Academic literature on the topic 'Permanent deformation model'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Permanent deformation model.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Permanent deformation model"

1

Xiao, Yuanjie, Erol Tutumluer, and Debakanta Mishra. "Performance Evaluations of Unbound Aggregate Permanent Deformation Models for Various Aggregate Physical Properties." Transportation Research Record: Journal of the Transportation Research Board 2525, no. 1 (January 2015): 20–30. http://dx.doi.org/10.3141/2525-03.

Full text
Abstract:
Permanent deformation or rutting is the main performance indicator of unbound aggregate layers used in flexible pavements. This paper evaluates the prediction abilities of unbound aggregate base or subbase permanent deformation models in use or proposed for use in the Mechanistic–Empirical Pavement Design Guide (MEPDG) approach. Repeated load triaxial-type permanent deformation tests were conducted on three unbound aggregate materials—limestone, dolomite, and uncrushed gravel—commonly used for pavement base and subbase and subgrade replacement applications in Illinois. The test matrix was designed to evaluate effects of aggregate physical properties, including moisture content, gradation, types and amounts of fines, aggregate mineralogy, and particle shape, texture, and angularity. The laboratory-measured permanent deformations were compared with those predicted by four rutting models evaluated in this study. The permanent deformations predicted by the original 1989 Tseng–Lytton model and the 2006 El-Badawy model were generally in good agreement with the measured values. The current MEPDG rutting model and its enhanced version proposed in 2013 by Hashem and Zapata tended to overpredict permanent deformations and have a low sensitivity to changes in aggregate physical properties. In addition to enhancements recommended for the four evaluated models, a unified rutting model was developed; it used a shear stress ratio concept and imaging-based aggregate morphological indexes. With a single set of calibrated model parameters, the unified rutting model produced reasonably accurate permanent strain predictions for all unbound aggregate materials used in this study.
APA, Harvard, Vancouver, ISO, and other styles
2

Zheng, Rui. "Thorough Investigation of Constitutive Model of Asphalt Pavement Permanent Deformation." Applied Mechanics and Materials 744-746 (March 2015): 1331–34. http://dx.doi.org/10.4028/www.scientific.net/amm.744-746.1331.

Full text
Abstract:
In this paper, the constitutive model of the asphalt pavement permanent deformation is analyzed, which is based on the asphalt pavement permanent deformation. In order to reasonably predict the asphalt pavement permanent deformation, the domestic and foreign research results are thorough investigated. It shows that the nonlinear viscoelastic - elastoplastic constitutive model of Peng Miaojuan improves the defects of various models. This constitutive model comprehensively reflects the characteristics of permanent deformation of asphalt pavement.
APA, Harvard, Vancouver, ISO, and other styles
3

Głuchowski, Andrzej, and Wojciech Sas. "Impact of Cyclic Loading on Shakedown in Cohesive Soils—Simple Hysteresis Loop Model." Applied Sciences 10, no. 6 (March 17, 2020): 2029. http://dx.doi.org/10.3390/app10062029.

Full text
Abstract:
The objective of this study is to characterize the permanent deformations and to present a mathematical model that enables the prediction of permanent strain during cyclic loading. First, laboratory cyclic triaxial tests are conducted on sandy silty clay samples to gather the data concerning the permanent deformation characteristics. The article discusses the shakedown theory and abation phenomena, and we present the Simple Hysteresis Loop Model (SHLM) based on the stress-controlled test results. The determined permanent deformation properties are a base for the development of SHLM parameters. The presented model is capable of accurately predicting the permanent deformation characteristics based on the derived parameters from the static tests. The SHLM connects the stress–strain and stiffness properties of cohesive soil, which gives it a great advantage to use it in engineering practice. The derived model was verified based on ex–post comparison to performed cyclic triaxial test. The developed SHLM mean absolute percentage error is equal to 12.18%, which indicates that the developed SHLM has desirable accuracy in the prediction of permanent strain properties in compacted cohesive soils.
APA, Harvard, Vancouver, ISO, and other styles
4

Lin, Tianshu, Tatsuya Ishikawa, and Bin Luo. "Applicability of Modified University of Illinois at Urbana–Champaign Model for Unbound Aggregate Material with Different Water Content." Transportation Research Record: Journal of the Transportation Research Board 2673, no. 3 (March 2019): 439–49. http://dx.doi.org/10.1177/0361198119827530.

Full text
Abstract:
This paper proposes a modified University of Illinois at Urbana–Champaign (UIUC) model to predict permanent deformation behavior of unbound aggregate materials. Most existing models relate permanent deformation to resilient properties, whereas the UIUC model treats shear strength as a critical factor in permanent deformation behavior. Three types of test, monotonic shearing test, cyclic axial loading test, and cyclic axial and shear loading test, were conducted by multi-ring shear apparatus on two kinds of parallel grading aggregate materials, natural crusher-run and recycled crusher-run obtained from demolished concrete structure. Test results demonstrate that shear strength is the core factor in permanent deformation behavior, compared with resilient properties, and principal stress axis rotation (PSAR) greatly increases the permanent deformation. By considering the effect of PSAR on permanent deformation, a new parameter, ( Rs)ave, is added to the conventional UIUC model to modify it. Regression analysis results verify that the modified UIUC model has good applicability for predicting permanent deformation of aggregates with different water contents and stress states, and with and without PSAR. The modified UIUC model builds a relation between test results with and without PSAR. A simple framework is also proposed for predicting permanent deformation in flexible pavement structures based on the modified UIUC model.
APA, Harvard, Vancouver, ISO, and other styles
5

Stark, Timothy D., Michael H. Beaty, Peter M. Byrne, Gonzalo Castro, Francke C. Walberg, Vlad G. Perlea, Paul J. Axtell, John C. Dillon, William B. Empson, and David L. Mathews. "Seismic deformation analysis of Tuttle Creek Dam." Canadian Geotechnical Journal 49, no. 3 (March 2012): 323–43. http://dx.doi.org/10.1139/t11-107.

Full text
Abstract:
To facilitate the design of seismic remediation for Tuttle Creek Dam in east central Kansas, a seismic finite difference analysis of the dam was performed using the software FLAC and the UBCSAND and UBCTOT soil constitutive models. The FLAC software has a key advantage because it can use calibrated site-specific constitutive models. Earlier deformation analyses using a hyperbolic constitutive model for the foundation fine-grained materials did not properly represent the modulus and strength reduction and predicted extremely large permanent deformations. Cyclic triaxial laboratory tests using high-quality samples and in situ vane shear tests were used to calibrate the FLAC constitutive model herein. The resulting FLAC analysis of the unremediated dam predicted an upstream slope toe deformation of about 0.6 m, a crest settlement of about 0.6 m, and a downstream slope toe deformation of about 1.5 m using the design ground motion. Based on the estimated permanent deformations and other factors, it was decided that the anticipated upstream slope and crest deformations were tolerable and only the downstream slope had to be remediated to protect the downstream seepage control system.
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Xiu Shan, Xiao Jun Ding, and Yong Li Xie. "Permanent Deformation Prediction Model of Graded Gravel under Repeated Load." Advanced Materials Research 168-170 (December 2010): 217–21. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.217.

Full text
Abstract:
In order to predict the permanent deformation of graded gravel, through to the existing flexible pavement granular base permanent deformation estimate model's contrastive analysis, combined with repeated dynamic triaxial test , selects Wei Mi permanent deformation estimate model as the loose aggregate permanent deformation of the estimate model, using 1stopt statistical analysis software carries on the nonlinear curve fit for the parameter, obtained two kinds of norms of graded broken stone aggregates forecast model of the correlation among the types : permanent deformation of the coefficient and water content and resilient modulus, and their reliability was analyzed. Analysis result shows that when load acting time reaches 10 000, the minimum and average correlative coefficients of the regression formulas is 0.4144 ,0.6340 and 0.5080, which is greater than the critical value of 0.3993, and the correlative coefficient between theoretical curve and measured one is more than 0.96. So the reliability of the proposed prediction formulas of permanent deformation for graded gravel is higher, can be used to forecast China's Asphalt Pavement Rutting.
APA, Harvard, Vancouver, ISO, and other styles
7

Leonardi, Giovanni, and Federica Suraci. "A 3D-FE Model for the Rutting Prediction in Geogrid Reinforced Flexible Pavements." Sustainability 14, no. 6 (March 21, 2022): 3695. http://dx.doi.org/10.3390/su14063695.

Full text
Abstract:
Permanent deformation (rutting) is an important disturbing failure on flexible road pavements. This phenomenon appears on the flexible pavement as longitudinal depressions, and it is a consequence of the degradation of materials under high traffic loading based on consolidation/densification, surface wear, plastic/shear flow, and mechanical deformation. Hence, the rutting phenomenon depends on the accumulation of permanent deformations on pavement surfaces subjected to repeated wheel loads. In recent years, several studies have confirmed that the service life of asphalt pavements can be increased by using geosynthetics between or within layers because of the improved mechanical properties. The aim of this paper is to present the results of the 3D-finite element (FE) simulations and the development of the rutting phenomenon in a traditional flexible pavement and a reinforced one, both subjected to a cyclic load. Through Abaqus/CAE software, a road section reinforced by a geogrid was analyzed and compared with a traditional road section to investigate the advantages given by the geosynthetic completely embedded at two-thirds of the asphalt concrete layer (AC) in terms of permanent deformations. The results show the capability of the proposed FE study, that uses the plasticity model of Drucker-Prager for unbound materials combined with the simple creep law to model HMA layers to predict the permanent deformation distribution.
APA, Harvard, Vancouver, ISO, and other styles
8

Zou, De-gao, Jing-mao Liu, Xian-jing Kong, Chen-guang Zhou, and Qing-po Yang. "A simple permanent deformation model of rockfill materials." Water Science and Engineering 11, no. 4 (October 2018): 302–9. http://dx.doi.org/10.1016/j.wse.2018.12.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mei, Huihao, Sajjad Satvati, and Wuming Leng. "Experimental study on permanent deformation characteristics of coarse-grained soil under repeated dynamic loading." Railway Engineering Science 29, no. 1 (February 14, 2021): 94–107. http://dx.doi.org/10.1007/s40534-021-00233-2.

Full text
Abstract:
AbstractPractical assessment of subgrade settlement induced by train operation requires developing suitable models capable of describing permanent deformation characteristics of subgrade filling under repeated dynamic loading. In this paper, repeated load triaxial tests were performed on coarse-grained soil (CGS), and the axial permanent strain of CGS under different confining pressures and dynamic stress amplitudes was analysed. Permanent deformation behaviors of CGS were categorized based on the variation trend of permanent strain rate with accumulated permanent strain and the shakedown theory. A prediction model of permanent deformation considering stress state and number of load cycles was established, and the ranges of parameters for different types of dynamic behaviors were also divided. The results indicated that the variational trend of permanent strain rate with accumulated permanent strain can be used as a basis for classifying dynamic behaviors of CGS. The stress state (confining pressure and dynamic stress amplitude) has significant effects on the permanent strain rate. The accumulative characteristics of permanent deformation of CGS with the number of load cycles can be described by a power function, and the model parameters can reflect the influence of confining pressure and dynamic stress amplitude. The study’s results could help deepen understanding of the permanent deformation characteristics of CGS.
APA, Harvard, Vancouver, ISO, and other styles
10

Fang, Rui, Hui Gao, and Xiang Qin Bian. "Three-Stage Permanent Deformation Behavior of Subgrade Soils." Advanced Materials Research 374-377 (October 2011): 1942–46. http://dx.doi.org/10.4028/www.scientific.net/amr.374-377.1942.

Full text
Abstract:
The development of the permanent deformation of subgrade soils under repeated load tests may consists of three stages, namely the primary, secondary and tertiary stages, but the existing models can not describe this behavior very well, so a new model is required to be developed. Based on the creep equation of the soil under static load, a mechanistic model is developed to describe the development of the permanent deformation of the soil under repeated load tests. Triaxial repeated load tests are conducted for silty soils and results show that, under some conditions, the development of the permanent deformation of silty clay consists of three stages and the number of load repetitions corresponding to the initiation of the tertiary stage is 330,0000. The new model is used to fit the test results and the comparison of test results and fitting results prove that this model can describe all three stages of permanent deformation.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Permanent deformation model"

1

Borges, RÃmulo Luiz. "Permanent deformation in asphalt mixtures from viscoplastic shift model and triaxial repeated load test." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=13192.

Full text
Abstract:
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico
Permanent deformation or rutting is a major distress in asphalt pavements. To predict permanent deformation of asphalt mixtures the dynamic creep test is often used in laboratory, with the result presented in terms of the so called flow number. However, for this work it was performed the triaxial repeated permanent deformation load test, a confined test that better represents field conditions. The models that incorporate the flow number do not represent the main zone of the dynamic creep test result, denoted secondary region, in which the permanent deformation rate of growth is constant. In this work the Shift Model was used, which is a viscoplastic model that accesses the permanent deformation from the superposition principles, i.e., time-temperature superposition and time-stress superposition. Thus, the asphalt mixtures were tested under different loading conditions, temperature, load time and rest period, in order to assess three parameters of the test: parameter C, which indicates where the secondary region begins (parameter that governs the primary region of the test); the parameter α (alpha) is the slope of the secondary region; and the parameter B represents the level of permanent deformation of the secondary region. The results show that the TRLPD test is more severe than the conventional dynamic creep test. Nevertheless, the use of TRLPD test represents an advance in the understanding of the behavior of asphalt mixtures with respect to rutting performance, and has the advantage of allowing the use of results in computational simulations.
A deformaÃÃo permanente à um dos principais defeitos em pavimentos asfÃlticos. Para prever esta falha em revestimentos, por meio de ensaios laboratoriais, à frequentemente utilizado o ensaio de creep dinÃmico cujo resultado final à apresentado em termos do chamado flow number. No entanto, para este trabalho foi realizado o triaxial repeated load permanent deformation (TRLPD) test, que à um ensaio sob condiÃÃes de confinamento, a fim de melhor se aproximar das condiÃÃes encontradas em campo. Os modelos que incorporam o flow number nÃo representam a principal regiÃo de ensaio de creep dinÃmico, denominada regiÃo secundÃria, na qual o incremento de deformaÃÃo permanente cresce em valor constante. No presente trabalho utilizou-se o Shift Model, o qual à um modelo viscoplÃstico que avalia a deformaÃÃo permanente a partir da superposiÃÃo dos efeitos tempo-temperatura e tempo-tensÃo. Dessa forma, as misturas asfÃlticas foram testadas sob diferentes condiÃÃes de carregamento, temperatura, tempo de aplicaÃÃo de carga e perÃodo de repouso. Foram avaliados trÃs parÃmetros do ensaio em questÃo: o parÃmetro C, que fornece os dados de onde a regiÃo secundÃria se inicia (parÃmetro que governa a regiÃo primÃria do ensaio); o parÃmetro α (alfa), que à o aclive da regiÃo secundÃria; e o parÃmetro B, que representa o nÃvel de deformaÃÃo permanente da regiÃo secundÃria. Os resultados obtidos mostram que o ensaio TRLPD à mais severo do que o ensaio convencional de creep dinÃmico, porÃm considera-se que a utilizaÃÃo de ensaios confinados representa um avanÃo para o entendimento do comportamento das misturas asfÃlticas quanto à resistÃncia à deformaÃÃo permanente das mesmas, e este traz a vantagem de poder ser usado em simulaÃÃes computacionais.
APA, Harvard, Vancouver, ISO, and other styles
2

Tashman, Laith. "Microstructural viscoplastic continuum model for asphalt concrete." Diss., Texas A&M University, 2003. http://hdl.handle.net/1969.1/313.

Full text
Abstract:
This dissertation presents the development of an anisotropic viscoplastic continuum damage model to describe the permanent deformation of asphalt pavements. The model is developed to account for several phenomena that influence the permanent deformation of Asphalt Concrete (AC) at high temperatures. These phenomena include strain rate dependency, confining pressure dependency, dilation, aggregate friction, anisotropy, and damage. The model is based on Perzyna's theory of viscoplasticity with Drucker-Prager yield function modified to account for the microstructure anisotropy and damage. A parametric study was conducted to study the effect of key factors such as inherent anisotropy and damage on the model response. A preliminary investigation was conducted to demonstrate the capabilities of the model and its sensitivity to changes in the microstructure distribution and loading conditions. The model was used to describe laboratory experimental measurements obtained from the Federal Highway Administration (FHWA) Accelerated Loading Facility (ALF). The model had a good match with these experimental measurements. In particular, using the damage parameter, the model was able to capture the point at which AC experienced tertiary creep in a static creep test. A comprehensive experiment was conducted to systematically determine the model parameters and the evolution laws that describe AC hardening, anisotropy, and damage. The experiment consisted of a set of compressive triaxial strength tests conducted at three confining pressures and five strain rates. Based on these experimental measurements, the model was modified to include a nonassociated flow rule. The model was shown to capture the experimental measurements very well. Furthermore, an experiment was conducted to capture and characterize damage evolution in AC due to permanent deformation. AC specimens were loaded using a triaxial compression setup to four predefined strain levels at three confining pressures. X-Ray computed tomography and image analysis techniques were used to capture and characterize the evolution of cracks and air voids in the deformed specimens. Damage was found to be a localized phenomenon in the sense that there exists a critical section in an AC specimen that is mainly responsible for failure. The results of the damage experiment supported the damage evolution function proposed in the viscoplastic model.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhalehjoo, Negin. "Characterisation of the deformation behaviour of unbound granular materials using repeated load triaxial testing." Thesis, Federation University of Australia, 2018. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/166953.

Full text
Abstract:
Unbound Granular Materials (UGMs) are used in the base/subbase layers of flexible pavements for the majority of roads around the world. The deterioration of pavements increases with the increase of traffic loadings. To ensure the long-term performance and serviceability of pavement structures through a realistic design, the precise evaluation and comprehensive characterisation of the resilient and permanent deformation behaviour of pavement materials are essential. The present PhD study aims to investigate the characterisation of the resilient and permanent deformation behaviour of four road base UGMs sourced from quarries in Victoria, Australia, using Repeated Load Triaxial (RLT) testing. The triaxial system used in this study is instrumented with four axial deformation measurement transducers to achieve highly precise measurements and to evaluate the effect of instrumentation on the resilient modulus of UGMs. The resilient Poisson’s ratio of the studied UGMs is also determined using a radial Hall-Effect transducer. Moreover, a series of permanent deformation tests is performed to precisely characterise the axial and radial permanent deformation behaviour of UGMs and investigate the factors that may significantly influence the accumulated axial and radial permanent deformations. Finally, three permanent deformation models incorporated with a time-hardening procedure are employed to predict the magnitude of permanent strain for multiple stress levels of the RLT test. The predictions using the employed models are then compared against the measured values to evaluate the suitability of the models and to identify the model that best predicts the strain accumulation behaviour of the tested UGMs. While this study focuses on the resilient and permanent deformation behaviour of four Victorian UGMs under repeated loading, the knowledge generated from this comprehensive investigation will contribute towards the global development of more reliable methods for evaluating the long-term performance of pavement structures and minimising road maintenance and repair costs.
Doctor of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
4

Rahman, Mohammad Shafiqur. "Characterising the Deformation Behaviour of Unbound Granular Materials in Pavement Structures." Doctoral thesis, KTH, Väg- och banteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-162277.

Full text
Abstract:
Unbound granular materials (UGMs) used in the base and sub-base layers of flexible pavements play a significant role in the overall performance of the structure. Proper understanding and characterization of the deformation behaviour of UGMs in pavement structures are, therefore, vital for the design and maintenance of flexible pavements. In this study, the resilient deformation (RD) and the permanent deformation (PD) behaviour of UGMs were investigated for the better understanding and improved modelling of these deformation characteristics. The study is based on a series of repeated-load triaxial (RLT) tests carried out on several UGMs commonly used in pavement structures. Here, the influences of stress level and moisture content - two of the most significant factors affecting the deformation behaviour of UGMs - were analysed. The effects of the grain size distribution and the degree of compaction were also considered. The study on the RD behaviour indicated that the resilient stiffness (MR)of UGMs increases with the increased bulk stress level, which can be satisfactorily described by the k-θ model. Moisture was found to negatively impact the MR as long as the deformation was mostly resilient with a negligible amount of accumulated PD. Analysis of the influence of moisture on the parameters k1 and k2 of the k-θ model showed that k1 decreases with increased moisture and k2 is relatively insensitive to moisture. Based on these observations, a simple model was developed for the impact of moisture on MR. The performance of this model was comparable to an existing moisture dependent MR model. In contrast, it was further observed that at the later stages of the RLT tests, after a relatively large number of load applications, the MR increased with increased moisture up to the optimum moisture content. This occurred when the RD was accompanied by a significant amount of PD. Further investigation suggested that moisture aided the post-compaction (PC) and possible particle rearrangement that resulted in the increased PD and increased MR. In this case k1 decreased, whereas k2 increased, with increased moisture. The existing MR-moisture model did not work for this behaviour. This suggests that the effect of PC on MRshould be considered in modelling. However, although not explored in this study, it may be possible to simulate this effect of increase in MR with increased moisture due to PC using the proposed model if k2 is expressed as a function of moisture. The PD characteristics of UGMs were investigated based on the multistage (MS) RLT test. In contrast with the single stage (SS) RLT test, the MS RLT test accounts for the effect of stress history and enables a comprehensive study of the material behaviour under cyclic stresses of various magnitudes. Since the existing PD models cannot be directly applied for the MS loading procedure, a general formulation based on the time hardening concept was derived that can be used to extend the models for the MS loading conditions. Based on this formulation, some of the current models were calibrated and their performance in predicting the PD behaviour in MS RLT tests was compared. The investigation regarding the impact of moisture on PD showed that moisture significantly increases the accumulation of PD. Generally, materials with finer grading showed more sensitivity to moisture with regards to both PD and RD. To characterize the impact of moisture, moisture sensitivity of different grain size distributions and the impact of the degree of compaction on PD with reduced effort, a simple model was proposed. Unlike some of the well-performing existing models, this model can be calibrated using a single MS RLT test without requiring any separate static failure triaxial tests. This model was validated using the MS RLT test data with satisfactory results. The sensitivity of the parameters of this model was studied with respect to moisture content, degree of compaction and grain size distribution. Some reasonable trends for the sensitivity of the parameters to these influential factors were obtained, which suggests that these may be further developed to incorporate into the model.

QC 20150325

APA, Harvard, Vancouver, ISO, and other styles
5

Yideti, Tatek Fekadu. "Performance model for unbound grnular materials pavements." Licentiate thesis, KTH, Väg- och banteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-97752.

Full text
Abstract:
Recently, there has been growing interest on the behaviour of unbound granular material in road base layers. Researchers have studied that the design of a new pavement and prediction of service life need proper characterization of unbound granular materials, which is one of the requirements for a new mechanistic design method in flexible pavement. Adequate knowledge of the strength and deformation characteristics of unbound layer in pavements is a prerequisite for proper thickness design, residual life determination, and overall economic optimization of the pavement structure. The current knowledge concerning the granular materials employed in pavement structures is limited. In addition, to date, no general framework has been established to explain satisfactorily the behaviour of unbound granular materials under the complex repeated loading which they experience. In this study, a conceptual method, packing theory-based model is introduced; this framework evaluates the stability and performance of granular materials based on their packing arrangement. In the framework two basic aggregate structures named as Primary Structure (PS), and Secondary Structure (SS). The Primary Structure (PS) is a range of interactive grain sizes that forms the network of unbound granular materials. The Secondary Structure (SS) includes granular materials smaller than the primary structure. The Secondary Structures fill the gaps between the particles in the Primary Structure and larger particles essentially float in the skeleton. In this particular packing theory-based model; the Primary Structure porosity, the average contact points (coordination number) of Primary Structure, and a new parameter named Disruption Potential are the key parameters that determine whether or not a particular gradation results in a suitable aggregate structure. Parameters mentioned above play major role in the aggregate skeleton to perform well in terms of resistance to permanent deformation as well as load carrying capacity (resilient modulus). The skeleton of the materials must be composed of both coarse enough and a limited amount of fine granular materials to effectively resist deformation and carry traffic loads.
QC 20120601
APA, Harvard, Vancouver, ISO, and other styles
6

Ozturk, Hande Isik. "Parametric Study On Selected Mathematical Models For Dynamic Creep Behavior Of Asphalt Concrete." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12609023/index.pdf.

Full text
Abstract:
Rut formation has long been recognized as a distress mechanism in flexible pavements. One of the causes of rut formation in flexible pavements is permanent deformation of uppermost asphalt concrete layers due to repeatedly applied traffic loading. The long term permanent deformation of asphalt concrete under repeated load is commonly called as dynamic creep. The primary objective of this thesis is to examine dynamic creep behavior of asphalt concrete specimens tested in laboratory and also study some suitable mathematical models for representing dynamic creep behavior. In this study, a set of uniaxial repeated load creep tests were performed on standard Marshall specimens prepared at three different bitumen contents. The effects of bitumen content and test condition parameters on dynamic creep behavior are examined. Among several mathematical creep models suggested by researchers, two well known models and a model proposed by the author are selected for representing the laboratory creep behavior. For each of these models, the interactions of the model parameters with varying bitumen content and test conditions are studied to detect probable definite trends, and to evaluate whether some relations for the model parameters as functions of bitumen content and test conditions can be developed or not. The results of analyses showed that all three mathematical models used in this study are successful in representing the laboratory dynamic creep behavior of asphalt concrete. The Power Model which has only two parameters is found to be the most stable and suitable model for parametric study among the three selected models. More consistent and definite interactions are observed between the parameters of this model and test conditions. However, within the scope of this study, no relations could be developed for the parameters of selected models as functions of bitumen content and test conditions because of limited test data.
APA, Harvard, Vancouver, ISO, and other styles
7

Onyango, Mbakisya A. "Verification of mechanistic prediction models for permanent deformation in asphalt mixes using accelerated pavement testing." Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pettinari, Matteo <1980&gt. "Performance evaluation of low environmental impact asphalt concretes using the mechanistic empirical design method based on laboratory fatigue and permanent deformation models." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3485/.

Full text
Abstract:
The "sustainability" concept relates to the prolonging of human economic systems with as little detrimental impact on ecological systems as possible. Construction that exhibits good environmental stewardship and practices that conserve resources in a manner that allow growth and development to be sustained for the long-term without degrading the environment are indispensable in a developed society. Past, current and future advancements in asphalt as an environmentally sustainable paving material are especially important because the quantities of asphalt used annually in Europe as well as in the U.S. are large. The asphalt industry is still developing technological improvements that will reduce the environmental impact without affecting the final mechanical performance. Warm mix asphalt (WMA) is a type of asphalt mix requiring lower production temperatures compared to hot mix asphalt (HMA), while aiming to maintain the desired post construction properties of traditional HMA. Lowering the production temperature reduce the fuel usage and the production of emissions therefore and that improve conditions for workers and supports the sustainable development. Even the crumb-rubber modifier (CRM), with shredded automobile tires and used in the United States since the mid 1980s, has proven to be an environmentally friendly alternative to conventional asphalt pavement. Furthermore, the use of waste tires is not only relevant in an environmental aspect but also for the engineering properties of asphalt [Pennisi E., 1992]. This research project is aimed to demonstrate the dual value of these Asphalt Mixes in regards to the environmental and mechanical performance and to suggest a low environmental impact design procedure. In fact, the use of eco-friendly materials is the first phase towards an eco-compatible design but it cannot be the only step. The eco-compatible approach should be extended also to the design method and material characterization because only with these phases is it possible to exploit the maximum potential properties of the used materials. Appropriate asphalt concrete characterization is essential and vital for realistic performance prediction of asphalt concrete pavements. Volumetric (Mix design) and mechanical (Permanent deformation and Fatigue performance) properties are important factors to consider. Moreover, an advanced and efficient design method is necessary in order to correctly use the material. A design method such as a Mechanistic-Empirical approach, consisting of a structural model capable of predicting the state of stresses and strains within the pavement structure under the different traffic and environmental conditions, was the application of choice. In particular this study focus on the CalME and its Incremental-Recursive (I-R) procedure, based on damage models for fatigue and permanent shear strain related to the surface cracking and to the rutting respectively. It works in increments of time and, using the output from one increment, recursively, as input to the next increment, predicts the pavement conditions in terms of layer moduli, fatigue cracking, rutting and roughness. This software procedure was adopted in order to verify the mechanical properties of the study mixes and the reciprocal relationship between surface layer and pavement structure in terms of fatigue and permanent deformation with defined traffic and environmental conditions. The asphalt mixes studied were used in a pavement structure as surface layer of 60 mm thickness. The performance of the pavement was compared to the performance of the same pavement structure where different kinds of asphalt concrete were used as surface layer. In comparison to a conventional asphalt concrete, three eco-friendly materials, two warm mix asphalt and a rubberized asphalt concrete, were analyzed. The First Two Chapters summarize the necessary steps aimed to satisfy the sustainable pavement design procedure. In Chapter I the problem of asphalt pavement eco-compatible design was introduced. The low environmental impact materials such as the Warm Mix Asphalt and the Rubberized Asphalt Concrete were described in detail. In addition the value of a rational asphalt pavement design method was discussed. Chapter II underlines the importance of a deep laboratory characterization based on appropriate materials selection and performance evaluation. In Chapter III, CalME is introduced trough a specific explanation of the different equipped design approaches and specifically explaining the I-R procedure. In Chapter IV, the experimental program is presented with a explanation of test laboratory devices adopted. The Fatigue and Rutting performances of the study mixes are shown respectively in Chapter V and VI. Through these laboratory test data the CalME I-R models parameters for Master Curve, fatigue damage and permanent shear strain were evaluated. Lastly, in Chapter VII, the results of the asphalt pavement structures simulations with different surface layers were reported. For each pavement structure, the total surface cracking, the total rutting, the fatigue damage and the rutting depth in each bound layer were analyzed.
Il concetto di “sostenibilità” si riferisce allo sviluppo dei sistemi di supporto per la vita umana che minimizzino l’impatto sul sistema ambientale. Le opere che si inseriscono bene nel contesto ambientale circostante e le pratiche che rispettano le risorse in maniera tale da permettere una crescita e uno sviluppo a lungo termine senza impattare sull’ambiente sono indispensabili in una società moderna. Il progressi passati, presenti e futuri che hanno reso i conglomerati bituminosi materiali sostenibili dal punto di vista ambientale sono particolarmente importanti data la grande quantità di conglomerato usato annualmente in Europa e negli Stati Uniti. I produttori di bitume e di conglomerato bituminoso stanno sviluppando tecniche innovative per ridurre l’impatto ambientale senza compromettere le prestazioni meccaniche finali. Per esempio il conglomerato bituminoso ad “alta lavorabilità” (WMA), pur sviluppando le stesse caratteristiche meccaniche, richiede un temperatura di produzione minore rispetto a quella di un tradizionale conglomerato bituminoso a caldo (HMA) riducendo sensibilmente l’invecchiamento del legante. Anche il conglomerato additivato con polverino di gomma, ottenuto dalla frantumazione di pneumatici dismessi, è risultata essere un’alternativa eco-sostenibile al conglomerato stradale convenzionale. Oltretutto, l’utilizzo di questo additivo non è rilevante solamente dal punto di vista ambientale, costituendo materiale di risulta difficile da smaltire, ma anche per le proprietà meccaniche che lo stesso è in grado di conferire al conglomerato. L’obbiettivo principale di questa tesi è quello di dimostrare il duplice valore meccanico-ambientale di questi materiali innovativi, sottolineando come il concetto di sostenibilità, applicato alla progettazione delle infrastrutture viarie, non dipenda esclusivamente dai materiali impiegati. L’uso di materiali a basso impatto ambientale rappresenta solamente il punto di partenza della progettazione sostenibile. L’approccio ecocompatibile deve essere esteso anche ai metodi progettuali e alla caratterizzazione in laboratorio dei materiali al fine di conoscerne il comportamento e conseguentemente sfruttarne le potenzialità. La caratterizzazione volumetrica (Mix Design) e meccanica (Deformazioni Permanenti e Comportamento a fatica) di un conglomerato bituminoso è fondamentale e necessaria per una realistica previsione delle performance di una pavimentazione stradale. Una metodo progettuale avanzato ed efficiente potrebbe essere rappresentato dall’approccio Empirico-Meccanicistico (M-E). La progettazione Empirico-Meccanicistica consiste di un modello strutturale capace di prevedere gli stati tenso-deformativi all’interno della pavimentazione sotto l’azione del traffico e in funzione delle condizioni atmosferiche e di modelli empirici, calibrati sul comportamento dei materiali, che collegano la risposta strutturale alle performance della pavimentazione. Nel 1996 in California, per poter effettivamente sfruttare i benefici dei continui progressi nel campo delle pavimentazioni stradali, fu iniziato un estensivo progetto di ricerca mirato allo sviluppo dei metodi di progetto Empirico-Meccanicistici per le pavimentazioni stradali. Il risultato finale fu la prima versione del software CalME che fornisce all’utente tre approcci diversi di l’analisi e progetto: un approccio Empirico, uno Empirico - Meccanicistico classico e un approccio Empirico - Meccanicistico Incrementale - Ricorsivo. Questo dissertazione si focalizza sulla procedura Incrementale - Ricorsiva del software CalME basata su modelli di danno da fatica e accumulo di deformazioni permanenti ottenuti sperimentalmente attraverso una accurata caratterizzazione dei materiali in laboratorio. Tale procedura funziona per incrementi temporali successivi e, usando i risultati di ogni incremento temporale, ricorsivamente, come input dell’incremento temporale successivo, prevede le condizioni di una pavimentazione stradale per quanto riguarda il modulo complesso dei diversi strati, le fessurazioni superficiali dovute alla fatica, le deformazioni permanenti e la rugosità superficiale. Al fine di verificare le proprietà meccaniche delle miscele oggetto di studio e le reciproche relazioni in termini di danno a fatica e deformazioni permanenti una volta inserite nella sovrastruttura stradale per fissate condizioni ambientali e di traffico, la procedura sopracitata è stata adottata. I conglomerati bituminosi studiati, due tiepidi ed uno additivato con rubber, sono stati impiegati nella pavimentazione stradale come strato superficiale. Le performance delle pavimentazioni sono poi state confrontate in riferimento ad una pavimentazione contenente conglomerati tradizionali. Le tre tipologie di conglomerato oggetto di studio sono: un conglomerato bituminoso ad “alta lavorabilità” a gradazione “chiusa” (DGWMA), un conglomerato bituminoso modificato con polverino di gomma a gradazione “aperta” (GGRAC) e un conglomerato bituminoso ad “alta lavorabilità” additivato con SBS a gradazione aperta (PGGWMA). I primi due Capitoli sintetizzano gli step necessari a soddisfare i principi fondamentali alla progettazione sostenibile delle infrastrutture viarie. Nel primo Capitolo è stato approfondito il tema delle miscele di conglomerato eco-compatibili. In particolare sono state descritte dettagliatamente le proprietà dei Conglomerati tiepidi ad “alta lavorabilità” e dei Conglomerati con polverino di gomma. Inoltre è stato introdotto il problema dei metodi di progettazione delle sovrastrutture stradali flessibili, dai metodi razionali ai metodi Empirico Meccanicistici. Nel Capitolo due si è sottolineata l’importanza della caratterizzazione in laboratorio dei materiali di uso stradale basata su una appropriata selezione degli stessi e su uno studio di performance. Nel Terzo Capitolo, è stato introdotto il Californian Mechanistic Empirical design Software (CalME) attraverso una dettagliata analisi dei modelli alla base delle differenti procedure di progettazione in dotazione. Il Capitolo Quattro introduce il programma sperimentale e descrive le procedure di prova adottate fini alla caratterizzazione meccanica dei materiali. I risultati sperimentali a Fatica ed a Rutting ed i modelli di performance delle miscele oggetto di studio sono stati estrapolati nei Capitoli Cinque e Sei. In ultimo, nel Capitolo Sette, attraverso l’ausilio del CalME e dei modelli comportamentali estrapolati nei capitoli precedenti, sono riportati i risultati delle simulazioni effettuate con le diverse pavimentazioni in esame. Per ogni sovrastruttura sono state analizzate le seguenti forme di ammaloramento: superficie totale fessurata, ormaiamento totale e danno da fatica e ormaiamento relativo ad ogni strati legato.
APA, Harvard, Vancouver, ISO, and other styles
9

Kaška, Zdeněk. "Posouzení asfaltového koberce drenážního a tenkého s asfaltem modifikovaným přísadou TecRoad." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2012. http://www.nusl.cz/ntk/nusl-225495.

Full text
Abstract:
This work is focused on the design and determination of the properties of porous asphalt and asphalt concrete for very thin layers with TecRoad addition. The water sensitivity, particle loss, stiffness, fatigue and low temperature characteristics and resistance to permanent deformation are determined for a description of mixtures properties. Subsequently, the mixtures are compared and recommendations for use in maintenance and reconstruction of roads are prepared.
APA, Harvard, Vancouver, ISO, and other styles
10

Renza, Jaroslav. "Využití tenkých obrusných vrstev s vysoce polymerem modifikovaným asfaltem." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2019. http://www.nusl.cz/ntk/nusl-392024.

Full text
Abstract:
The diploma thesis deals with technology for the implementation and use of asphalt concrete for very thin layers (BBTM) with use of asphalt binder of high-polymer modification (HiMA). Further, there are described selected and performed functional tests. Thesis also contains design of a mixture for bituminous concrete type targeted for very thin layers with different types of binders. After a suitable design of the mixture, laboratory tests were carried out (stiffness modulus, resistance to permanent deformation, low temperature characteristics, water resistance and particle loss). The output of this work is a set of measured values and processed results with their interpretation.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Permanent deformation model"

1

Li, Shiyuan, Xiaoqiang Gu, Jiangu Qian, and Aiguo Li. "A Practical Model to Predict Permanent Deformation of Sand Under Cyclic Loading." In Proceedings of GeoShanghai 2018 International Conference: Fundamentals of Soil Behaviours, 745–53. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0125-4_83.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rahman, M. S., S. Erlingsson, A. Ahmed, and Y. Dinegdae. "A model for the permanent deformation behavior of the unbound layers of pavements." In Eleventh International Conference on the Bearing Capacity of Roads, Railways and Airfields, Volume 1, 277–87. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003222880-25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ba, Makhaly. "Correlation Between Resilient Modulus and Permanent Deformation During a Large Scale Model Experiment of Unbound Base Course." In Lecture Notes in Civil Engineering, 377–84. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6713-6_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ramos, Ana, António Gomes Correia, and Rui Calçada. "Neural Network-Based Model to Predict Permanent Deformation Induced in the Subgrade by the Passage of the Trains." In Lecture Notes in Civil Engineering, 47–61. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20241-4_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Leiva-Villacorta, Fabricio, Adriana Vargas-Nordcbeck, José Pablo Aguiar-Moya, and Luis Loría-Salazar. "Development and Calibration of Permanent Deformation Models." In The Roles of Accelerated Pavement Testing in Pavement Sustainability, 573–87. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42797-3_37.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sarvanis, Gregory C., Spyros A. Karamanos, Polynikis Vazouras, Panos Dakoulas, and Kyriaki A. Georgiadi-Stefanidi. "Simplified Analytical Models for Pipeline Deformation Analyses Due to Permanent Ground Deformation." In Geohazards and Pipelines, 183–204. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49892-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dinegdae, Yared, and Sigurdur Erlingsson. "Evaluation of Permanent Deformation Models for Flexible Pavements Using Accelerated Pavement Testing." In Lecture Notes in Civil Engineering, 399–408. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55236-7_41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Leon, Lee P. "Development of Permanent Deformation Models with the Inclusion of AIMS Coarse Aggregate Angularity." In RILEM Bookseries, 559–65. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-46455-4_71.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Laboratory characterization of North Carolina base course aggregates for permanent deformation model development and calibration." In Asphalt Pavements, 779–88. CRC Press, 2014. http://dx.doi.org/10.1201/b17219-95.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Werkmeister, S., R. Numrich, and F. Wellner. "The Development of a Permanent Deformation Design Model for Unbound Granular Materials with the Shakedown-Concept." In Bearing Capacity of Roads, Railways and Airfields, 1081–96. CRC Press, 2020. http://dx.doi.org/10.1201/9781003078821-29.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Permanent deformation model"

1

Li, Qiang, and Haidong Kuai. "Regional Calibration of Asphalt Concrete Layers Permanent Deformation Model for Mechanistic-Empirical Pavement Design Guide." In Tenth International Conference of Chinese Transportation Professionals (ICCTP). Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41127(382)392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fredj, Abdelfettah, Aaron Dinovitzer, and Joe Zhou. "A 3-Dimensional Continuum ALE Model for Soil-Pipe Interaction." In 2008 7th International Pipeline Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ipc2008-64624.

Full text
Abstract:
Soil-pipe interactions when large ground movements occur are an important consideration in pipeline design, route selection, guide monitoring and reduce the risk of damage or failure. Large ground movement can be caused by slope failures, faulting, landslides and seismic activities. Such conditions induce large deformations of both the soil and pipe. Analyses of such behavior pose a significant challenge to capabilities of standard finite elements as the capability to analyze large deformations is required. This requirement is difficult to meet for Lagrangian-based code. New developments using ALE methods make it possible to determine soil and pipe deformation confidently for large displacements. This paper describes a study performed to investigate the mechanical behavior of a pipeline subjected to large soil movement. A 3D continuum modeling using an ALE (Arbitrary Eulerian Lagrangian) formulation was developed and run using LS-DYNA. The results are compared with published experimental data of large-scale test to verify the numerical analysis method. The analysis is further extended to analyze the soil-pipe interaction under permanent ground deformation such as those associated with surface fault rupture and landslides.
APA, Harvard, Vancouver, ISO, and other styles
3

Voycheck, Carrie A., Daniel P. Browe, Patrick J. McMahon, and Richard E. Debski. "Changes in Capsule Function Following Anterior Dislocation Elucidate the Need for Standardized Clinical Exams to Diagnose Shoulder Instability." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53831.

Full text
Abstract:
The anteroinferior glenohumeral capsule (anterior band of the inferior glenohumeral ligament (AB-IGHL), axillary pouch) limits anterior translation, particularly in positions of external rotation, and as a result is frequently injured during anterior dislocation. [1,2] A common capsular injury is permanent tissue deformation, however, the extent and effects of this injury are difficult to evaluate as the deformation cannot be seen using diagnostic imaging. In addition, clinical exams to diagnose this injury are not reliable [3] and poor patient outcome still exists following repair procedures. [4] Previous experimental models have observed increased joint mobility following permanent tissue deformation. [5] While other models have quantified the permanent deformation using nonrecoverable strain [6], no model has correlated the amount of tissue damage to altered capsule function. Understanding the relationship between the extent of tissue damage and changes in capsule function following anterior dislocation could aid surgeons in diagnosing and treating anterior instability. Therefore, the objectives of this work were to 1) quantify the nonrecoverable strain in the anteroinferior capsule resulting from an anterior dislocation and 2) evaluate capsule function (strain distribution in anteroinferior capsule, anterior translation) during a simulated clinical exam at three joint positions, in the intact and injured joint.
APA, Harvard, Vancouver, ISO, and other styles
4

Daley, Claude, and Hyunwook Kim. "Ice Collision Forces Considering Structural Deformation." In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20657.

Full text
Abstract:
With increasing interest in resource exploitation and shipping in the Arctic, the focus on ice class ships and offshore structures is growing every year. In Arctic waters collision with ice is a major concern. The standard analytical ship-ice collision load model is based on the assumption that the ship structure is perfectly rigid body and the crushing energy of ice is equated to the available kinetic energy to calculate the ice load. This paper extends the standard approach by including the local plastic deformation. By considering the plastic work done to the structure in the balance of energy, a model is developed that can be used to help specify the levels of structural damage that may occur at various speeds. A simple unit side shell of ship structure is modeled to evaluate the absorbed energy and permanent deformation, with elasto-plastic response including linear strain hardening. A simple patch load is used. The purpose of this model is to provide a practical evaluation method of ice loads with the consideration of ship structure’s deformation. While there have been similar issues tackled numerically by several researchers, this work takes a more analytical approach, and will hopefully enable designers to more rapidly assess potential designs. Furthermore, this approach may provide a tool for regulation that is more related to actual risk levels and consequences. To illustrate the issues and practical application, the paper presents an assessment of the bow structure of a high ice class 150kT arctic tanker involved in an iceberg collision.
APA, Harvard, Vancouver, ISO, and other styles
5

Trabia, Mohamed B. "A Continuous Force Model for Elastic-Plastic Impact of Solids." In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0360.

Full text
Abstract:
Abstract A model for elastic-plastic impact analysis of solids is presented. This model is valid for the cases when plasticity accounts for the absorption of energy during impact. It is assumed that impact forces follow continuous Hertz contact force model. The model depends on a new mechanism for energy absorption in the impacted solids. The method yields the relative velocity of impact needed to initiate permanent deformation, coefficient of restitution, and impact time. As an example, impact between spheres is considered. Comparison between analytical and experimental results is included.
APA, Harvard, Vancouver, ISO, and other styles
6

Ertas, Ahmet H., Betty J. Sindelar, and John R. Cotton. "Creep Simulation of a Micro-CT Based Finite Element Model of Porcine Cancellous Bone." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53320.

Full text
Abstract:
Creep and fatigue behavior of cancellous bone are thought to be important in senile fractures [1, 2], bone remodeling [3], and implant subsidence [4]. Mechanical tests of cancellous bone samples have explored permanent deformation over time in both creep and fatigue loading. For example, Bowman, et al. [1] investigated creep behavior of bovine trabecular bone showing strong relationships between the applied stress and both time-to-failure and steady-state creep rate.
APA, Harvard, Vancouver, ISO, and other styles
7

Shivaswamy, Shashishekar, Jianmin Li, and Hamid M. Lankarani. "Impact Analysis of Plates Using Quasi-Static Approach." In ASME 1994 Design Technical Conferences collocated with the ASME 1994 International Computers in Engineering Conference and Exhibition and the ASME 1994 8th Annual Database Symposium. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/detc1994-0089.

Full text
Abstract:
Abstract Impact calculations suffer from several practical limitations which limit their application to establishing the approximate magnitude of the various phenomena involved. The transient force deformation response of a body subjected to impact can be explained accurately using stress wave propagation theory. As this approach is very complicated, a simpler quasi-static approach with non-linear force deformation Hertz relations can be employed for impact analysis. However, these relations can not explain the energy absorption and permanent deformations encountered during the impact. This necessitates independent non-linear force-deformation relations for compression and restitution phases of impact. In the present paper, impact tests conducted on Aluminum and Steel plates have been reported. The impact response of the system was compared with the various theoretical quasi-static force models. Considering the assumptions made in the quasi-static force models, the experimental results matched very well with the theoretical results. Non-linear force-deformation model with independent relations for compression and restitution phases was found to be the best approach to analyze impact problems. The value of the index in the non-linear force-deformation relations was found to be approximately 1.71 and 1.78 for Aluminum and Steel respectively. The values of impact parameters for a given material were found to depend on impact velocity.
APA, Harvard, Vancouver, ISO, and other styles
8

Ghaderi, Aref, Vahid Morovati, Amir Bahrololoumi, and Roozbeh Dargazany. "A Physics-Informed Neural Network Constitutive Model for Cross-Linked Polymers." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24227.

Full text
Abstract:
Abstract The behavior of Cross-linked Polymers in finite deformations is often characterized by nonlinear behaviour. In this paper, we propose to embed an artificial neural network (ANN) within a micro-mechanical platform and thus to enforce certain physical restrictions of an amorphous network such as directional dependency and history-dependency of the constitutive behavior of rubber-like materials during loading and unloading. Accordingly, a strain energy density function is assumed for a set of chains in each direction based on ANN and trained with experimental data set. Summation of the energies provided by ANNs in different directions can determine the strain energy density function of the matrix. Stress-strain relation is derived from strain energy density function. Polyconvexity is enforced to assure minimized potential energy, a global solution for an optimization problem, and thermodynamic consistency that show the model cannot generate energy. The model is validated against multiple sets of experimental data, e.g. uniaxial, shear, and biaxial deformation available in the literature. This model captures not only the loading and unloading paths but also the inelastic response of these materials, such as the Mullins effect and permanent set. The model can be generalized to other materials and other inelastic effects as well.
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Xiaoben, Hong Zhang, Mengying Xia, Jianping Liu, and Qian Zheng. "An Improved Analytical Strain Analysis Method for Buried Steel Pipelines Subjected to Abrupt Permanent Ground Displacement." In 2020 13th International Pipeline Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/ipc2020-9341.

Full text
Abstract:
Abstract Abrupt permanent ground displacement is a typical loading condition for pipelines crossing geotechnical hazard areas. An improved analytical method for calculating longitudinal strain of buried pipeline under tension combined with bending load induced by permanent ground displacement (PGD) was proposed, in which, the pipe steel was considered as a bilinear material and the soil constraint on pipe was considered as a series of elastic-plastic nonlinear soil springs. Effects of elastic deformation of axial soil springs on pipe strain was derived accurately. Effects of axial force in pipe on pipe’s bending deformation was considered directly in the governing equation of pipe. Equilibrium between the section stresses in the large deformed pipe sections near fault trace and the section force and moment at the same position derived by the beam theory was used to obtain the nonlinear stress distributions in the pipe section and furtherly to obtain the equivalent modulus describing the locally decreased pipe stiffness. This method makes it possible to accurately derive the pipe longitudinal strain considering the effects of pipe material nonlinearity induced locally decreased pipe stiffness in large bending deformed pipe segments. A three dimensional nonlinear finite element model was also established by general software package ABAQUS to serve as a benchmark to validate the accuracy of proposed analytical method. Shell and pipe elements were employed to simulate pipes in large deformation and small deformation regions respectively. Distributed nonlinear soil spring elements were employed to simulate nonlinear soil constraints on pipe. Various loading conditions were performed to compare the efficiency and accuracy of the proposed analytical method comparing with the FE method. Results show the proposed analytical method can predict accurate longitudinal strain results even large plastic deformation appears in pipe. And comparing with FE method, analytical method has advantages in calculating efficiency, which is more suitable for application in engineering practice.
APA, Harvard, Vancouver, ISO, and other styles
10

ALAHMED, NOORA, KAMRAN KHAN, and REHAN UMER. "RATE-DEPENDENT COMPACTION AND RELAXATION RESPONSE OF UNCURED PREPREGS UNDER HIGH-PRESSURE CONDITIONS." In Thirty-sixth Technical Conference. Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/asc36/35950.

Full text
Abstract:
The compaction-relaxation response at different compaction rates and fiber volume fractions plays a key role in understanding the viscoelastic response of uncured prepregs. Hence, this study characterizes the time-dependent behavior of un-cured 4- layer prepregs subjected to compaction-stress relaxation test at different displacement rates i.e., 0.1 mm/min, 1.0 mm/min, and 10 mm/min, at 0.65 fiber volume fraction and allowed to relax for two hours. In this study, the complete deformation history of the Hexply M26T multilayer prepregs is measured from a stress-free state to the cured state. The effects of rate-dependent compaction-relaxation at different rates on percentages of compaction, recovery, stress change during relaxation, and permanent deformation of prepregs are computed. It was concluded that the 0.1 / displacement rate showed the lowest peak stress level and the lowest stress relaxation and permanent deformation. A viscoelastic model was used to fit the experimental data and the results showed a good agreement. The void content was determined analytically and from the XCT-aided geometrical model. It was observed that for a given test condition, the void content increases as the displacement rate increases, due to the high applied pressure. This study highlights the importance of rate-dependent compaction-relaxation behavior and the need to determine the suitable process parameters and models to manufacture high-quality aerospace composite structures.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Permanent deformation model"

1

Nantung, Tommy E., Jusang Lee, John E. Haddock, M. Reza Pouranian, Dario Batioja Alvarez, Jongmyung Jeon, Boonam Shin, and Peter J. Becker. Structural Evaluation of Full-Depth Flexible Pavement Using APT. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317319.

Full text
Abstract:
The fundamentals of rutting behavior for thin full-depth flexible pavements (i.e., asphalt thickness less than 12 inches) are investigated in this study. The scope incorporates an experimental study using full-scale Accelerated Pavement Tests (APTs) to monitor the evolution of each pavement structural layer's transverse profiles. The findings were then employed to verify the local rutting model coefficients used in the current pavement design method, the Mechanistic-Empirical Pavement Design Guide (MEPDG). Four APT sections were constructed using two thin typical pavement structures (seven-and ten-inches thick) and two types of surface course material (dense-graded and SMA). A mid-depth rut monitoring and automated laser profile systems were designed to reconstruct the transverse profiles at each pavement layer interface throughout the process of accelerated pavement deterioration that is produced during the APT. The contributions of each pavement structural layer to rutting and the evolution of layer deformation were derived. This study found that the permanent deformation within full-depth asphalt concrete significantly depends upon the pavement thickness. However, once the pavement reaches sufficient thickness (more than 12.5 inches), increasing the thickness does not significantly affect the permanent deformation. Additionally, for thin full-depth asphalt pavements with a dense-graded Hot Mix Asphalt (HMA) surface course, most pavement rutting is caused by the deformation of the asphalt concrete, with about half the rutting amount observed within the top four inches of the pavement layers. However, for thin full-depth asphalt pavements with an SMA surface course, most pavement rutting comes from the closet sublayer to the surface, i.e., the intermediate layer. The accuracy of the MEPDG’s prediction models for thin full-depth asphalt pavement was evaluated using some statistical parameters, including bias, the sum of squared error, and the standard error of estimates between the predicted and actual measurements. Based on the statistical analysis (at the 95% confidence level), no significant difference was found between the version 2.3-predicted and measured rutting of total asphalt concrete layer and subgrade for thick and thin pavements.
APA, Harvard, Vancouver, ISO, and other styles
2

Ramakrishnan, Aravind, Ashraf Alrajhi, Egemen Okte, Hasan Ozer, and Imad Al-Qadi. Truck-Platooning Impacts on Flexible Pavements: Experimental and Mechanistic Approaches. Illinois Center for Transportation, November 2021. http://dx.doi.org/10.36501/0197-9191/21-038.

Full text
Abstract:
Truck platoons are expected to improve safety and reduce fuel consumption. However, their use is projected to accelerate pavement damage due to channelized-load application (lack of wander) and potentially reduced duration between truck-loading applications (reduced rest period). The effect of wander on pavement damage is well documented, while relatively few studies are available on the effect of rest period on pavement permanent deformation. Therefore, the main objective of this study was to quantify the impact of rest period theoretically, using a numerical method, and experimentally, using laboratory testing. A 3-D finite-element (FE) pavement model was developed and run to quantify the effect of rest period. Strain recovery and accumulation were predicted by fitting Gaussian mixture models to the strain values computed from the FE model. The effect of rest period was found to be insignificant for truck spacing greater than 10 ft. An experimental program was conducted, and several asphalt concrete (AC) mixes were considered at various stress levels, temperatures, and rest periods. Test results showed that AC deformation increased with rest period, irrespective of AC-mix type, stress level, and/or temperature. This observation was attributed to a well-documented hardening–relaxation mechanism, which occurs during AC plastic deformation. Hence, experimental and FE-model results are conflicting due to modeling AC as a viscoelastic and the difference in the loading mechanism. A shift model was developed by extending the time–temperature superposition concept to incorporate rest period, using the experimental data. The shift factors were used to compute the equivalent number of cycles for various platoon scenarios (truck spacings or rest period). The shift model was implemented in AASHTOware pavement mechanic–empirical design (PMED) guidelines for the calculation of rutting using equivalent number of cycles.
APA, Harvard, Vancouver, ISO, and other styles
3

Al-Qadi, Imad, Jaime Hernandez, Angeli Jayme, Mojtaba Ziyadi, Erman Gungor, Seunggu Kang, John Harvey, et al. The Impact of Wide-Base Tires on Pavement—A National Study. Illinois Center for Transportation, October 2021. http://dx.doi.org/10.36501/0197-9191/21-035.

Full text
Abstract:
Researchers have been studying wide-base tires for over two decades, but no evidence has been provided regarding the net benefit of this tire technology. In this study, a comprehensive approach is used to compare new-generation wide-base tires (NG-WBT) with the dual-tire assembly (DTA). Numerical modeling, prediction methods, experimental measurements, and environmental impact assessment were combined to provide recommendations about the use of NG-WBT. A finite element approach, considering variables usually omitted in the conventional analysis of flexible pavement was utilized for modeling. Five hundred seventy-six cases combining layer thickness, material properties, tire load, tire inflation pressure, and pavement type (thick and thin) were analyzed to obtained critical pavement responses. A prediction tool, known as ICT-Wide, was developed based on artificial neural networks to obtain critical pavement responses in cases outside the finite element analysis matrix. The environmental impacts were determined using life cycle assessment. Based on the bottom-up fatigue cracking, permanent deformation, and international roughness index, the life cycle energy consumption, cost, and green-house gas (GHG) emissions were estimated. To make the outcome of this research effort useful for state departments of transportation and practitioners, a modification to AASHTOWare is proposed to account for NG-WBT. The revision is based on two adjustment factors, one accounting for the discrepancy between the AASHTOware approach and the finite element model of this study, and the other addressing the impact of NG-WBT.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography