Academic literature on the topic 'Permanent Magnet Synchronous Machine drive'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Permanent Magnet Synchronous Machine drive.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Permanent Magnet Synchronous Machine drive"
Petrov, Timur, and Alfred Safin. "Theoretical aspects of optimization synchronous machine rotors." E3S Web of Conferences 178 (2020): 01049. http://dx.doi.org/10.1051/e3sconf/202017801049.
Full textZhang, Jia Ying, Li Ping Zhang, and Gui Ling Xiao. "Direct Drive Permanent Magnet Synchronous Wind Generator Maximum Power Tracking Control." Advanced Materials Research 724-725 (August 2013): 459–62. http://dx.doi.org/10.4028/www.scientific.net/amr.724-725.459.
Full textZhang, Jia Ying, and Li Ping Zhang. "The Research on Direct Drive Permanent Magnet Synchronous Wind Generator Vector Control." Advanced Materials Research 512-515 (May 2012): 798–802. http://dx.doi.org/10.4028/www.scientific.net/amr.512-515.798.
Full textSakharov, M. V., and V. N. Karaulov. "Method of winch drive permanent magnet inverted motor design." Vestnik IGEU, no. 2 (2019): 51–58. http://dx.doi.org/10.17588/2072-2672.2019.2.051-058.
Full textRamadan, Salah. "CONTROL SCHEME OF A PERMANENT-MAGNET SYNCHRONOUS MACHINE-DRIVE.." International Conference on Aerospace Sciences and Aviation Technology 2, CONFERENCE (April 1, 1987): 1–13. http://dx.doi.org/10.21608/asat.1987.26236.
Full textKiss, Gergely Máté, and István Vajda. "Co-Simulation of an Inverter Fed Permanent Magnet Synchronous Machine." Electrical, Control and Communication Engineering 6, no. 1 (October 23, 2014): 19–25. http://dx.doi.org/10.2478/ecce-2014-0013.
Full textSemykina, Irina, and Alexandra Tarnetskaya. "Magnet Synchronous Machine of Mine Belt Conveyor Gearless Drum-Motor." E3S Web of Conferences 41 (2018): 03014. http://dx.doi.org/10.1051/e3sconf/20184103014.
Full textCV, Aravind, Ramani Kannan, Heng Jing Lei, and Joga Dharma Setiawan. "Design studies of inner and outer embedded Permanent Magnet for hybrid electric vehicles." MATEC Web of Conferences 159 (2018): 02003. http://dx.doi.org/10.1051/matecconf/201815902003.
Full textAbassi, Moez, Oussama Saadaoui, Amor Khlaief, Abdelkader Chaari, and Mohamed Boussak. "PMSM DTC Drive System Fed by a Fault-Tolerant Inverter." Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering) 12, no. 1 (January 10, 2019): 61–67. http://dx.doi.org/10.2174/2352096511666180501125421.
Full textNoguchi, Toshihiko. "Trends of permanent-magnet synchronous machine drives." IEEJ Transactions on Electrical and Electronic Engineering 2, no. 2 (March 2007): 125–42. http://dx.doi.org/10.1002/tee.20119.
Full textDissertations / Theses on the topic "Permanent Magnet Synchronous Machine drive"
Al-Taee, Majid Abdulwahid. "A synchronous ultrasonically modulated drive system incorporating a permanent magnet machine." Thesis, University of Liverpool, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314513.
Full textLovelace, Edward Carl Francis. "Optimization of a magnetically saturable interior permanent-magnet synchronous machine drive." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/9085.
Full textIncludes bibliographical references (p. 258-263).
Interior permanent magnet (IPM) synchronous machines are attractive because they can achieve constant-power operation over a wide speed range with limited magnet strength requirements and reduced power electronics cost. These characteristics provide the IPM machine with advantages over alternative machine types in applications such as spindle and traction drives. An important challenge for high-performance IPM machine design is to model the magnetic saturation of the core in a manner that is accurate, flexible, and computationally fast for design optimization. A magnetically-saturable lumped parameter model (LPM) is developed for the optimized design of high-performance IPM synchronous machine drives. Using equivalent magnetic circuit analyses, the dq-frame inductances and magnet flux linkage are calculated for transversely-laminated IPM machines. The lumped parameters are employed to predict machine drive system performance for both rated-torque and constant-power operation. The results of saturable model calculations and finite element analysis (FEA) match very closely for the machine inductances, magnet flux linkage, and converted torque. Further validation is presented by comparing measurements of existing experimental machines to predictions from the saturable lumped parameter model. Agreement of measurements and predictions for the highly nonlinear saturable q-axis inductance is within 5% in the saturated excitation range. The utility of the saturable LPM is then demonstrated by developing a cost-optimized design for an automotive integrated starter/generator (ISG) that is rated at 4 to 6 kW during generating operation. This ISG machine is mounted in a direct-drive mechanical configuration on the engine crankshaft. Agreement between the saturable LPM and FEA calculations for q- and d- axis inductances and PM flux linkage are all within 5% for the entire excitation range. Results of this model have been combined with structural FEA and demagnetization studies to produce a machine design that is predicted to meet all key ISG performance requirements. For this application and the chosen cost model, it is shown that optimizing the combined machine and drive system versus optimizing only the machine reduces the overall cost prediction by 12%.
by Edward Carl Francis Lovelace.
Ph.D.
Wang, Bo. "A triple redundant 3x3-phase fault tolerant permanent magnet synchronous reluctance machine drive." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/19803/.
Full textAhmed, Adeeb. "Maximum Torque per Ampere (MTPA) Control for Permanent Magnet Synchronous Machine Drive System." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1375726072.
Full textManakshya, Nikhil. "Permanent magnet synchronous machine using ferrite vs rare earth magnets : how do they compare?" Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302658.
Full textPermanent magnet-synkronmaskiner (PMSM) betraktas som lönsamma alternativ för fordons och dragapplikationer. Sällsynta jordartsmagneter som Neodymiumbor (NdFeB) är det vanligaste valet i PMSM för elfordon att uppnå maskiner med hög effektdensitet. Sällsynta jordartsmagneter är emellertid problematiska ur etiska perspektiv och hållbarhetsperspektiv. Ur dessa perspektiv finns det bättre magnetalternativ, såsom ferriter. Ferrit är välkänt för lägre miljöpåverkan, överflöd och låga kostnader. På grund av låg restflödestäthet hos en ferritmagnet än en sällsynt jordartsmagnet behövs en större mängd ferritmagneter för att uppnå samma prestanda. Detta examensarbete syftar till att jämföra en PMSM med hjälp av NdFeB-magneter med en PMSM som använder ferritmagneter i termer av olika prestandaparametrar såsom vridmomentproduktion, effektfaktor, drivcykeleffektivitet, kartläggning av förluster, kostnad och miljöpåverkan. Maskinerna är designade baserat på Volvo XC40 fordons krav. För att jämföra båda maskinerna utformas ferritbaserad maskin med olika typer av rotorstruktur, såsom båg- och ekertypskonfiguration i Ansys Maxwell och jämförs med referensen PMSM som håller NdFeB-magneten. Demagnetiseringsstudien utfördes på ferritmagneterna vid lägre temperatur för att undersöka designens genomförbarhet. För att minska risken för demagnetisering har den parametriska analysen av rotorstrukturen genomförts. Dessutom undersöktes mekanisk integritet i toppfart.
Almarhoon, Ali. "Sensorless control of dual three-phase permanent magnet synchronous machine drives." Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/15888/.
Full textZhang, Zhendong. "PERMANENT MAGNET SYNCHRONOUS MACHINE BASED TRACTION DRIVE DESIGN FOR HYBRID SCOOTER CONSIDERING CONTROL NONLINEARITIES AND COMPENSATIONS." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1376667289.
Full textRen, Yuan. "Direct torque control of dual three-phase permanent magnet synchronous machine drives." Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/12190/.
Full textBennett, Nicholas. "A vector controlled AC drive incorporating an ultrasonic voltage source inverter and a permanent magnet synchronous machine." Thesis, University of Liverpool, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240472.
Full textWang, Yuanlin [Verfasser]. "Contributions to optimize the control of Permanent Magnet Synchronous Machine Drives / Yuanlin Wang." Aachen : Shaker, 2017. http://d-nb.info/1138177164/34.
Full textBooks on the topic "Permanent Magnet Synchronous Machine drive"
Wang, Gaolin, Guoqiang Zhang, and Dianguo Xu. Position Sensorless Control Techniques for Permanent Magnet Synchronous Machine Drives. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0050-3.
Full textSmirnov, Aleksandr. Electric drive with contactless synchronous motors. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1192105.
Full textAnghel, Cristian. Sensorless flux vector control for a permanent magnet synchronous machine with cylindrical rotor under severe starting conditions. Ottawa: National Library of Canada, 1997.
Find full textZhang, Guoqiang, Gaolin Wang, and Dianguo Xu. Position Sensorless Control Techniques for Permanent Magnet Synchronous Machine Drives. Springer, 2019.
Find full textVaez-Zadeh, Sadegh. Control of Permanent Magnet Synchronous Motors. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198742968.001.0001.
Full textVaez-Zadeh, Sadegh. Machine Modeling. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198742968.003.0002.
Full textVaez-Zadeh, Sadegh. Predictive, Deadbeat, and Combined Controls. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198742968.003.0005.
Full textBook chapters on the topic "Permanent Magnet Synchronous Machine drive"
Boldea, Ion, and Lucian Tutelea. "Control of Three-Phase Reluctance Synchronous Machine and Permanent Magnet–Reluctance Synchronous Machine Drives." In Reluctance Electric Machines, 143–77. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9780429458316-5.
Full textGaiceanu, Marian, and Cristian Nichita. "Regenerative AC Drive System Based on the Three Phase Permanent Magnet Synchronous Machine." In 2nd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2014), 163–70. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16901-9_20.
Full textBossoufi, Badre, and Ahmed Lagrioui. "High Performance Predictive Control for Permanent Magnet Synchronous Machine Drive: FPGA-Based Implementation." In Digital Technologies and Applications, 387–98. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73882-2_36.
Full textWang, Gaolin, Guoqiang Zhang, and Dianguo Xu. "Model-Based Sensorless Control for PMSM Drives." In Position Sensorless Control Techniques for Permanent Magnet Synchronous Machine Drives, 123–46. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0050-3_5.
Full textWang, Gaolin, Guoqiang Zhang, and Dianguo Xu. "Saliency-Tracking-Based Sensorless Control for PMSM Drives." In Position Sensorless Control Techniques for Permanent Magnet Synchronous Machine Drives, 37–80. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0050-3_3.
Full textWang, Gaolin, Guoqiang Zhang, and Dianguo Xu. "Practical Issues of Sensorless Control for PMSM Drives." In Position Sensorless Control Techniques for Permanent Magnet Synchronous Machine Drives, 281–95. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0050-3_9.
Full textWang, Gaolin, Guoqiang Zhang, and Dianguo Xu. "Basic Structure and Mathematical Model." In Position Sensorless Control Techniques for Permanent Magnet Synchronous Machine Drives, 1–24. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0050-3_1.
Full textWang, Gaolin, Guoqiang Zhang, and Dianguo Xu. "Introduction of PMSM Control Methods." In Position Sensorless Control Techniques for Permanent Magnet Synchronous Machine Drives, 25–36. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0050-3_2.
Full textWang, Gaolin, Guoqiang Zhang, and Dianguo Xu. "Pseudo-Random-Frequency Signal Injection for Acoustic Reduction." In Position Sensorless Control Techniques for Permanent Magnet Synchronous Machine Drives, 81–121. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0050-3_4.
Full textWang, Gaolin, Guoqiang Zhang, and Dianguo Xu. "Position Estimation Error Ripple Elimination for Model-Based Method." In Position Sensorless Control Techniques for Permanent Magnet Synchronous Machine Drives, 147–202. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0050-3_6.
