study the hot ductility behavior of the plain carbon peritectic steel grade. During the hot ductility test, the tensile specimens are usually solution treated at high temperatures, followed by cooling to the unbending temperatures and then fractured isothermally. However, in this study, instead of cooling the specimens directly to the unbending temperatures after the austenite treatment, the specimens were subjected to simulated primary cooling, followed by temperature rebound (i.e. ΔTr) of either 200 °C or 300 °C as well as a simulated secondary slow cooling process (at a cooling rate of 0.1 °C/s) and then isothermally deformed to fracture in the temperature range of 630–1060 °C. In both cases of the austenite conditioning, the ductility was observed to be high when the hot deformation specimens were subjected to Tmin (830 °C), this temperature being the minimum temperature reached after primary cooling and was very close to the equilibrium austenite start transformation temperature, 840 °C. In both cases of Tmin values closer to the equilibrium austenite start transformation temperature, the coarse-grained (± 500 μm) specimens showed better ductility results, compared to the abnormally large grained (±1000 μm) specimens. This was attributed to the differences in the microstructure such as the initial austenite grain sizes, the segregation effects and high fraction of non-metallic inclusion particles at the austenite grain boundaries. The influence of the magnitude of the rebound steps (i.e. ΔTr) was also studied. The result showed that for the specimens subjected to the Tmin (830 °C), ductility increased as the ΔTr increased from 200 °C to 300 °C. Moreover, with the rebound step of 300 °C ductility values increased further with an increase in the unbending temperatures (TU) and this was observed for the specimens heated to 1350 °C. In contrast to this observation for the specimens treated at 1350 °C, small ΔTr (200 °C) showed better hot ductility values than large ΔTr (300 °C) for the specimens molten in-situ condition and this was observed in the unbending temperature range of 830-940 °C. However, the hot ductility values of these specimens were observed to increase with an increase in unbending temperature range of 980-1040 °C. In both cases of the austenite conditionings, the relatively good ductility results were attributed to the beneficial effect of Tmin values. These temperatures were 10 °C and 30 °C below the equilibrium austenite start transformation temperature, Ae3 for the specimens treated at 1350 °C and molten in-situ conditions, respectively. After quenching the specimens from these temperatures (Tmin), no grain boundary films of ferrite were observed. Due to the absence of ferrite, a smaller density of inclusion particles at the grain boundaries was expected. Furthermore, the effect of Tmax values (e.g. 1030 °C and 1130 °C) and high unbending temperatures (830-1060 °C and 830-960 °C) were also thought to have contributed towards good ductility results. The hot ductility values only decreased when the unbending temperatures fell below the Ar3S (~788 °C) temperature and this was observed for both austenite conditionings.
Dissertation (MSc)--University of Pretoria, 2020.
Materials Science and Metallurgical Engineering
MSc
Unrestricted
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Peritectic"

1

Wolf, Marianne Mcgarry. Continuous Casting: Initial Solidification & Strand Surface Quality of Peritectic Steels. Iron & Steel Society, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Patchett, Joseph Allan. The kinetics of the peritectic reactions in aluminum-nickel alloys. 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Microstructural development during directional solidification of peritectic alloys: Final technical report, NASA grant no. NAG8-963, grant period: October 1, 1993 - December 31, 1996. [Washington, DC: National Aeronautics and Space Administration, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Peritectic"

1

Biswas, Krishanu, and Sumanta Samal. "Solidification of Peritectic Alloys." In Solidification of Containerless Undercooled Melts, 509–41. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527647903.ch23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Stefanescu, Doru Michael. "Peritectic and Monotectic Solidification." In Science and Engineering of Casting Solidification, 210–18. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-6472-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shahbeigi-Roodposhti, Peiman, and Harold Brody. "Peritectic Coupled Growth Solidification—a Review." In Light Metals 2017, 1035–41. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51541-0_125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Junfu, Chen, Xie Junlin, He Feng, Jiann YangHwang, Wan Entong, Cao Tongyou, Peng Zhugang, Zhang Jianjun, Yang Chengwei, and Fang De. "Optimization Research of Peritectic Steel Mold Flux with Co2O3Doping." In Characterization of Minerals, Metals, and Materials 2015, 443–48. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119093404.ch54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cao, C. D., J. Gao, and B. Wei. "Microstructure Evolution of Rapidly Solidified Zn-Ag Peritectic Alloy." In Materials Development and Processing - Bulk Amorphous Materials, Undercooling and Powder Metallurgy, 104–9. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527607277.ch17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Junfu, Chen, Xie Junlin, He Feng, Jiann Yang Hwang, Wan Entong, Cao Tongyou, Peng Zhugang, Zhang Jianjun, Yang Chengwei, and Fang De. "Optimization Research of Peritectic Steel Mold Flux with Co2O3 Doping." In Characterization of Minerals, Metals, and Materials 2015, 443–48. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48191-3_54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rezaeian, A., Faramarz Zarandi, D. Q. Bai, and Steve Yue. "Application of Deformation to Improve Hot Ductility in the Peritectic Steel." In Materials Science Forum, 203–10. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-981-4.203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Long, Xiao, Shengping He, Qian Wang, and P. Chris Pistorius. "Development of Ultrahigh-Basicity Mold Fluxes for Peritectic Steel Continuous Casting." In Materials Processing Fundamentals 2017, 3–10. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51580-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Huabiao, Mujun Long, Wenjie He, Dengfu Chen, Huamei Duan, and Yunwei Huang. "Manganese Influence on Equilibrium Partition Coefficient and Phase Transformation in Peritectic Steel." In TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings, 419–30. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72526-0_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dippenaar, R. J. "High-Temperature Phase Transitions and Mechanical Properties in Steel of Peritectic Composition." In THERMEC 2006, 4243–48. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.4243.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Peritectic"

1

Yoshiro Yamada, Yunfen Wang, and Naohiko Sasajima. "Experimental investigation of Cr3C2-C peritectic fixed point." In SICE Annual Conference 2007. IEEE, 2007. http://dx.doi.org/10.1109/sice.2007.4421197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Naohiko Sasajima and Yoshiro Yamada. "Investigation of WC-C peritectic high-temperature fixed point." In SICE Annual Conference 2007. IEEE, 2007. http://dx.doi.org/10.1109/sice.2007.4421198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ortner, C., L. Martins Demuner, M. Schuster, O. Lang, and F. Ramstorfer. "Assessment of the Peritectic Behavior in the Continuous Casting Mold." In AISTech 2020. AIST, 2020. http://dx.doi.org/10.33313/380/088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kamaeva, Larisa V., Irina V. Sterkhova, and Vladimir I. Lad’yanov. "Structural-peritectic transformations in Cr-C and Fe-P melts." In PROCEEDINGS FOR THE XV LIQUID AND AMORPHOUS METALS (LAM-15) INTERNATIONAL CONFERENCE. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4928270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ogura, Hideki, Thierry Deuze, Ronan Morice, Pascal Ridoux, and Jean-Remy Filtz. "Construction of a Cr2C2-C peritectic point cell for thermocouple calibration." In SICE 2008 - 47th Annual Conference of the Society of Instrument and Control Engineers of Japan. IEEE, 2008. http://dx.doi.org/10.1109/sice.2008.4654918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

wu, yuying. "Effect of phosphorus on the peritectic reaction in Ni-60wt.%Si alloys." In International Conference on Nanomaterials, Functional and Composite Materials. HKIRIT, 2018. http://dx.doi.org/10.24177/ckconf2017050003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sasajima, Naohiko, Yoshiro Yamada, and Yunfen Wang. "Metal Carbide-Carbon Eutectic and Peritectic Fixed Points as High-Temperature Standards." In 2006 SICE-ICASE International Joint Conference. IEEE, 2006. http://dx.doi.org/10.1109/sice.2006.315281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Keller, C., R. Schwartz, M. Bobadilla, J. Tchoufang Tchuindjang, J. Lecomte-Beckers, and A. M. Habraken. "Towards the Prediction of Damage Of Peritectic Steels During Continuous Casting Process." In THE 14TH INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING: ESAFORM 2011. AIP, 2011. http://dx.doi.org/10.1063/1.3589507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, T., N. Sasajima, Y. Yamada, C. Bai, Z. Yuan, W. Dong, C. Ara, and X. Lu. "Realization of the WC-C peritectic fixed point at NIM and NMIJ." In TEMPERATURE: ITS MEASUREMENT AND CONTROL IN SCIENCE AND INDUSTRY, VOLUME 8: Proceedings of the Ninth International Temperature Symposium. AIP, 2013. http://dx.doi.org/10.1063/1.4821409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jansto, Steven G. "PRODUCTION COMPARISON OF MICROALLOYED PERITECTIC AND LOW CARBON STRUCTURAL FLAT AND LONG PRODUCTS." In 47º Seminário de Aciaria - Internacional. São Paulo: Editora Blucher, 2017. http://dx.doi.org/10.5151/1982-9345-27608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography