To see the other types of publications on this topic, follow the link: Permanents.

Journal articles on the topic 'Permanents'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Permanents.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Chen, Zhi, Jiawei Li, Lizhen Yang, Zelin Zhu, and Lei Cao. "Inequalities for permanents and permanental minors of row substochastic matrices." Electronic Journal of Linear Algebra 35 (December 22, 2019): 633–43. http://dx.doi.org/10.13001/ela.2019.5143.

Full text
Abstract:
In this paper, some inequalities for permanents and permanental minors of row substochastic matrices are proved. The convexity of the permanent function on the interval between the identity matrix and an arbitrary row substochastic matrix is also proved. In addition, a conjecture about the permanent and permanental minors of square row substochastic matrices with fixed row and column sums is formulated.
APA, Harvard, Vancouver, ISO, and other styles
2

Sullivan, Francis, та Isabel Beichl. "Permanents, $$\alpha $$ α -permanents and Sinkhorn balancing". Computational Statistics 29, № 6 (2014): 1793–98. http://dx.doi.org/10.1007/s00180-014-0506-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Minc, Henryk. "Permanental compounds and permanents of (0, 1)-circulants." Linear Algebra and its Applications 86 (February 1987): 11–42. http://dx.doi.org/10.1016/0024-3795(87)90285-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Motley-Carcache, Marian. "Permanents and Transients." Appalachian Heritage 16, no. 1 (1988): 27–29. http://dx.doi.org/10.1353/aph.1988.0005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Feinsilver, Philip, and John McSorley. "Zeons, Permanents, the Johnson Scheme, and Generalized Derangements." International Journal of Combinatorics 2011 (June 2, 2011): 1–29. http://dx.doi.org/10.1155/2011/539030.

Full text
Abstract:
Starting with the zero-square “zeon algebra,” the connection with permanents is shown. Permanents of submatrices of a linear combination of the identity matrix and all-ones matrix lead to moment polynomials with respect to the exponential distribution. A permanent trace formula analogous to MacMahon's master theorem is presented and applied. Connections with permutation groups acting on sets and the Johnson association scheme arise. The families of numbers appearing as matrix entries turn out to be related to interesting variations on derangements. These generalized derangements are considered
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Zhi, Jiawei Li, Lizhen Yang, Zelin Zhu, and Lei Cao. "Inequalities for permanents and permanental minors of row substochastic matrices." Electronic Journal of Linear Algebra 35, no. 1 (2019): 633–43. http://dx.doi.org/10.13001/1081-3810.4084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Moran, P. A. P. "SOME NOTES ON PERMANENTS." Australian Journal of Statistics 30A, no. 1 (1988): 17–20. http://dx.doi.org/10.1111/j.1467-842x.1988.tb00460.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Botti, Phillip, Russel Merris, and Cheryl Vega. "Laplacian Permanents of Trees." SIAM Journal on Discrete Mathematics 5, no. 4 (1992): 460–66. http://dx.doi.org/10.1137/0405036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cheon, Gi-Sang, Suk-Geun Hwang, Bryan L. Shader, and Seok-Zun Song. "Permanents of woven matrices." Linear Algebra and its Applications 364 (May 2003): 223–33. http://dx.doi.org/10.1016/s0024-3795(02)00566-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Song, Seok-Zun. "A conjecture on permanents." Linear Algebra and its Applications 222 (June 1995): 91–95. http://dx.doi.org/10.1016/0024-3795(93)00286-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Foregger, Thomas H. "Minimum permanents of multiplexes." Linear Algebra and its Applications 87 (March 1987): 197–211. http://dx.doi.org/10.1016/0024-3795(87)90167-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Cerisuelo, Marc. "Les permanents du fantasme." Critique 795-796, no. 8 (2013): 674. http://dx.doi.org/10.3917/criti.795.0674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Servedio, Rocco A., and Andrew Wan. "Computing sparse permanents faster." Information Processing Letters 96, no. 3 (2005): 89–92. http://dx.doi.org/10.1016/j.ipl.2005.06.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gyires, Béla. "Discret distribution and permanents." Publicationes Mathematicae Debrecen 20, no. 1-2 (2022): 93–106. http://dx.doi.org/10.5486/pmd.1973.20.1-2.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Udayan, Divya K., and Kanagasabapathi Somasundaram. "The Inequalities of Merris and Foregger for Permanents." Symmetry 13, no. 10 (2021): 1782. http://dx.doi.org/10.3390/sym13101782.

Full text
Abstract:
Conjectures on permanents are well-known unsettled conjectures in linear algebra. Let A be an n×n matrix and Sn be the symmetric group on n element set. The permanent of A is defined as perA=∑σ∈Sn∏i=1naiσ(i). The Merris conjectured that for all n×n doubly stochastic matrices (denoted by Ωn), nperA≥min1≤i≤n∑j=1nperA(j|i), where A(j|i) denotes the matrix obtained from A by deleting the jth row and ith column. Foregger raised a question whether per(tJn+(1−t)A)≤perA for 0≤t≤nn−1 and for all A∈Ωn, where Jn is a doubly stochastic matrix with each entry 1n. The Merris conjecture is one of the well-kn
APA, Harvard, Vancouver, ISO, and other styles
16

Beauchamp, Claude. "Le permanent syndical de la Confédération des syndicats nationaux." Articles 8, no. 3 (2005): 319–49. http://dx.doi.org/10.7202/055374ar.

Full text
Abstract:
Dans la société canadienne-française traditionnelle, le leadership était assez simple. Il était constitué du curé et des notables locaux, ordinairement le médecin et le notaire. Aujourd'hui, la situation est beaucoup plus complexe et les élites traditionnelles sont loin d'avoir le même pouvoir d'attraction. En milieu rural, elles ont perdu de l'influence au profit du gérant de la caisse populaire ou de l'instituteur, par exemple. Dans les milieux plus industrialisés, le syndicalisme a, lui aussi, favorisé chez nous l'émergence de nouvelles élites. Il n'est pas rare de voir le président d'un sy
APA, Harvard, Vancouver, ISO, and other styles
17

Pouliot, Daniel, and Jean-Jacques Frenette. "Development and Growth of Northern Leopard Frog, Lithobates pipiens, Tadpoles in North American Waterfowl Management Plan Permanent Basins and in Natural Wetlands." Canadian Field-Naturalist 124, no. 2 (2010): 159. http://dx.doi.org/10.22621/cfn.v124i2.1055.

Full text
Abstract:
We monitored the development and growth of a cohort of Northern Leopard Frog (Lithobates pipiens) tadpoles, in one North American Waterfowl Management Plan (NAWMP) permanent basin and in one natural environment, a bay of the St. Lawrence River. We wanted to know if this kind of artificial wetland could be considered as suitable habitat for this declining species and compare the environment that was provided to the tadpoles to those found in natural conditions. We also measured metamorphs' snout-vent length at three different permanent basins and natural bays to verify if the results from the d
APA, Harvard, Vancouver, ISO, and other styles
18

Penrice, Stephen G. "Derangements, Permanents, and Christmas Presents." American Mathematical Monthly 98, no. 7 (1991): 617. http://dx.doi.org/10.2307/2324927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Vlasov, Alexander Yu. "Permanents, bosons and linear optics." Laser Physics Letters 14, no. 10 (2017): 103001. http://dx.doi.org/10.1088/1612-202x/aa7d90.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Koparal, Sibel, Neşe Ömür, and Cemile Şener. "Some permanents of Hessenberg matrices." Filomat 33, no. 2 (2019): 475–81. http://dx.doi.org/10.2298/fil1902475k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Minc, Henryk. "Theory of permanents 1982–1985." Linear and Multilinear Algebra 21, no. 2 (1987): 109–48. http://dx.doi.org/10.1080/03081088708817786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bhatia, Rajendra, and Ludwig Elsner. "On the variation of permanents." Linear and Multilinear Algebra 27, no. 2 (1990): 105–10. http://dx.doi.org/10.1080/03081089008817999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Avgustinovich, S. V. "Multidimensional permanents in enumeration problems." Journal of Applied and Industrial Mathematics 4, no. 1 (2010): 19–20. http://dx.doi.org/10.1134/s1990478910010035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Arias-de-Reyna, J. "Gaussian variables, polynomials and permanents." Linear Algebra and its Applications 285, no. 1-3 (1998): 107–14. http://dx.doi.org/10.1016/s0024-3795(98)10125-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ahmadi, Mohammad H., Jae-Hyun Baek, and Suk-Geun Hwang. "Permanents of doubly stochastic trees." Linear Algebra and its Applications 370 (September 2003): 15–24. http://dx.doi.org/10.1016/s0024-3795(03)00367-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Gaspa, A., O. Dizien, and P. Orengo. "Champs magnétiques permanents. Pathologies sportives." Science & Sports 2, no. 2 (1987): 161–62. http://dx.doi.org/10.1016/s0765-1597(87)80011-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Child, Billy, and Ian M. Wanless. "Multidimensional permanents of polystochastic matrices." Linear Algebra and its Applications 586 (February 2020): 89–102. http://dx.doi.org/10.1016/j.laa.2019.10.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wanless, Ian M. "Permanents, matchings and Latin rectangles." Bulletin of the Australian Mathematical Society 59, no. 1 (1999): 169–70. http://dx.doi.org/10.1017/s0004972700032731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Rempała, Grzegorz, and Jacek Wesołowski. "Limiting behavior of random permanents." Statistics & Probability Letters 45, no. 2 (1999): 149–58. http://dx.doi.org/10.1016/s0167-7152(99)00054-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Korolyuk, V. S., and Yu V. Borovskikh. "Normal approximation of random permanents." Ukrainian Mathematical Journal 47, no. 7 (1995): 1058–64. http://dx.doi.org/10.1007/bf01084901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Chang, Derek K. "Permanents of doubly stochastic matrices." Discrete Mathematics 62, no. 2 (1986): 211–13. http://dx.doi.org/10.1016/0012-365x(86)90119-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Bapat, R. B. "Permanents in probability and statistics." Linear Algebra and its Applications 127 (1990): 3–25. http://dx.doi.org/10.1016/0024-3795(90)90332-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Bapat, R. B. "Symmetric function means and permanents." Linear Algebra and its Applications 182 (March 1993): 101–8. http://dx.doi.org/10.1016/0024-3795(93)90494-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Dow, Stephen J., and Peter M. Gibson. "Permanents of d-dimensional matrices." Linear Algebra and its Applications 90 (May 1987): 133–45. http://dx.doi.org/10.1016/0024-3795(87)90311-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Cao, Lei, Zhi Chen, Selcuk Koyuncu, and Huilan Li. "Permanents of doubly substochastic matrices." Linear and Multilinear Algebra 68, no. 3 (2018): 594–605. http://dx.doi.org/10.1080/03081087.2018.1513448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Penrice, Stephen G. "Derangements, Permanents, and Christmas Presents." American Mathematical Monthly 98, no. 7 (1991): 617–20. http://dx.doi.org/10.1080/00029890.1991.11995765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

COEY, J. M. D. "Nouvelles phases pour aimants permanents." Le Journal de Physique IV 02, no. C3 (1992): C3–105—C3–106. http://dx.doi.org/10.1051/jp4:1992315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Borovskikh, Yuri V., and Vladimir S. Korolyuk. "Random permanents and symmetric statistics." Acta Applicandae Mathematicae 36, no. 3 (1994): 227–88. http://dx.doi.org/10.1007/bf01002359.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Koparal, Sibel, Neşe Ömür, and Cemile D. Çolak. "On Certain Hessenberg Matrices Related with Linear Recurrences." Facta Universitatis, Series: Mathematics and Informatics 33, no. 2 (2018): 153. http://dx.doi.org/10.22190/fumi1802153k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Kocharovsky, Vitaly, Vladimir Kocharovsky, Vladimir Martyanov, and Sergey Tarasov. "Exact Recursive Calculation of Circulant Permanents: A Band of Different Diagonals inside a Uniform Matrix." Entropy 23, no. 11 (2021): 1423. http://dx.doi.org/10.3390/e23111423.

Full text
Abstract:
We present a finite-order system of recurrence relations for the permanent of circulant matrices containing a band of k any-value diagonals on top of a uniform matrix (for k=1,2 and 3) and the method for deriving such recurrence relations, which is based on the permanents of the matrices with defects. The proposed system of linear recurrence equations with variable coefficients provides a powerful tool for the analysis of the circulant permanents, their fast, linear-time computing; and finding their asymptotics in a large-matrix-size limit. The latter problem is an open fundamental problem. It
APA, Harvard, Vancouver, ISO, and other styles
41

Grier, Daniel, Daniel J. Brod, Juan Miguel Arrazola, Marcos Benicio de Andrade Alonso, and Nicolás Quesada. "The Complexity of Bipartite Gaussian Boson Sampling." Quantum 6 (November 28, 2022): 863. http://dx.doi.org/10.22331/q-2022-11-28-863.

Full text
Abstract:
Gaussian boson sampling is a model of photonic quantum computing that has attracted attention as a platform for building quantum devices capable of performing tasks that are out of reach for classical devices. There is therefore significant interest, from the perspective of computational complexity theory, in solidifying the mathematical foundation for the hardness of simulating these devices. We show that, under the standard Anti-Concentration and Permanent-of-Gaussians conjectures, there is no efficient classical algorithm to sample from ideal Gaussian boson sampling distributions (even appr
APA, Harvard, Vancouver, ISO, and other styles
42

McCullagh, Peter, and Jesper Møller. "The permanental process." Advances in Applied Probability 38, no. 4 (2006): 873–88. http://dx.doi.org/10.1017/s0001867800001361.

Full text
Abstract:
We extend the boson process first to a large class of Cox processes and second to an even larger class of infinitely divisible point processes. Density and moment results are studied in detail. These results are obtained in closed form as weighted permanents, so the extension is called a permanental process. Temporal extensions and a particularly tractable case of the permanental process are also studied. Extensions of the fermion process along similar lines, leading to so-called determinantal processes, are discussed.
APA, Harvard, Vancouver, ISO, and other styles
43

Chan, Melody, and Nathan Ilten. "Fano schemes of determinants and permanents." Algebra & Number Theory 9, no. 3 (2015): 629–79. http://dx.doi.org/10.2140/ant.2015.9.629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Datta, Samir, Raghav Kulkarni, Nutan Limaye, and Meena Mahajan. "Planarity, Determinants, Permanents, and (Unique) Matchings." ACM Transactions on Computation Theory 1, no. 3 (2010): 1–20. http://dx.doi.org/10.1145/1714450.1714453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

James, Gordon D., and Martin W. Liebeck. "Permanents and Immanants of Hermitian Matrices." Proceedings of the London Mathematical Society s3-55, no. 2 (1987): 243–65. http://dx.doi.org/10.1093/plms/s3-55_2.243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Falikman, Dmitry. "Inequalities for permanents of hermitian matrices." Linear Algebra and its Applications 263 (September 1997): 63–74. http://dx.doi.org/10.1016/s0024-3795(96)00508-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Drury, S. W. "Permanents and Lorentzian time-semidefinite matrices." Linear Algebra and its Applications 294, no. 1-3 (1999): 155–68. http://dx.doi.org/10.1016/s0024-3795(99)00058-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Song, Seok-Zun, Suk-Geun Hwang, Seog-Hoon Rim, and Gi-Sang Cheon. "Extremes of permanents of (0,1)-matrices." Linear Algebra and its Applications 373 (November 2003): 197–210. http://dx.doi.org/10.1016/s0024-3795(03)00382-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bapat, Ravindra, and Michael Neumann. "Inequalities for permanents involving Perron complements." Linear Algebra and its Applications 385 (July 2004): 95–104. http://dx.doi.org/10.1016/s0024-3795(03)00533-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Brändén, Petter. "Solutions to two problems on permanents." Linear Algebra and its Applications 436, no. 1 (2012): 53–58. http://dx.doi.org/10.1016/j.laa.2011.06.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!