Full textConference papers on the topic "Permanent Magnet Synchronous Machine drive"
Plantić, Željko, Tine Marčič, and Gorazd Štumberger. "The Efficiency Improvement of a Permanent Magnet Synchronous Machine Drive." In 7th Symposium on Applied Electromagnetics SAEM`18. Unviersity of Maribor Press, 2019. http://dx.doi.org/10.18690/978-961-286-241-1.7.
Full textMyoungho Kim, Jung-Sik Yim, Seung-Ki Sul, and Sung-Il Lim. "Implementation of super high-speed permanent magnet synchronous machine drive." In 2009 IEEE Energy Conversion Congress and Exposition. ECCE 2009. IEEE, 2009. http://dx.doi.org/10.1109/ecce.2009.5316187.
Full textChen, Wen-Chuan, Shih-Chin Yang, Po-Huan Chou, Yu-Liang Hsu, Jyun-You Chen, Guan-Ren Chen, and Chin-Sheng Chen. "High Speed Permanent Magnet Synchronous Machine Drive Under Insufficient Sample Frequency." In 2019 IEEE International Electric Machines & Drives Conference (IEMDC). IEEE, 2019. http://dx.doi.org/10.1109/iemdc.2019.8785398.
Full textAn, Jeongki, and Andreas Binder. "Design of interior permanent magnet synchronous machine for two-drive-transmission." In 2015 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS). IEEE, 2015. http://dx.doi.org/10.1109/esars.2015.7101507.
Full textReigosa, David, Daniel Fernandez, Cristina Gonzalez, Sang Bin Lee, and Fernando Briz. "Permanent magnet synchronous machine drive control using analog hall-effect sensors." In 2017 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2017. http://dx.doi.org/10.1109/ecce.2017.8096694.
Full textWang, Bo, Jiabin Wang, Antonio Griffo, Zhigang Sun, and Ellis Chong. "A fault tolerant machine drive based on permanent magnet assisted synchronous reluctance machine." In 2016 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2016. http://dx.doi.org/10.1109/ecce.2016.7854677.
Full textYogal, Nijan, Christian Lehrmann, and Markus Henke. "Eddy Current Loss Measurement of Permanent Magnets Used in Permanent Magnet Synchronous Machines." In 2019 IEEE 13th International Conference on Power Electronics and Drive Systems (PEDS). IEEE, 2019. http://dx.doi.org/10.1109/peds44367.2019.8998879.
Full textVoyer, Nicolas, Guilherme Bueno-Mariani, Abdlehadi Besri, Vincent Quemener, Yuriko Okamoto, and Akira Satake. "High Frequency Modelling of Permanent Magnet Synchronous Machine." In 2018 8th International Electric Drives Production Conference (EDPC). IEEE, 2018. http://dx.doi.org/10.1109/edpc.2018.8658271.
Full textVoyer, Nicolas, Guilherme Bueno-Mariani, Abdlehadi Besri, Vincent Quemener, Yuriko Okamoto, and Akira Satake. "High Frequency Modelling of Permanent Magnet Synchronous Machine." In 2018 8th International Electric Drives Production Conference (EDPC). IEEE, 2018. http://dx.doi.org/10.1109/edpc.2018.8658275.
Full textMohammed, O. A., S. Ganu, Z. Liu, N. Abed, and S. Liu. "High Frequency Modeling Of Permanent Magnet Synchronous Motor Drive." In 2007 IEEE International Electric Machines & Drives Conference. IEEE, 2007. http://dx.doi.org/10.1109/iemdc.2007.382686.
Full textReports on the topic "Permanent Magnet Synchronous Machine drive"
Batzel, Todd D. Sensorless Electric Drive for Permanent Magnet Synchronous Motors. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada370401.
Full textBatzel, Todd D. Sensorless Electric Drive for Integral Horsepower Permanent Magnet Synchronous Motor. Fort Belvoir, VA: Defense Technical Information Center, October 2001. http://dx.doi.org/10.21236/ada390604.
Full textDrive modelling and performance estimation of IPM motor using SVPWM and Six-step Control Strategy. SAE International, April 2021. http://dx.doi.org/10.4271/2021-01-0775.
Full text