Academic literature on the topic 'Perovskites solar cell'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Perovskites solar cell.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Perovskites solar cell"

1

Meyer, Edson, Dorcas Mutukwa, Nyengerai Zingwe, and Raymond Taziwa. "Lead-Free Halide Double Perovskites: A Review of the Structural, Optical, and Stability Properties as Well as Their Viability to Replace Lead Halide Perovskites." Metals 8, no. 9 (August 27, 2018): 667. http://dx.doi.org/10.3390/met8090667.

Full text
Abstract:
Perovskite solar cells employ lead halide perovskite materials as light absorbers. These perovskite materials have shown exceptional optoelectronic properties, making perovskite solar cells a fast-growing solar technology. Perovskite solar cells have achieved a record efficiency of over 20%, which has superseded the efficiency of Gräztel dye-sensitized solar cell (DSSC) technology. Even with their exceptional optical and electric properties, lead halide perovskites suffer from poor stability. They degrade when exposed to moisture, heat, and UV radiation, which has hindered their commercialization. Moreover, halide perovskite materials consist of lead, which is toxic. Thus, exposure to these materials leads to detrimental effects on human health. Halide double perovskites with A2B′B″X6 (A = Cs, MA; B′ = Bi, Sb; B″ = Cu, Ag, and X = Cl, Br, I) have been investigated as potential replacements of lead halide perovskites. This work focuses on providing a detailed review of the structural, optical, and stability properties of these proposed perovskites as well as their viability to replace lead halide perovskites. The triumphs and challenges of the proposed lead-free A2B′B″X6 double perovskites are discussed here in detail.
APA, Harvard, Vancouver, ISO, and other styles
2

Thrithamarassery Gangadharan, Deepak, and Dongling Ma. "Searching for stability at lower dimensions: current trends and future prospects of layered perovskite solar cells." Energy & Environmental Science 12, no. 10 (2019): 2860–89. http://dx.doi.org/10.1039/c9ee01591d.

Full text
Abstract:
Two-dimensional perovskites are an attractive alternative to 3D perovskites for solar cell application as they directly address a critical issue of stability of 3D perovskite solar cells, while achieving similarly high power conversion efficiencies.
APA, Harvard, Vancouver, ISO, and other styles
3

Eperon, Giles E., Giuseppe M. Paternò, Rebecca J. Sutton, Andrea Zampetti, Amir Abbas Haghighirad, Franco Cacialli, and Henry J. Snaith. "Inorganic caesium lead iodide perovskite solar cells." Journal of Materials Chemistry A 3, no. 39 (2015): 19688–95. http://dx.doi.org/10.1039/c5ta06398a.

Full text
Abstract:
The vast majority of perovskite solar cell research has focused on organic–inorganic lead trihalide perovskites; herein, we present working inorganic CsPbI3perovskite solar cells for the first time.
APA, Harvard, Vancouver, ISO, and other styles
4

He, Yizhou, Liyifei Xu, Cheng Yang, Xiaowei Guo, and Shaorong Li. "Design and Numerical Investigation of a Lead-Free Inorganic Layered Double Perovskite Cs4CuSb2Cl12 Nanocrystal Solar Cell by SCAPS-1D." Nanomaterials 11, no. 9 (September 7, 2021): 2321. http://dx.doi.org/10.3390/nano11092321.

Full text
Abstract:
In the last decade, perovskite solar cells have made a quantum leap in performance with the efficiency increasing from 3.8% to 25%. However, commercial perovskite solar cells have faced a major impediment due to toxicity and stability issues. Therefore, lead-free inorganic perovskites have been investigated in order to find substitute perovskites which can provide a high efficiency similar to lead-based perovskites. In recent studies, as a kind of lead-free inorganic perovskite material, Cs4CuSb2Cl12 has been demonstrated to possess impressive photoelectric properties and excellent environmental stability. Moreover, Cs4CuSb2Cl12 nanocrystals have smaller effective photo-generated carrier masses than bulk Cs4CuSb2Cl12, which provides excellent carrier mobility. To date, there have been no reports about Cs4CuSb2Cl12 nanocrystals used for making solar cells. To explore the potential of Cs4CuSb2Cl12 nanocrystal solar cells, we propose a lead-free perovskite solar cell with the configuration of FTO/ETL/Cs4CuSb2Cl12 nanocrystals/HTL/Au using a solar cell capacitance simulator. Moreover, we numerically investigate the factors that affect the performance of the Cs4CuSb2Cl12 nanocrystal solar cell with the aim of enhancing its performance. By selecting the appropriate hole transport material, electron transport material, thickness of the absorber layer, doping density, defect density in the absorber, interface defect density, and working temperature point, we predict that the Cs4CuSb2Cl12 nanocrystal solar cell with the FTO/TiO2/Cs4CuSb2Cl12 nanocrystals/Cu2O/Au structure can attain a power conversion efficiency of 23.07% at 300 K. Our analysis indicates that Cs4CuSb2Cl12 nanocrystals have great potential as an absorbing layer towards highly efficient lead-free all-inorganic perovskite solar cells.
APA, Harvard, Vancouver, ISO, and other styles
5

Akinbami, O., G. N. Ngubeni, F. Otieno, R. Kadzutu-Sithole, E. C. Linganiso, Z. N. Tetana, S. S. Gqoba, K. P. Mubiayi, and N. Moloto. "The effect of temperature and time on the properties of 2D Cs2ZnBr4 perovskite nanocrystals and their application in a Schottky barrier device." Journal of Materials Chemistry C 9, no. 18 (2021): 6022–33. http://dx.doi.org/10.1039/d1tc00264c.

Full text
Abstract:
2D hybrid perovskites are promising materials for solar cell applications, in particular, cesium-based perovskite nanocrystals as they offer the stability that is absent in organic–inorganic perovskites.
APA, Harvard, Vancouver, ISO, and other styles
6

Monroe, Don. "Perovskites boost solar-cell potential." Communications of the ACM 60, no. 12 (November 27, 2017): 11–13. http://dx.doi.org/10.1145/3148690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Taiyang, Yuetian Chen, Miao Kan, Shumao Xu, Yanfeng Miao, Xingtao Wang, Meng Ren, Haoran Chen, Xiaomin Liu, and Yixin Zhao. "MA Cation-Induced Diffusional Growth of Low-Bandgap FA-Cs Perovskites Driven by Natural Gradient Annealing." Research 2021 (August 18, 2021): 1–11. http://dx.doi.org/10.34133/2021/9765106.

Full text
Abstract:
Low-bandgap formamidinium-cesium (FA-Cs) perovskites of FA1-xCsxPbI3 (x<0.1) are promising candidates for efficient and robust perovskite solar cells, but their black-phase crystallization is very sensitive to annealing temperature. Unfortunately, the low heat conductivity of the glass substrate builds up a temperature gradient within from bottom to top and makes the initial annealing temperature of the perovskite film lower than the black-phase crystallization point (~150°C). Herein, we take advantage of such temperature gradient for the diffusional growth of high-quality FA-Cs perovskites by introducing a thermally unstable MA+ cation, which would firstly form α-phase FA-MA-Cs mixed perovskites with low formation energy at the hot bottom of the perovskite films in the early annealing stage. The natural gradient annealing temperature and the thermally unstable MA+ cation then lead to the bottom-to-top diffusional growth of highly orientated α-phase FA-Cs perovskite, which exhibits 10-fold of enhanced crystallinity and reduced trap density (~3.85×1015 cm−3). Eventually, such FA-Cs perovskite films were fabricated into stable solar cell devices with champion efficiency up to 23.11%, among the highest efficiency of MA-free perovskite solar cells.
APA, Harvard, Vancouver, ISO, and other styles
8

Sun, Qingde, Wan-Jian Yin, and Su-Huai Wei. "Searching for stable perovskite solar cell materials using materials genome techniques and high-throughput calculations." Journal of Materials Chemistry C 8, no. 35 (2020): 12012–35. http://dx.doi.org/10.1039/d0tc02231d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ašmontas, Steponas, Aurimas Čerškus, Jonas Gradauskas, Asta Grigucevičienė, Konstantinas Leinartas, Andžej Lučun, Kazimieras Petrauskas, et al. "Cesium-Containing Triple Cation Perovskite Solar Cells." Coatings 11, no. 3 (February 27, 2021): 279. http://dx.doi.org/10.3390/coatings11030279.

Full text
Abstract:
Cesium-containing triple cation perovskites are attracting significant attention as suitable tandem partners for silicon solar cells. The perovskite layer of a solar cell must strongly absorb the visible light and be transparent to the infrared light. Optical transmittance measurements of perovskite layers containing different cesium concentrations (0–15%) were carried out on purpose to evaluate the utility of the layers for the fabrication of monolithic perovskite/silicon tandem solar cells. The transmittance of the layers weakly depended on cesium concentration in the infrared spectral range, and it was more than 0.55 at 997 nm wavelength. It was found that perovskite solar cells containing 10% of cesium concentration show maximum power conversion efficiency.
APA, Harvard, Vancouver, ISO, and other styles
10

Pantaler, Martina, Selina Olthof, Klaus Meerholz, and Doru C. Lupascu. "Bismuth-Antimony mixed double perovskites Cs2AgBi1-xSbxBr6 in solar cells." MRS Advances 4, no. 64 (2019): 3545–52. http://dx.doi.org/10.1557/adv.2019.404.

Full text
Abstract:
AbstractReported conversion efficiencies of lead based perovskite solar cells keep increasing steadily. But next to the demand for high efficiency, the need for analogue non-toxic material systems remains. One promising lead free absorber material is the double perovskite Cs2AgBiBr6. Interest in this and other double perovskites has been increasing in the last three years and several solar cells using different device structures have been reported. However, the efficiency of these solar cells is merely in the range of 2%. To further improve solar cell performance we prepared mixed bismuth-antimony double perovskite Cs2AgBi1-xSbxBr6 where different fractions of antimony (x=0.125, 0.25, 0.375, 0.50) are used. This was motivated by reports of lower bandgap values in these mixed system. After the optimization of preparation of these thin films, we have carefully analysed the effects on the structure, composition, electronic structure, as well as optical properties. Finally, we have fabricated Bi-Sb mixed double perovskite solar cells in a mesoscopic device architecture.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Perovskites solar cell"

1

Sapori, Daniel. "Hybrid Perovskites : Fundamental properties and solar cell thin film technology." Thesis, Rennes, INSA, 2018. http://www.theses.fr/2018ISAR0017.

Full text
Abstract:
Dès à présent, le monde est face à des enjeux majeurs : augmentation de la production d'énergie, réduction des impacts de la production et de la consommation d'énergie sur l'environnement. La transition vers des énergies durables a déjà commencé. Le photovoltaïque a sa place parmi les énergies renouvelables qui permettront de relever ce défi. Ce travail de thèse porte sur les pérovskites hybrides halogénées et plus particulièrement leur utilisation dans des cellules solaires. En effet très récemment, ces matériaux ont attiré l'attention de la communauté scientifique en raison de leurs propriétés optoélectroniques remarquables : bande interdite directe, forte absorption de la lumière, longueurs importantes de diffusion des porteurs, propriétés optoélectroniques accordables mais aussi une fabrication aisée et à bas coût. En quelques années, le rendement a connu une augmentation spectaculaire de 3,8 % en 2009 à 22,7 % en 2017. Ainsi, ces derniers résultats placent les cellules pérovskites comme des concurrents potentiels face aux cellules solaires à base de silicium cristallin qui représentent aujourd'hui 90 % des cellules en service. Dans la conception des cellules solaires à base de pérovskite, la couche de pérovskite est généralement intercalée entre deux couches de transporteurs de charges : les couches de transporteurs d'électron et de trou (ETM et HTM, respectivement). La qualité de ces couches est essentielle pour obtenir de hauts rendements. Dans ce travail, les propriétés optoélectroniques des pérovskites halogénées sont étudiées ainsi que plusieurs couches de transport de charge
In the future, the world has to face up to major challenges: increasing the energy production, reducing the environmental impact, moving towards sustainability in energy, etc. Renewable energies such as photovoltaics can meet these challenges. This thesis concerns hybrid halide perovskite materials and their use in solar cells. These materials have recently attracted a lot of attention owing to their direct bandgaps, strong light absorption, large carrier diffusion lengths, tunable optoelectronic properties, and their facile and low-cost fabrication In few years, their energy conversion efficiency has rapidly increased from 3.8 % in 2009 to 22.7 % in 2017, hence approaching efficiencies of crystalline silicon based-devices which represent 90% of commercial photovoltaic cells. In the design of perovskite cells, the perovskite photoabsorber is generally sandwiched by two interfacial layers that yield selective charge collections: the hole and electron transport layers (HTM and ETM). Good quality and adapted interfacial layers are required to obtained high efficiency cells. In this thesis, both the perovskite material and the interfacial layers are investigated
APA, Harvard, Vancouver, ISO, and other styles
2

Weber, Oliver. "Structural chemistry of hybrid halide perovskites for thin film photovoltaics." Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761012.

Full text
Abstract:
Hybrid lead halide perovskites, AMX 3 compounds in which A = CH 3 NH 3 (MA), CH(NH 2 ) 2(FA), Cs; M = Pb,Sn; X = I, Br, Cl, display remarkable performance in solution-processed optoelectronic devices, including > 22% efficient thin film photovoltaic cells. These compounds represent the first class of materials discovered to exhibit properties associated with high performance compound semiconductors, while being formed at or near room temperature using simple solution chemistry techniques. This thesis is focused on the synthesis, structural characterisation and phase behaviour of MAPbI 3 , FAPbI 3 , A-site solid solutions and novel organic metal halide framework materials. The complete atomic structure and phase behaviour of methylammonium lead iodide is elucidated for the first time, including hydrogen positions, using high flux, constant wave-length neutron powder diffraction. At 100 K an orthorhombic phase, space group Pnma, is observed, with the methylammonium cations ordered as the C–N bond direction alternates in adjacent inorganic cages. Above 165 K a first order phase transition to tetragonal, I4/mcm, occurs with the unlocking of cation rotation, which is disordered primarily in the ab plane. Above 327 K a cubic phase, space group Pm3m, is formed, with the cations isotropically disordered on the timescale of the crystallographic experiment. The high temperature phase of formamidinium lead iodide, α-FAPbI 3 is shown for the first time to be cubic, (Pm3m), at room temperature using time-of-flight, high resolution neutron powder diffraction. Polymorphism and the low temperature phase behaviour of FAPbI 3 have been further investigated using reactor and spallation neutron sources with high resolution in temperature. A tetragonal phase, P4/mbm, is confirmed in the temperature range 140-285 K.The composition, structural and optical parameters of ’A’ site solid solutions (MA/FA)PbI 3 have been investigated by single crystal X-ray diffraction, UV-vis spectroscopy and 1 H solution NMR. A composition-dependent transition in the crystal class from tetragonal to cubic(or pseudo-cubic) at room temperature is identified and correlated to trends in the optical absorption. Novel hybrid materials with inorganic frameworks of varying dimensionality from 0D to 2D, including imidazolium lead iodide and piperazinium lead iodide, have been synthesised using various templating organic cations and their atomic structures solved by single crystal X-ray diffraction.
APA, Harvard, Vancouver, ISO, and other styles
3

Hartono, Noor Titan Putri. "Interplay of optoelectronic properties and solar cell performance in multidimensional perovskites." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118669.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 68-72).
Perovskite is an emerging material for photovoltaic application that has reached 22.7% efficiency to date. Despite its excellent properties such as defect tolerance and long carrier lifetime, the high-performing perovskite material, methylammonium lead iodide (MAPI), which has 3D structure, is still unstable. Recent studies have hinted at the possibility of shifting focus from 3D to lower dimensional perovskite structures because lower dimensional structures are more environmentally stable for a longer period than the 3D analogues. We propose a detailed study where PbI₂ is used as the backbone and A-site cations are alloyed with various combinations: methylammonium, dimethylammonium, iso-propylammonium, and t-butylammonium. We measure the perovskite solar cell devices' performance and characterize the solar absorber to understand the optoelectronic properties. It is shown that the addition of large A-site cations change the structures into lower dimension, which increases the bandgap and decreases device performance properties such as efficiency, open-circuit voltage, and short-circuit current. Hence, there is a trade-off between having more stable perovskite and high-performance cell in using large A-site organic cations.
by Noor Titan Putri Hartono.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
4

Gheno, Alexandre. "Printable and printed perovskites photovoltaic solar cells for autonomous sensors network." Thesis, Limoges, 2017. http://www.theses.fr/2017LIMO0108/document.

Full text
Abstract:
Ce travail de thèse a pour sujet la conception des cellules solaires photovoltaïques à base de pérovskite hybride par le biais de la technologie d’impression jet d’encre. Les deux premiers chapitres font la présentation du contexte de la thèse, à savoir l’alimentation d’un réseau autonome de capteurs, et passent en revue les aspects scientifiques des technologies jet d’encre et photovoltaïque de nouvelle génération. Le troisième chapitre présente la mise au point d’une cellule photovoltaïque à l’état de l’art et son évolution vers une architecture imprimable à basse température de recuit. La problématique de la stabilité des cellules photovoltaïques à pérovskite est aussi abordée. La dernière partie présente les différents aspects et problématiques de l’impression par jet d’encre des trois couches internes d’une cellule solaire pérovskite. Au terme de ce travail la possibilité d’imprimer des cellules solaires pérovskites avec des rendements supérieurs à 10 % a été démontrée, le tout en condition ambiante et à basse température
This thesis is about the design of photovoltaic solar cells based on hybrid perovskite using inkjet printing technology. The first two chapters present the context of the thesis, namely the powering of an autonomous sensor network, and review the scientific aspects of inkjet and photovoltaic technologies. The third chapter presents the development of a state-of-the-art photovoltaic cell and its evolution towards a printable architecture at low annealing temperatures. The problem of the stability of photovoltaic cells with perovskite is also discussed. The last part presents the different aspects and problems of the inkjet printing of the three inner layers of a perovskite solar cell. At the end of this work the possibility of printing perovskite solar cells with efficiencies higher than 10% has been demonstrated, all in ambient conditions and at low temperature
APA, Harvard, Vancouver, ISO, and other styles
5

Shi, Tingting. "Optoelectronic and Defect Properties in Earth Abundant Photovoltaic Materials: First-principle Calculations." University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1418391935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lini, Matilde. "Optoelectronic characterization of hybrid organic-inorganic halide perovskites for solar cell and X-ray detector applications." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23213/.

Full text
Abstract:
In the last 10 years, the research interest has been drawn towards the hybrid organic-inorganic halide perovskites, an innovative material characterized by remarkable optoelectronic properties and by its simplicity of fabrication; hybrid halide perovskites are currently being employed as active material in solar cells, X-ray photodetectors and light emitting devices. The following thesis presents the characterization of two perovskite-based materials. The first is a methylammonium lead iodide (MAPbI3) thin film solar cell, which has been fabricated and characterized at the University of Konstanz (Germany), with the aim to optimize the deposition procedure. The second material is a methylammonium lead bromide (MAPbBr3) single crystal that have been characterized at the University of Bologna with surface photovoltage and photocurrent spectroscopies, as a function of the deposited dose of X-rays in order to monitor the induced effects of radiation. After the exposure to X-rays, the exciton binding energy, calculated from the surface photovoltage spectra, has been found to increase by 20 meV with respect to the not irradiated sample. A similar result has been found with the photocurrent spectroscopy. The reasons for the increase in binding energy is discussed and attributed to a change in polarizability of the single crystal. The recovery of the crystals has been registered as well and has shown that the material is able to return to the initial condition after just few hours from the last X-ray's deposition.
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, Michael M. "Organic-inorganic hybrid photovoltaics based on organometal halide perovskites." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:9384fc54-30de-4f0d-86fc-71c22d350102.

Full text
Abstract:
This thesis details the development of a novel photovoltaic device based on organometal halide perovskites. The initial focus of this thesis begins with the study of lighttrapping strategies in solid-state dye-sensitised solar cells (detailed in chapter 3). While I report enhancement in device performance through the application of near and far-field light-trapping techniques, I find that improvements remain step-wise due to fundamental limitations currently employed in dye-sensitised solar cell technology— notably, the available light-sensitising materials. I found a promising yet under researched family of materials in the methyl ammonium tri-halide plumbate perovskite (detailed in chapter 4). The perovskite light-sensitiser was applied to the traditional mesoscopic sensitised solar cell device architecture as a replacement to conventional dye yielding world-record breaking photo-conversion e!ciencies for solid-state sensitised solar cells as high as 8.5%. The system was further developed leading to the conception of a novel device architecture, termed the mesoporous superstructured solar cell (MSSC), this new architecture replaces the conventional mesoporous titanium dioxide semiconductor with a porous insulating oxide in aluminium oxide, resulting in very low fundamental losses evidenced through high photo-generated open-circuit voltages of over 1.1 V. This development has delivered striking photo-conversion ef- ficiencies of 10.9% (detailed in chapter 6).
APA, Harvard, Vancouver, ISO, and other styles
8

Ullah, Habib. "First-principles density functional theory study of novel materials for solar energy conversion and environment applications." Thesis, University of Exeter, 2018. http://hdl.handle.net/10871/32949.

Full text
Abstract:
To design an efficient solar energy conversion device, theoretical input is extremely important to provide the basic guideline for experimental scientists, to fabricate the most efficient, cheap, and stable device with less efforts. This desire can be made possible if computational scientist use a proper theoretical protocol, design an energy material, then the experimentalist will only invest weeks or months on the synthetic effort. This thesis highlights my recent efforts in this direction. Monoclinic BiVO4 is has been using as a photocatalyst due to its stability, cheap, easily synthesizable, narrow band gap and ideal VB (-6.80 eV vs vacuum) but inappropriate CB (-4.56 eV vs vacuum) edge position, responsible for its low efficiency. We have carried out a comprehensive experimental and periodic density functional theory (DFT) simulations of the pristine, Oxygen defective (Ov), Se doped monoclinic BiVO4 and heterojunction with Selenium (Se-BiVO4), to improve not only its CB edge position but photocatalytic and charge carrier properties. It is found that Ov (1% Oxygen vacancy) and mild doped BiVO4 (1 to 2% Se) are thermodynamically stable, have ideal band edges ~ -4.30 eV), band gaps (~1.96 eV), and small effective masses of electrons and holes. We have also investigated the contribution of Se to higher performance by effecting morphology, light absorption and charge transfer properties in heterojunction. Finally, it is found that Se makes a direct Z-scheme (band alignments) with BiVO4 where the photoexcited electron of BiVO4 recombine with the VB of Se, consequences electron-hole separation at Se and BiVO4, respectively, as a result, enhanced photocurrent is obtained. Theoretical study of β-TaON in the form of primitive unit cell, supercell and its N, Ta, and O terminated surfaces are carried out with the help of periodic DFT. Optical and electronic properties of all these different species are simulated, which predict TaON as the best candidate for photocatalytic water splitting contrast to their Ta2O5 and Ta3N5 counterparts. The calculated bandgap, valence band, and conduction band edge positions predict that β-TaON should be an efficient photoanodic material. The valence band is made up of N 2p orbitals with a minor contribution from O 2p, while the conduction band is made up of Ta 5d. Turning to thin films, the valence band maximum; VBM (−6.4 eV vs. vacuum) and the conduction band minimum; CBM (−3.3 eV vs. vacuum) of (010)-O terminated surface are respectively well below and above the redox potentials of water as required for photocatalysis. Charge carriers have smaller effective masses than in the (001)-N terminated film (VBM −5.8 and CBM −3.7 eV vs. vacuum). However, due to wide band gap (3.0 eV) of (010)-O terminated surface, it cannot absorb visible wavelengths. On the other hand, the (001)-N terminated TaON thin film has a smaller band gap in the visible region (2.1 eV) but the bands are not aligned to the redox potential of water. Possibly a mixed phase material would produce an efficient photoanode for solar water splitting, where one phase performs the oxidation and the other reduction. Computational study of an optically transparent, near-infrared-absorbing low energy gap conjugated polymer, donor−acceptor−donor (D-A-D) with promising attributes for photovoltaic application is reported herein. The D and A moiety on the polymeric backbone have been found to be responsible for tuning the band gap, optical gap, open circuit (Voc) and short-circuit current density (Jsc) in the polymers solar cells (PSC). Reduction in the band gap, high charge transformation, and enhanced visible light absorption in the D-A-D system is because of strong overlapping of molecular orbitals of D and A. In addition, the enhanced planarity and weak steric hindrance between adjacent units of D-A-D, resulted in red-shifting of its onset of absorption. Finally, PSC properties of the designed D-A-D was modeled in the bulk heterojunction solar cell, which gives theoretical Voc of about 1.02 eV. DFT study has been carried out to design a new All-Solid-State dye-sensitized solar cell (SDSC), by applying a donor-acceptor conjugated polymer instead of liquid electrolyte. The typical redox mediator (I1−/I3−) is replaced with a narrow band gap, hole transporting material (HTM). A unique “upstairs” like band energy diagram is created by packing N3 between HTM and TiO2. Our theoretical simulations prove that the proposed configuration will be highly efficient as the HOMO level of HTM is 1.19 eV above the HOMO of sanitizer (dye); providing an efficient pathway for charge transfer. High short-circuit current density and power conversion efficiency is promised from the strong overlapping of molecular orbitals of HTM and sensitizer. A low reorganization energy of 0.21 eV and exciton binding energy of 0.55 eV, confirm the high efficiency of HTM. Theoretical and experimental studies of a series of four porphyrin-furan dyads were designed and synthesized, having anchoring groups, either at meso-phenyl or pyrrole-β position of a zinc porphyrin based on donor–π–acceptor (D–π–A) approach. The porphyrin macrocycle acts as donor, furan hetero cycle acts as π-spacer and either cyanoacetic acid or malonic acid group acts as acceptor. Optical bandgap, natural bonding, and molecular bonding orbital (HOMO–LUMO) analysis confirm the high efficiency pyrrole-β substituted zinc porphyrins contrast to meso-phenyl dyads. DFT study of polypyrrole-TiO2 composites has been carried out to explore their optical, electronic and charge transfer properties for the development of an efficient photocatalyst. Titanium dioxide (Ti16O32) was interacted with a range of pyrrole (Py) oligomers to predict the optimum composition of nPy-TiO2 composite with suitable band structure for efficient photocatalytic properties. The study has revealed that Py-Ti16O32 composites have narrow band gap and better visible light absorption capability compared to individual constituents. A red-shifting in λmax, narrowing band gap, and strong intermolecular interaction energy (-41 to −72 kcal/mol) of nPy-Ti16O32 composites confirm the existence of strong covalent type interactions. Electron−hole transferring phenomena are simulated with natural bonding orbital analysis where Py oligomers found as donor and Ti16O32 as an acceptor in nPy-Ti16O32 composites. Sensitivity and selectivity of polypyrrole (PPy) towards NH3, CO2 and CO have been studied at DFT. PPy oligomers are used both, in the doped (PPy+) and neutral (PPy) form, for their sensing abilities to realize the best state for gas sensing. Interaction energies and amount of charges (NBO and Mulliken charge analysis) are simulated which reveal the sensing ability of PPy towards these gases. PPy, both in doped and neutral state, is more sensitive to NH3 compared to CO2 and CO. More interestingly, NH3 causes doping of PPy and de-doping of PPy+, providing evidence that PPy/PPy+ is an excellent sensor for NH3 gas. UV-vis and UV-vis-near-IR spectra of nPy, nPy+, and nPy/nPy+-X complexes demonstrate strong interaction of PPy/PPy+ with these atmospheric gases. The applications of graphene (GR) and its derivatives in the field of composite materials for solar energy conversion, energy storage, environment purification and biosensor applications have been reviewed. The vast coverage of advancements in environmental applications of GR-based materials for photocatalytic degradation of organic pollutants, gas sensing and removal of heavy metal ions is presented. Additionally, the presences of graphene composites in the bio-sensing field have been also discussed in this review.
APA, Harvard, Vancouver, ISO, and other styles
9

Aversa, Pierfrancesco. "Primary Defects in Halide Perovskites : Effect on Stability and Performance for Photovoltaic Applications Effect of organic PCBM Electron transport Layers on natural and post-irradiation ageing of optical absorption and emission in methyl ammonium lead triiodide spin –coated on p-i-n Solar Sell Substrates Effect of organic PCBM Electron transport Layers on natural and post-irradiation ageing of optical absorption and emission in triple cation lead mixed halide perovskite spin –coated on p-i-n Solar Sell Substrates Electron Irradiation Induced Ageing Effects on Radiative Recombination Properties of methylammonium lead triiodide layers on p-i-n solar cell substrates Electron Irradiation Induced Ageing Effects on Methylammonium Lead Triiodide Based p-i-n Solar Cells Electron Irradiation Induced Ageing Effects on Radiative Recombination Properties of Quadruple Cation Organic-Inorganic Perovskite Layers." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX050.

Full text
Abstract:
Ces onze dernières années ont vu apparaitre les pérovskites organiques inorganiques hybrides (HOIPs) comme un passionnant domaine de recherche pour leur application potentielle dans les technologies du photovoltaïque (PV) en raison de leurs exceptionnelles propriétés optoélectroniques et de leur facilité de mise en oeuvre. Cependant, les matériaux HOIPs ont plusieurs inconvénients dont leur manque de stabilité en conditions opérationnelles. Améliorer celle-ci est l'un des plus grands défis à relever avant commercialisation. La formule générale est (A1,A2,A3,A4)Pb(X1,X2)3, où les sites A occupés par une distribution de 1 à 4 cations métalliques/organiques et les sites X par celle d’anions halogénures. Les défauts lacunaires natifs sont considérés comme une cause possible de dégradation des cellules solaires HOIPs. L'objectif de ce travail est de comprendre le rôle des défauts dans la stabilité à long terme des matériaux PV HOIPs. A cette fin, des défauts primaires ont été introduits de manière contrôlée par irradiation avec des électrons de haute énergie (1MeV) dans des lots de couches et cellules solaires (SCs) à base de divers composés HOIPs. Il s'agit notamment du prototype PV HOIPs, MAPbI3 (A1PbX13), et de nouveaux composés mixtes d’halogénures à triple ou quadruple cations, (CsMAFA)Pb(I1-xBrx)3 (A3PbX23) ou (GACsMAFA)Pb(I1-yBry)3 (A4PbX23). Les couches sont fabriquées selon la même procédure que les couches actives SCs et, ensuite, traitées dans des conditions similaires. Pour A1PbX13/A3PbX23, la structure SC est de type p-i-n avec des couches organiques pour le transport des trous et des électrons (HTL/ETL). Les couches sont déposées sur le substrat verre/ITO/HTL (PEDOT:PSS) sans ou avec couche supérieure ETL (PCBM). Pour A4PbX23, la structure SC est de type n-i-p avec des couches ETL inorganiques (TiO2) et HTL organiques (Spiro-OMeTAD). Les couches sont directement déposées sur du verre.La spectroscopie d'annihilation de positons donne une évidence directe de l'existence de défauts lacunaires natifs et induits par irradiation dans chaque composé. Les spectres d’absorbance en fonction de l’énergie montrent que le vieillissement naturel et après irradiation génère différentes populations de défauts dans chaque composé. De plus, celles-ci pour A1PbX13 et A3PbX23 diffèrent selon l'absence ou la présence de la couche supérieure ETL. Les populations de défauts évoluent pendant au moins 3 mois. Le vieillissement modifie (i) la bande interdite, (ii) les queues de bande de conduction/valence et (iii) l'absorption optique via des niveaux électroniques profonds. Les effets d’illumination sous laser varient aussi en fonction du vieillissement. L’asymétrie des pics de photoluminescence (PL) dans chaque composé sous illumination laser continue reflète une superposition de raies d’émission gaussiennes à énergie, FWHM et hauteur évoluant avec le temps d'illumination. Les transitions d'émission impliquent des niveaux électroniques localisés peu profonds dans A3PbX23/A4PbX23 et résonnants dans A1PbX13. De tels effets durent au moins 3 mois dans A4PbX23. Ces niveaux électroniques sont attribués à des populations de défauts spécifiquement induits par illumination. Le vieillissement naturel et après irradiation donne des spectres PL à décroissance temporelle résolue en une ou deux exponentielles. Le nombre et la durée de vie sont fortement influencés par l’irradiation initiale et la composition. Une amélioration frappante du fonctionnement PV pour le type SC p-i-n est induite par le vieillissement dû à l'irradiation. Le rendement quantique externe et les performances PVs ont des valeurs plus élevées pour l’état irradié que de référence durant 6 à 12 mois de vieillissement. Cela prouve que l'ingénierie des défauts par irradiation d'électrons à haute énergie a le potentiel de fournir des voies de traitement innovantes pour améliorer la stabilité à long terme des performances photovoltaïques HOIPs
During the last eleven years, Hybrid Organic Inorganic Perovskites (HOIPs) materials have emerged as an exciting topic of research for potential application in solar cell technologies due to their outstanding optoelectronic properties and processing advantages. However, HOIPs materials suffer from several drawbacks with, in peculiar, their lack of stability under operational conditions (light, bias, environment…). To improve this stability is one of the biggest challenges to be addressed before commercialization. The general formula for HOIPs is (A1,A2,A3,A4)Pb(X1,X2)3, where the A sites can be occupied by a distribution of 1 to 4 metallic/organic cations and X sites with halide anions. The role of native vacancy defects has been questioned as a possible cause for HOIPs solar cells degradation. The aim of this work is to understand the defect role in long term stability of HOIPs materials for photovoltaics. For this reason, primary defects were introduced in a controlled way via high energy electron irradiation (1MeV) in sets of layers and solar cells (SCs) fabricated using various HOIPs compounds. Those include the photovoltaic HOIPs prototype, MAPbI3 (A1PbX13), and emergent triple or quadruple cation mixed halide HOIPs, (CsMAFA)Pb(I1-xBrx)3 (A3PbX23) or (GACsMAFA)Pb(I1-yBry)3 (A4PbX23). The HOIPs layers are fabricated according to the same procedure as the HOIPs active SC layers and, subsequently, treated in similar conditions. For A1PbX13 and A3PbX23, the solar cells are of the p-i-n structure with organic hole and electron transport layer (HTL/ETL). The HOIPs layers are deposited on the glass/ITO/HTL (PEDOT:PSS) substrate without or with the top ETL layer (PCBM). For A4PbX23, the solar cells are of the n-i-p type with inorganic ETL (TiO2) and organic HTL (Spiro-OMeTAD) layers. The layers are directly deposited on glass without the ETL layer.Positron Annihilation Spectroscopy (PAS) gives direct evidence for native vacancy-type defects and irradiation induced ones in layers of each HOIP compound. The energy dependence of absorbance shows that natural and after irradiation ageing generates different defect populations in each HOIP compound. These populations strikingly also differ depending on the absence or presence of the top ETL layer for the A1PbX13 and A3PbX23 compounds. The defect populations evolve over ageing duration as long as 3 months. The prominent effects of ageing include (i) band gap modification, (ii) tailing of conduction/valence band extrema and (iii) optical absorption via deep subgap electronic levels. Illumination effects under laser also vary with ageing for each HOIP compound. Asymmetric photoluminescence (PL) peaks in each compound under continuous laser illumination reflect that radiative emission involves Gaussian emission rays with energy, FWHM and height evolving with illumination time. The emission transitions involve shallow localized electronic levels in A3PbX23 and A4PbX23 and resonant ones in A1PbX13. These electronic levels are attributed to specifically illumination-induced defect populations. Natural and after irradiation ageing result in PL decay lifetime spectra resolved into one or two exponential decay components. The decay components number and lifetime are strongly affected by the initial production of irradiation defects and HOIPs composition. Such effects last over 3 months at least in A4PbX23. The p-i-n solar cells exhibit most striking irradiation ageing induced photovoltaics performance. The External Quantum Efficiency (EQE versus photon energy) and the photovoltaic performance (I-V under illumination) of the irradiated solar cells have higher values than those in the reference SCs after 6 to 12 months of ageing. This gives evidence that defect engineering via high energy electron irradiation has a potential for providing innovative processing pathways to enhance the long-term stability of HOIPs photovoltaic performance
APA, Harvard, Vancouver, ISO, and other styles
10

Bouich, Amal. "Study and Characterization of Hybrid Perovskites and Copper-Indium-Gallium Selenide thin films for Tandem Solar Cells." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/160621.

Full text
Abstract:
[ES] El objetivo principal de esta tesis es contribuir al avance de nuevas técnicas de elaboración con bajo coste, utilizando materiales tipo de cobre, indio, galio y selenio CIGS y Perovskita para aplicaciones en energía solar fotovoltaica. CIGS parecen ser adecuadas ya que son de bajo costo de producción y se han reportado eficiencias de conversión del 23,35%. Por otro lado, las perovskitas híbridas de haluros de plomo orgánicos-inorgánicos han aparecido como nuevos materiales excepcionales para celdas solares, especialmente porque la eficiencia de las celdas solares basadas en perovskita ha aumentado del 3.8% al 22.7% en menos de un lustro. Este trabajo se ha dedicado a experimentar sobre la elaboración y caracterización de CIGS y los perovskitas de metilamonio de yoduro de plomo de (MAPbI3) y formamidinio de yoduro de plomo (FAPbI3), que se utilizo tanto en la aplicación a las células solares de perovskitas y en las células Tándem CIGS-perovskita. Las películas se caracterizaron por difracción de rayos X, espectroscopía Raman, microscopía electrónica de barrido, análisis de espectroscopía de energía dispersiva, microscopía de fuerza atómica, transmisión electrónica microscopía, fotoluminiscencia y espectroscopia UV-Vis. En las capas de CIGS depositadas por electrodeposición se investigó el efecto de diferentes parámetros, También investigamos en detalle el efecto del contacto posterior en las propiedades estructurales y ópticas de CIGS. Constatamos que el tipo de contacto posterior tiene un efecto significativo en el rendimiento posterior de las películas delgadas CIGS. Además, estudiamos la técnica de espray pirólisis para producir películas CIGS. Se estudió el proceso de recocido, que es el factor clave para mejorar el rendimiento de las células solares. Se elaboraron diferentes películas delgadas constituidas de nuestro dispositivo CdZnS/CdS/CIGS/Mo eso utilizó una capa conductora transparente de CdZnS para minimizar la alineación de la interfaz. Por otro lado, se analizó el proceso de cristalización y la estabilidad de las capas MAPbI3. Las capas de MAPbI3 se trataron añadiendo antisolvente a diferentes velocidades. Durante el tratamiento se producen intercambios complejos que influencian muchas propiedades fisicoquímicas. Se investigaron las propiedades ópticas y eléctricas de las películas de MAPbI3. Para mejorar la estabilidad de MAPbI3, se incorporó tetrabutilamonio (TBA), observando una mejora en la formación de la estructura perovskita que crece en la dirección preferente (110). La fase cristalina de MAPbI3 dopada con TBA presenta mejor cristalinidad, gran tamaño de grano, morfología superficial sin poros lo que es adecuado para la fabricación de dispositivos optoelectrónicas con mayor rendimiento. Además, hemos identificado el impacto de TBA en las propiedades foto físicas de MAPbI3. En las muestras de TBA:MAPbI3 aumenta la intensidad de la fotoluminiscencia al reducir la densidad de los estados de trampa y la absorción óptica muestra un cambio significativo hacia longitudes de onda más largas y la banda prohibida óptica varió de 1.8 a 1.52 eV. Finalmente, las muestras dopadas con 5% TBA mejoraron su estabilidad y se encontró que después de 15 días la estabilidad permanecía excelente en una humedad de ~ 60%. Por otra parte, investigamos el efecto de guanidinio (GA) sobre las propiedades estructurales y ópticas de FAPbI3. La relación entre la fase a de perovskita deseable y la fase indeseable y se ha estudiado en función del contenido de GA. Se comprobó que el dopaje con GA es eficaz en el control de la relación de fases a/y y luego en la estabilización de la fase a. Los resultados muestran que añadiendo una cantidad adecuada del 10% GA conduce a una mejora de película de perovskita que se evidencia en la homogeneidad de la fase a estable, granos de mayor tamaño y capas libres de poros. Además, 10% GA:FaPbI3 demostraron una excelente estabilidad después de ser envejecidas durante 15 días en un ambiente con humedad relativa del 60%.
[EN] The thesis work presented is part of the work in the Laboratory of New Materials for Photovoltaic Energy in the main target to use low cost techniques for elaboration of Perovskite and Copper, indium, gallium, and selenium CIGS materials for photovoltaic application. Organic-inorganic lead halides perovskites have currently and exceptionally appeared as new materials for low cost thin film solar cells specially that the efficiency of perovskite based solar cell have jumped from 3.8% to 22.7% in short time.in other hand, CIGS solar cells record 23.35% efficiency and still can be boosted. Here, we report the elaboration and characterization of CIGS as well as methylammonium lead iodide perovskites MAPbI3 and formamidinuim iodide lead iodide perovskites FAPbI3 absorbers for perovskite-based solar cells and Tandem Perovskites/ CIGS. The thin films prepared were characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis, atomic force microscopy (AFM), transmission electron microscopy (TEM), Photoluminescence analysis (PL) and UV-Vis spectroscopy. The first stage was devoted for the effect of different parameters on the growth of CIGS by electrodeposition and we investigate the impact of different back contact in structural and optical proprieties. In a second stage, we report the growth of CIGS films by spray pyrolysis, we studied the effect of experimental parameter also the annealing process which is the key factor for improving the performance of solar cells,subsequently we elaborated different films constituted CdZnS/CdS/CIGS/Mo solar cells, the approach is to change the toxic ZnO by using a transparent, conductive CdZnS layer. In other hand, MAPbI3 film was investigated in order to optimize the chemical composition and to study the crystallization process also to get sight about the stability of perovskite materials to meet the requirement of their application as an active layer in perovskite solar cell. For this purpose. the MAPbI3 film surface was treated by adding diethyl ether antisolvent with different rates. during the treatment complex exchanges are appearing at the same time under the influence of quite a lot of physicochemical properties. A whole understanding of this topic is critically important for improving solar cell performance. MAPbI3 doped by the tetrabutylammonium TBA is boosting the formation of perovskite structure, leading to a higher orientation along the (110) and shows better crystallinity, large grain size, pinhole-free, which is suitable for the manufacturing of the optoelectronic devices with higher performance. Also, we have identified the impact of TBA in the photo-physical properties, we have noticed that the TBA improve the photoluminescence emission by reducing the density of trap states and the optical absorption indicates a significant shift to the lower wavelength and optical bandgap varied from 1.8 to 1.52 eV. Finally, the stability was explored for 5% TBA, it found that after 15 days the stability remained excellent in relative humidity of ~60%. These results would be helpful for realizing stable and high performance MAPbI3-based devices. Furthermore, we inspect the effect of monovalent cation substitution of Guanidinium (GA) on the structural and optical properties of FAPbI3 thin films perovskites. The ratio between the desirable a-phase and the undesirable y yellow phase is studied as a function of GA content. GA doping is shown to be efficient in the control of a/y phases ratio and then in the stabilization of the a-FaPbI3 phase. We qualitatively evaluate the impact of 10% of guanidinium on the phase composition and microstructure of films. The results show that an adequate amount of 10% GA:FaPbI3 leads to a homogeneous perovskite film with stable a phase, large grains, and free pinholes. 10% GA: FaPbI3 films demonstrate excellent stability after aging for 15 days in relative humidity of~60%.
[CA] L'objectiu principal d'aquesta tesi és contribuir a l'avanç de noves tècniques d'elaboració de baix cost, fent servir materials d'aliatges del tipus de coure, indi, gal·li i seleni (CIGS) i perovskites, per a aplicacions en energia solar fotovoltaica. El CIGS sembla ser adequat ja que són de baix cost de producció i s'han reportat eficiències de conversió del 23,35%. D'altra banda, les perovskites híbrides d'halurs de plom orgànics-inorgànics han aparegut com a nous materials excepcionals per cel·les solars, especialment perquè l'eficiència de les cel·les solars basades en perovskites ha augmentat del 3.8% al 22.7% en menys d'un lustre. En el present treball, reportem l'elaboració i caracterització de CIGS y de perovskitas de iodur de plom de metilamoni (MAPbI3) i de iodur de plom de formamidini (FaPbI3) per a les cèl·lules solars de CIGS i tàndem Perovskites/CIGS. En les capes de CIGS dipositades per electrodeposició es va investigar l'efecte dels diferents paràmetres sobre el procés d'electrodeposició, així com l'efecte del contacte posterior sobre les propietats estructurals i òptiques del CIGS. Ens trobem que el tipus de contacte posterior té un efecte significatiu en la posterior interpretació de pel·lícules primes CIGS. A més, vam estudiar la tècnica de polvorització de la piròlisi per produir pel·lícules de CIGS. Es va estudiar el procés de recuit, que és el factor clau per millorar el rendiment de les cèl·lules solars. Es van produir diferents pel·lícules fines formades pel nostre dispositiu CdZnS/CdS/CIGS/Mo que utilitzaven una capa conductiva CdZnS transparent per minimitzar l'alineació de la interfície. D'altra banda, es van investigar perovskites MAPbI3, amb la finalitat d'optimitzar la composició química i estudiar el procés de cristal·lització també per a conèixer l'estabilitat dels materials de perovskita. la cristal·lització s'aconsegueix alentint la solubilitat en una solució saturada mitjançant l'addició d'una quantitat diferent de l'antisolvent d'èter dietílic. Durant el tractament apareixen al mateix temps intercanvis complexos sota la influència de moltes propietats fisicoquímiques. Una comprensió completa d'aquest tema és de vital importància per a millorar el rendiment. Amb l'objectiu principal d'augmentar l'estabilitat de MAPbI3, el tetrabutilamoni (TBA) es pot incorporar a MAPbI3, impulsant la formació de l'estructura de perovskita, la qual cosa porta a una major orientació al llarg de (110). MAPbI3 dopades amb TBA presenten una millora de la cristalinitat, major grandària, la qual cosa és adequada per a la fabricació de dispositius optoelectròniques de major rendiment. A més, hem identificat l'impacte de TBA en les propietats foto físiques de MAPbI3. Hem notat que el dopatge amb TBA millora tant l'emissió de la fotoluminiscència en reduir la densitat dels estats de trampes com l'absorció òptica on apareix un canvi significatiu de la banda òptica prohibida cap a longituds d'ona més llargues que significa disminuir l'energia del gap, que va variar de 1.8 a 1.52 eV. Finalment, es va explorar l'estabilitat per les perovsquites dopades amb 5%TBA. Es va trobar que després de 15 dies l'estabilitat romania excel·lent en un humitat de 60%. A més, hem estudiat FAPbI3 com un dels materials de perovskita més atractius. Hem investigat l'efecte de la substitució de guanidini (GA) sobre les propietats estructurals i òptiques de FAPbI3. La relació entre la fase a de perovskita desitjable i la fase indesitjable y es va estudiar en funció del contingut de GA. Es mostra que el dopatge amb GA és eficaç en el control de la relació de fases a /y i després en l'estabilització de la fase a-FaPbI3. Els resultats mostren que una quantitat adequada de 10% GA condueix a una pel·lícula homogènia amb fase a estable, grans grans lliures de porus i forats. Les pel·lícules de 10% GA:FaPbI3 demostraren una excel·lent estabilitat després de l'envelliment durant 15 dies en un ambient humit (humitat relativa de 60%).
Bouich, A. (2020). Study and Characterization of Hybrid Perovskites and Copper-Indium-Gallium Selenide thin films for Tandem Solar Cells [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/160621
TESIS
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Perovskites solar cell"

1

Etgar, Lioz. Hole Conductor Free Perovskite-based Solar Cells. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32991-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yun, Sining, and Anders Hagfeldt, eds. Counter Electrodes for Dye-sensitized and Perovskite Solar Cells. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527813636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Materials for Solar Cell Technologies I. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901090.

Full text
Abstract:
The book reviews recent research and new trends in the area of solar cell materials. Topics include fabrication methods, solar cell design, energy efficiency and commercialization of next-generation materials. Special focus is placed on graphene and carbon nanomaterials, graphene in dye-sensitized solar cells, perovskite solar cells and organic photovoltaic cells, as well as on transparent conducting electrode (TCE) materials, hollow nanostructured photoelectrodes, monocrystalline silicon solar cells (MSSC) and BHJ organic solar cells. Also discussed is the use of graphene, sulfides, and metal nanoparticle-based absorber materials.
APA, Harvard, Vancouver, ISO, and other styles
4

Fu, Kunwu, Anita Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. Perovskite Solar Cells. Apple Academic Press, Incorporated, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Diau, Eric Wei-Guang, and Peter Chao-Yu Chen. Perovskite Solar Cells. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/10503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lead Halide Perovskite Solar Cells. Materials Research Forum LLC, 2020. http://dx.doi.org/10.21741/9781644900819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Characterization Techniques for Perovskite Solar Cell Materials. Elsevier, 2020. http://dx.doi.org/10.1016/c2017-0-01993-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Physics of Solar Cells: Perovskites, Organics, and Photovoltaic Fundamentals. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bisquert, Juan. Physics of Solar Cells: Perovskites, Organics, and Photovoltaic Fundamentals. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Banavoth, Murali. Perovskite Solar Cells: Properties, Application and Efficiency. Nova Science Publishers, Incorporated, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Perovskites solar cell"

1

Fu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Double Perovskites." In Perovskite Solar Cells, 245–50. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shabdan, Erkin, Blake Hanford, Baurzhan Ilyassov, Kadyrzhan Dikhanbayev, and Nurxat Nuraje. "Perovskite Solar Cell." In Multifunctional Nanocomposites for Energy and Environmental Applications, 91–111. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527342501.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Tin-Based Perovskites." In Perovskite Solar Cells, 221–34. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Germanium-Based Perovskites." In Perovskite Solar Cells, 235–38. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Copper-Based Perovskites." In Perovskite Solar Cells, 239–44. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Bismuth-Based Perovskites." In Perovskite Solar Cells, 251–60. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Antimony-Based Perovskites." In Perovskite Solar Cells, 261–68. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Todorov, Teodor K., Oki Gunawan, and Supratik Guha. "Halide Perovskite Tandem Solar Cells." In Halide Perovskites, 183–97. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527800766.ch2_05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Organic Hole-Transporting Materials." In Perovskite Solar Cells, 159–82. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Inorganic Hole-Transporting Materials." In Perovskite Solar Cells, 183–200. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Perovskites solar cell"

1

Xiao, Zewen, Zhaoning Song, and Yanfa Yan. "Lead-Free Metal Halide Perovskites for Solar Cell Applications: A Theoretical Perspective." In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Jingyi, Xianfeng Gao, Yelin Deng, Yuanchun Zha, and Chris Yuan. "Cradle-to-Grave Life Cycle Assessment of Solid-State Perovskite Solar Cells." In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-2970.

Full text
Abstract:
With the advantages of low cost and high conversion efficiency, perovskite solar cell attracts enormous attention in recent years for research and development. However, the toxicity potential of lead used in perovskite solar cell manufacturing causes grave concern for its environmental performance. To understand and facilitate the sustainable development of perovskite solar cell, a comprehensive life cycle assessment has been conducted by using attributional life cycle assessment approach from cradle to grave, with manufacturing data from our lab experiments and literature. The results indicate that the major environmental problem is associated with system manufacturing, including gold cathode, organic solvent usage and recycling, and electricity utilization in component manufacturing process. Lead only contributes less than 1% of human toxicity and ecotoxicity potentials in the whole life cycle, which can be explained by the small amount usage of lead in perovskite dye preparation. More importantly, the uncertainties caused by life cycle inventory have been investigated in this study to show the importance of primary data source. In addition, a comparison of perovskite solar cell with conventional solar cells and other dye sensitized solar cells shows that perovskite solar cell could be a promising alternative technology for future clean power generations.
APA, Harvard, Vancouver, ISO, and other styles
3

Albrecht, Kevin J., and Robert J. Braun. "Thermodynamic Analysis of Non-Stoichiometric Perovskites as a Heat Transfer Fluid for Thermochemical Energy Storage in Concentrated Solar Power." In ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/es2015-49409.

Full text
Abstract:
The implementation of efficient and cost effective thermal energy storage in concentrated solar power (CSP) applications is crucial to the wide spread adoption of the technology. The current push to high-temperature receivers enabling the use of advanced power cycles has identified solid particle receivers as a desired technology. A potential way of increasing the specific energy storage of solid particles while simultaneously reducing plant component size is to implement thermochemical energy storage (TCES) through the use of non-stoichiometric perovskite oxides. Materials such as strontium-doped lanthanum cobalt ferrites (LSCF) have been shown to have significant reducibility when cycling temperature and oxygen partial pressure of the environment [1]. The combined reducibility and heat of the oxidation and reduction reactions with the sensible change in temperature of the material leads to specific energy storage values approaching 700 kJ kg−1. A potential thermochemical energy storage system configuration and modeling strategy is reported on, leading to a parametric study of critical operating parameters on the TCES subsystem performance. For the LSCF material operating between 500 and 900°C with oxygen partial pressure swings from ambient to 0.0001 bar, system efficiencies of 68.6% based on the net thermal energy delivered to the power cycle relative to the incident solar flux on the receiver and auxiliary power requirements, with specific energy storage of 686 kJ kg−1 are predicted. Alternatively, only cycling the temperature between 500 and 900°C without oxygen partial pressure swings results in TCES subsystem efficiencies up to 76.3% with specific energy storage of 533 kJ kg−1.
APA, Harvard, Vancouver, ISO, and other styles
4

Enriquez, Christian, Deidra Hodges, Angel De La Rosa, Luis Valerio Frias, Yves Ramirez, Victor Rodriguez, Daniel Rivera, and Alberto Telles. "Perovskite Solar Cells." In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). IEEE, 2019. http://dx.doi.org/10.1109/pvsc40753.2019.8980712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ho-Baillie, Anita. "Perovskite Solar Cells." In Organic, Hybrid, and Perovskite Photovoltaics XXII, edited by Zakya H. Kafafi, Paul A. Lane, Gang Li, Ana Flávia Nogueira, and Ellen Moons. SPIE, 2021. http://dx.doi.org/10.1117/12.2602805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sayenko, Aleksandr, Sergey Malyukov, and Aleksandr Palii. "NUMERICAL SIMULATION OF SOLAR CELL WITH TiO2/CH3NH3SnI3/Cu2O STRUCTURE." In Mathematical modeling in materials science of electronic component. LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1531.mmmsec-2020/98-100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Hua, Xianfeng Qiao, Yan Shen, and Mingkui Wang. "Organometallic Perovskite Solar Cells-Temperature Effect Study." In Optics for Solar Energy. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/ose.2015.rtu4c.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Peter, Yueh-Ya Chiu, Pei-Ying Lin, Itaru Raifuku, and Shao-Tung Chang. "Pseudohalide Perovskite Solar Cells." In 4th Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.iperop.2020.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, M. M., J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith. "Hybrid Perovskite Solar Cells." In 2013 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2013. http://dx.doi.org/10.7567/ssdm.2013.n-4-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, L., A. Yu, and X. Li. "Flexible Perovskite Solar Cells." In 2018 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2018. http://dx.doi.org/10.7567/ssdm.2018.f-4-01.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Perovskites solar cell"

1

Mitzi, David, and Yanfa Yan. High Performance Perovskite-Based Solar Cells. Office of Scientific and Technical Information (OSTI), January 2020. http://dx.doi.org/10.2172/1582433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McGehee, Michael, and Tonio Buonassisi. Perovskite Solar Cells for High-Efficiency Tandems. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1420976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ong, Alison. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1213129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fthenakis, Vasilis. Comparative Life Cycle Analysis of Scalable Single-Junction and Tandem Perovskite Solar Cell (PSC) Systems. Office of Scientific and Technical Information (OSTI), October 2020. http://dx.doi.org/10.2172/1691513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pike, Christopher. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells - Oral Presentation. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1213179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ong, Alison J. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells - Oral Presentation. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1213180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hsu, Julia. Higher Throughput, Lower Cost Processing of Flexible Perovskite Solar Cells by Photonic Curing. Office of Scientific and Technical Information (OSTI), February 2021. http://dx.doi.org/10.2172/1766656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sellinger, Alan. Perovskite Solar Cells: Addressing Low Cost, High Efficiency, and Reliability Through Novel Hole-Transport Materials. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1559859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Van Hest, Maikel. Development of Perovskite (PVSK) Technology Related to Solar Cell Manufacturing Equipment: Cooperative Research and Development Final Report, CRADA Number CRD-18-733. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1659916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zunger, Alex. Isovalent Alloying and Heterovalent Substititution as Routes to Accelerate the Development and Optimization of Super-Efficient Halide Perovskite PV Solar Cells. Office of Scientific and Technical Information (OSTI), February 2019. http://dx.doi.org/10.2172/1544426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography