Academic literature on the topic 'Perovskites solar cell'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Perovskites solar cell.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Perovskites solar cell"
Meyer, Edson, Dorcas Mutukwa, Nyengerai Zingwe, and Raymond Taziwa. "Lead-Free Halide Double Perovskites: A Review of the Structural, Optical, and Stability Properties as Well as Their Viability to Replace Lead Halide Perovskites." Metals 8, no. 9 (August 27, 2018): 667. http://dx.doi.org/10.3390/met8090667.
Full textThrithamarassery Gangadharan, Deepak, and Dongling Ma. "Searching for stability at lower dimensions: current trends and future prospects of layered perovskite solar cells." Energy & Environmental Science 12, no. 10 (2019): 2860–89. http://dx.doi.org/10.1039/c9ee01591d.
Full textEperon, Giles E., Giuseppe M. Paternò, Rebecca J. Sutton, Andrea Zampetti, Amir Abbas Haghighirad, Franco Cacialli, and Henry J. Snaith. "Inorganic caesium lead iodide perovskite solar cells." Journal of Materials Chemistry A 3, no. 39 (2015): 19688–95. http://dx.doi.org/10.1039/c5ta06398a.
Full textHe, Yizhou, Liyifei Xu, Cheng Yang, Xiaowei Guo, and Shaorong Li. "Design and Numerical Investigation of a Lead-Free Inorganic Layered Double Perovskite Cs4CuSb2Cl12 Nanocrystal Solar Cell by SCAPS-1D." Nanomaterials 11, no. 9 (September 7, 2021): 2321. http://dx.doi.org/10.3390/nano11092321.
Full textAkinbami, O., G. N. Ngubeni, F. Otieno, R. Kadzutu-Sithole, E. C. Linganiso, Z. N. Tetana, S. S. Gqoba, K. P. Mubiayi, and N. Moloto. "The effect of temperature and time on the properties of 2D Cs2ZnBr4 perovskite nanocrystals and their application in a Schottky barrier device." Journal of Materials Chemistry C 9, no. 18 (2021): 6022–33. http://dx.doi.org/10.1039/d1tc00264c.
Full textMonroe, Don. "Perovskites boost solar-cell potential." Communications of the ACM 60, no. 12 (November 27, 2017): 11–13. http://dx.doi.org/10.1145/3148690.
Full textZhang, Taiyang, Yuetian Chen, Miao Kan, Shumao Xu, Yanfeng Miao, Xingtao Wang, Meng Ren, Haoran Chen, Xiaomin Liu, and Yixin Zhao. "MA Cation-Induced Diffusional Growth of Low-Bandgap FA-Cs Perovskites Driven by Natural Gradient Annealing." Research 2021 (August 18, 2021): 1–11. http://dx.doi.org/10.34133/2021/9765106.
Full textSun, Qingde, Wan-Jian Yin, and Su-Huai Wei. "Searching for stable perovskite solar cell materials using materials genome techniques and high-throughput calculations." Journal of Materials Chemistry C 8, no. 35 (2020): 12012–35. http://dx.doi.org/10.1039/d0tc02231d.
Full textAšmontas, Steponas, Aurimas Čerškus, Jonas Gradauskas, Asta Grigucevičienė, Konstantinas Leinartas, Andžej Lučun, Kazimieras Petrauskas, et al. "Cesium-Containing Triple Cation Perovskite Solar Cells." Coatings 11, no. 3 (February 27, 2021): 279. http://dx.doi.org/10.3390/coatings11030279.
Full textPantaler, Martina, Selina Olthof, Klaus Meerholz, and Doru C. Lupascu. "Bismuth-Antimony mixed double perovskites Cs2AgBi1-xSbxBr6 in solar cells." MRS Advances 4, no. 64 (2019): 3545–52. http://dx.doi.org/10.1557/adv.2019.404.
Full textDissertations / Theses on the topic "Perovskites solar cell"
Sapori, Daniel. "Hybrid Perovskites : Fundamental properties and solar cell thin film technology." Thesis, Rennes, INSA, 2018. http://www.theses.fr/2018ISAR0017.
Full textIn the future, the world has to face up to major challenges: increasing the energy production, reducing the environmental impact, moving towards sustainability in energy, etc. Renewable energies such as photovoltaics can meet these challenges. This thesis concerns hybrid halide perovskite materials and their use in solar cells. These materials have recently attracted a lot of attention owing to their direct bandgaps, strong light absorption, large carrier diffusion lengths, tunable optoelectronic properties, and their facile and low-cost fabrication In few years, their energy conversion efficiency has rapidly increased from 3.8 % in 2009 to 22.7 % in 2017, hence approaching efficiencies of crystalline silicon based-devices which represent 90% of commercial photovoltaic cells. In the design of perovskite cells, the perovskite photoabsorber is generally sandwiched by two interfacial layers that yield selective charge collections: the hole and electron transport layers (HTM and ETM). Good quality and adapted interfacial layers are required to obtained high efficiency cells. In this thesis, both the perovskite material and the interfacial layers are investigated
Weber, Oliver. "Structural chemistry of hybrid halide perovskites for thin film photovoltaics." Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761012.
Full textHartono, Noor Titan Putri. "Interplay of optoelectronic properties and solar cell performance in multidimensional perovskites." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118669.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 68-72).
Perovskite is an emerging material for photovoltaic application that has reached 22.7% efficiency to date. Despite its excellent properties such as defect tolerance and long carrier lifetime, the high-performing perovskite material, methylammonium lead iodide (MAPI), which has 3D structure, is still unstable. Recent studies have hinted at the possibility of shifting focus from 3D to lower dimensional perovskite structures because lower dimensional structures are more environmentally stable for a longer period than the 3D analogues. We propose a detailed study where PbI₂ is used as the backbone and A-site cations are alloyed with various combinations: methylammonium, dimethylammonium, iso-propylammonium, and t-butylammonium. We measure the perovskite solar cell devices' performance and characterize the solar absorber to understand the optoelectronic properties. It is shown that the addition of large A-site cations change the structures into lower dimension, which increases the bandgap and decreases device performance properties such as efficiency, open-circuit voltage, and short-circuit current. Hence, there is a trade-off between having more stable perovskite and high-performance cell in using large A-site organic cations.
by Noor Titan Putri Hartono.
S.M.
Gheno, Alexandre. "Printable and printed perovskites photovoltaic solar cells for autonomous sensors network." Thesis, Limoges, 2017. http://www.theses.fr/2017LIMO0108/document.
Full textThis thesis is about the design of photovoltaic solar cells based on hybrid perovskite using inkjet printing technology. The first two chapters present the context of the thesis, namely the powering of an autonomous sensor network, and review the scientific aspects of inkjet and photovoltaic technologies. The third chapter presents the development of a state-of-the-art photovoltaic cell and its evolution towards a printable architecture at low annealing temperatures. The problem of the stability of photovoltaic cells with perovskite is also discussed. The last part presents the different aspects and problems of the inkjet printing of the three inner layers of a perovskite solar cell. At the end of this work the possibility of printing perovskite solar cells with efficiencies higher than 10% has been demonstrated, all in ambient conditions and at low temperature
Shi, Tingting. "Optoelectronic and Defect Properties in Earth Abundant Photovoltaic Materials: First-principle Calculations." University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1418391935.
Full textLini, Matilde. "Optoelectronic characterization of hybrid organic-inorganic halide perovskites for solar cell and X-ray detector applications." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23213/.
Full textLee, Michael M. "Organic-inorganic hybrid photovoltaics based on organometal halide perovskites." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:9384fc54-30de-4f0d-86fc-71c22d350102.
Full textUllah, Habib. "First-principles density functional theory study of novel materials for solar energy conversion and environment applications." Thesis, University of Exeter, 2018. http://hdl.handle.net/10871/32949.
Full textAversa, Pierfrancesco. "Primary Defects in Halide Perovskites : Effect on Stability and Performance for Photovoltaic Applications Effect of organic PCBM Electron transport Layers on natural and post-irradiation ageing of optical absorption and emission in methyl ammonium lead triiodide spin –coated on p-i-n Solar Sell Substrates Effect of organic PCBM Electron transport Layers on natural and post-irradiation ageing of optical absorption and emission in triple cation lead mixed halide perovskite spin –coated on p-i-n Solar Sell Substrates Electron Irradiation Induced Ageing Effects on Radiative Recombination Properties of methylammonium lead triiodide layers on p-i-n solar cell substrates Electron Irradiation Induced Ageing Effects on Methylammonium Lead Triiodide Based p-i-n Solar Cells Electron Irradiation Induced Ageing Effects on Radiative Recombination Properties of Quadruple Cation Organic-Inorganic Perovskite Layers." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX050.
Full textDuring the last eleven years, Hybrid Organic Inorganic Perovskites (HOIPs) materials have emerged as an exciting topic of research for potential application in solar cell technologies due to their outstanding optoelectronic properties and processing advantages. However, HOIPs materials suffer from several drawbacks with, in peculiar, their lack of stability under operational conditions (light, bias, environment…). To improve this stability is one of the biggest challenges to be addressed before commercialization. The general formula for HOIPs is (A1,A2,A3,A4)Pb(X1,X2)3, where the A sites can be occupied by a distribution of 1 to 4 metallic/organic cations and X sites with halide anions. The role of native vacancy defects has been questioned as a possible cause for HOIPs solar cells degradation. The aim of this work is to understand the defect role in long term stability of HOIPs materials for photovoltaics. For this reason, primary defects were introduced in a controlled way via high energy electron irradiation (1MeV) in sets of layers and solar cells (SCs) fabricated using various HOIPs compounds. Those include the photovoltaic HOIPs prototype, MAPbI3 (A1PbX13), and emergent triple or quadruple cation mixed halide HOIPs, (CsMAFA)Pb(I1-xBrx)3 (A3PbX23) or (GACsMAFA)Pb(I1-yBry)3 (A4PbX23). The HOIPs layers are fabricated according to the same procedure as the HOIPs active SC layers and, subsequently, treated in similar conditions. For A1PbX13 and A3PbX23, the solar cells are of the p-i-n structure with organic hole and electron transport layer (HTL/ETL). The HOIPs layers are deposited on the glass/ITO/HTL (PEDOT:PSS) substrate without or with the top ETL layer (PCBM). For A4PbX23, the solar cells are of the n-i-p type with inorganic ETL (TiO2) and organic HTL (Spiro-OMeTAD) layers. The layers are directly deposited on glass without the ETL layer.Positron Annihilation Spectroscopy (PAS) gives direct evidence for native vacancy-type defects and irradiation induced ones in layers of each HOIP compound. The energy dependence of absorbance shows that natural and after irradiation ageing generates different defect populations in each HOIP compound. These populations strikingly also differ depending on the absence or presence of the top ETL layer for the A1PbX13 and A3PbX23 compounds. The defect populations evolve over ageing duration as long as 3 months. The prominent effects of ageing include (i) band gap modification, (ii) tailing of conduction/valence band extrema and (iii) optical absorption via deep subgap electronic levels. Illumination effects under laser also vary with ageing for each HOIP compound. Asymmetric photoluminescence (PL) peaks in each compound under continuous laser illumination reflect that radiative emission involves Gaussian emission rays with energy, FWHM and height evolving with illumination time. The emission transitions involve shallow localized electronic levels in A3PbX23 and A4PbX23 and resonant ones in A1PbX13. These electronic levels are attributed to specifically illumination-induced defect populations. Natural and after irradiation ageing result in PL decay lifetime spectra resolved into one or two exponential decay components. The decay components number and lifetime are strongly affected by the initial production of irradiation defects and HOIPs composition. Such effects last over 3 months at least in A4PbX23. The p-i-n solar cells exhibit most striking irradiation ageing induced photovoltaics performance. The External Quantum Efficiency (EQE versus photon energy) and the photovoltaic performance (I-V under illumination) of the irradiated solar cells have higher values than those in the reference SCs after 6 to 12 months of ageing. This gives evidence that defect engineering via high energy electron irradiation has a potential for providing innovative processing pathways to enhance the long-term stability of HOIPs photovoltaic performance
Bouich, Amal. "Study and Characterization of Hybrid Perovskites and Copper-Indium-Gallium Selenide thin films for Tandem Solar Cells." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/160621.
Full text[EN] The thesis work presented is part of the work in the Laboratory of New Materials for Photovoltaic Energy in the main target to use low cost techniques for elaboration of Perovskite and Copper, indium, gallium, and selenium CIGS materials for photovoltaic application. Organic-inorganic lead halides perovskites have currently and exceptionally appeared as new materials for low cost thin film solar cells specially that the efficiency of perovskite based solar cell have jumped from 3.8% to 22.7% in short time.in other hand, CIGS solar cells record 23.35% efficiency and still can be boosted. Here, we report the elaboration and characterization of CIGS as well as methylammonium lead iodide perovskites MAPbI3 and formamidinuim iodide lead iodide perovskites FAPbI3 absorbers for perovskite-based solar cells and Tandem Perovskites/ CIGS. The thin films prepared were characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis, atomic force microscopy (AFM), transmission electron microscopy (TEM), Photoluminescence analysis (PL) and UV-Vis spectroscopy. The first stage was devoted for the effect of different parameters on the growth of CIGS by electrodeposition and we investigate the impact of different back contact in structural and optical proprieties. In a second stage, we report the growth of CIGS films by spray pyrolysis, we studied the effect of experimental parameter also the annealing process which is the key factor for improving the performance of solar cells,subsequently we elaborated different films constituted CdZnS/CdS/CIGS/Mo solar cells, the approach is to change the toxic ZnO by using a transparent, conductive CdZnS layer. In other hand, MAPbI3 film was investigated in order to optimize the chemical composition and to study the crystallization process also to get sight about the stability of perovskite materials to meet the requirement of their application as an active layer in perovskite solar cell. For this purpose. the MAPbI3 film surface was treated by adding diethyl ether antisolvent with different rates. during the treatment complex exchanges are appearing at the same time under the influence of quite a lot of physicochemical properties. A whole understanding of this topic is critically important for improving solar cell performance. MAPbI3 doped by the tetrabutylammonium TBA is boosting the formation of perovskite structure, leading to a higher orientation along the (110) and shows better crystallinity, large grain size, pinhole-free, which is suitable for the manufacturing of the optoelectronic devices with higher performance. Also, we have identified the impact of TBA in the photo-physical properties, we have noticed that the TBA improve the photoluminescence emission by reducing the density of trap states and the optical absorption indicates a significant shift to the lower wavelength and optical bandgap varied from 1.8 to 1.52 eV. Finally, the stability was explored for 5% TBA, it found that after 15 days the stability remained excellent in relative humidity of ~60%. These results would be helpful for realizing stable and high performance MAPbI3-based devices. Furthermore, we inspect the effect of monovalent cation substitution of Guanidinium (GA) on the structural and optical properties of FAPbI3 thin films perovskites. The ratio between the desirable a-phase and the undesirable y yellow phase is studied as a function of GA content. GA doping is shown to be efficient in the control of a/y phases ratio and then in the stabilization of the a-FaPbI3 phase. We qualitatively evaluate the impact of 10% of guanidinium on the phase composition and microstructure of films. The results show that an adequate amount of 10% GA:FaPbI3 leads to a homogeneous perovskite film with stable a phase, large grains, and free pinholes. 10% GA: FaPbI3 films demonstrate excellent stability after aging for 15 days in relative humidity of~60%.
[CA] L'objectiu principal d'aquesta tesi és contribuir a l'avanç de noves tècniques d'elaboració de baix cost, fent servir materials d'aliatges del tipus de coure, indi, gal·li i seleni (CIGS) i perovskites, per a aplicacions en energia solar fotovoltaica. El CIGS sembla ser adequat ja que són de baix cost de producció i s'han reportat eficiències de conversió del 23,35%. D'altra banda, les perovskites híbrides d'halurs de plom orgànics-inorgànics han aparegut com a nous materials excepcionals per cel·les solars, especialment perquè l'eficiència de les cel·les solars basades en perovskites ha augmentat del 3.8% al 22.7% en menys d'un lustre. En el present treball, reportem l'elaboració i caracterització de CIGS y de perovskitas de iodur de plom de metilamoni (MAPbI3) i de iodur de plom de formamidini (FaPbI3) per a les cèl·lules solars de CIGS i tàndem Perovskites/CIGS. En les capes de CIGS dipositades per electrodeposició es va investigar l'efecte dels diferents paràmetres sobre el procés d'electrodeposició, així com l'efecte del contacte posterior sobre les propietats estructurals i òptiques del CIGS. Ens trobem que el tipus de contacte posterior té un efecte significatiu en la posterior interpretació de pel·lícules primes CIGS. A més, vam estudiar la tècnica de polvorització de la piròlisi per produir pel·lícules de CIGS. Es va estudiar el procés de recuit, que és el factor clau per millorar el rendiment de les cèl·lules solars. Es van produir diferents pel·lícules fines formades pel nostre dispositiu CdZnS/CdS/CIGS/Mo que utilitzaven una capa conductiva CdZnS transparent per minimitzar l'alineació de la interfície. D'altra banda, es van investigar perovskites MAPbI3, amb la finalitat d'optimitzar la composició química i estudiar el procés de cristal·lització també per a conèixer l'estabilitat dels materials de perovskita. la cristal·lització s'aconsegueix alentint la solubilitat en una solució saturada mitjançant l'addició d'una quantitat diferent de l'antisolvent d'èter dietílic. Durant el tractament apareixen al mateix temps intercanvis complexos sota la influència de moltes propietats fisicoquímiques. Una comprensió completa d'aquest tema és de vital importància per a millorar el rendiment. Amb l'objectiu principal d'augmentar l'estabilitat de MAPbI3, el tetrabutilamoni (TBA) es pot incorporar a MAPbI3, impulsant la formació de l'estructura de perovskita, la qual cosa porta a una major orientació al llarg de (110). MAPbI3 dopades amb TBA presenten una millora de la cristalinitat, major grandària, la qual cosa és adequada per a la fabricació de dispositius optoelectròniques de major rendiment. A més, hem identificat l'impacte de TBA en les propietats foto físiques de MAPbI3. Hem notat que el dopatge amb TBA millora tant l'emissió de la fotoluminiscència en reduir la densitat dels estats de trampes com l'absorció òptica on apareix un canvi significatiu de la banda òptica prohibida cap a longituds d'ona més llargues que significa disminuir l'energia del gap, que va variar de 1.8 a 1.52 eV. Finalment, es va explorar l'estabilitat per les perovsquites dopades amb 5%TBA. Es va trobar que després de 15 dies l'estabilitat romania excel·lent en un humitat de 60%. A més, hem estudiat FAPbI3 com un dels materials de perovskita més atractius. Hem investigat l'efecte de la substitució de guanidini (GA) sobre les propietats estructurals i òptiques de FAPbI3. La relació entre la fase a de perovskita desitjable i la fase indesitjable y es va estudiar en funció del contingut de GA. Es mostra que el dopatge amb GA és eficaç en el control de la relació de fases a /y i després en l'estabilització de la fase a-FaPbI3. Els resultats mostren que una quantitat adequada de 10% GA condueix a una pel·lícula homogènia amb fase a estable, grans grans lliures de porus i forats. Les pel·lícules de 10% GA:FaPbI3 demostraren una excel·lent estabilitat després de l'envelliment durant 15 dies en un ambient humit (humitat relativa de 60%).
Bouich, A. (2020). Study and Characterization of Hybrid Perovskites and Copper-Indium-Gallium Selenide thin films for Tandem Solar Cells [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/160621
TESIS
Books on the topic "Perovskites solar cell"
Etgar, Lioz. Hole Conductor Free Perovskite-based Solar Cells. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32991-8.
Full textYun, Sining, and Anders Hagfeldt, eds. Counter Electrodes for Dye-sensitized and Perovskite Solar Cells. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527813636.
Full textMaterials for Solar Cell Technologies I. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901090.
Full textFu, Kunwu, Anita Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. Perovskite Solar Cells. Apple Academic Press, Incorporated, 2019.
Find full textDiau, Eric Wei-Guang, and Peter Chao-Yu Chen. Perovskite Solar Cells. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/10503.
Full textLead Halide Perovskite Solar Cells. Materials Research Forum LLC, 2020. http://dx.doi.org/10.21741/9781644900819.
Full textCharacterization Techniques for Perovskite Solar Cell Materials. Elsevier, 2020. http://dx.doi.org/10.1016/c2017-0-01993-6.
Full textPhysics of Solar Cells: Perovskites, Organics, and Photovoltaic Fundamentals. Taylor & Francis Group, 2017.
Find full textBisquert, Juan. Physics of Solar Cells: Perovskites, Organics, and Photovoltaic Fundamentals. Taylor & Francis Group, 2017.
Find full textBanavoth, Murali. Perovskite Solar Cells: Properties, Application and Efficiency. Nova Science Publishers, Incorporated, 2019.
Find full textBook chapters on the topic "Perovskites solar cell"
Fu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Double Perovskites." In Perovskite Solar Cells, 245–50. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-17.
Full textShabdan, Erkin, Blake Hanford, Baurzhan Ilyassov, Kadyrzhan Dikhanbayev, and Nurxat Nuraje. "Perovskite Solar Cell." In Multifunctional Nanocomposites for Energy and Environmental Applications, 91–111. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527342501.ch5.
Full textFu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Tin-Based Perovskites." In Perovskite Solar Cells, 221–34. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-14.
Full textFu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Germanium-Based Perovskites." In Perovskite Solar Cells, 235–38. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-15.
Full textFu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Copper-Based Perovskites." In Perovskite Solar Cells, 239–44. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-16.
Full textFu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Bismuth-Based Perovskites." In Perovskite Solar Cells, 251–60. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-18.
Full textFu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Antimony-Based Perovskites." In Perovskite Solar Cells, 261–68. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-19.
Full textTodorov, Teodor K., Oki Gunawan, and Supratik Guha. "Halide Perovskite Tandem Solar Cells." In Halide Perovskites, 183–97. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527800766.ch2_05.
Full textFu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Organic Hole-Transporting Materials." In Perovskite Solar Cells, 159–82. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-10.
Full textFu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Inorganic Hole-Transporting Materials." In Perovskite Solar Cells, 183–200. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-11.
Full textConference papers on the topic "Perovskites solar cell"
Xiao, Zewen, Zhaoning Song, and Yanfa Yan. "Lead-Free Metal Halide Perovskites for Solar Cell Applications: A Theoretical Perspective." In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300781.
Full textZhang, Jingyi, Xianfeng Gao, Yelin Deng, Yuanchun Zha, and Chris Yuan. "Cradle-to-Grave Life Cycle Assessment of Solid-State Perovskite Solar Cells." In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-2970.
Full textAlbrecht, Kevin J., and Robert J. Braun. "Thermodynamic Analysis of Non-Stoichiometric Perovskites as a Heat Transfer Fluid for Thermochemical Energy Storage in Concentrated Solar Power." In ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/es2015-49409.
Full textEnriquez, Christian, Deidra Hodges, Angel De La Rosa, Luis Valerio Frias, Yves Ramirez, Victor Rodriguez, Daniel Rivera, and Alberto Telles. "Perovskite Solar Cells." In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). IEEE, 2019. http://dx.doi.org/10.1109/pvsc40753.2019.8980712.
Full textHo-Baillie, Anita. "Perovskite Solar Cells." In Organic, Hybrid, and Perovskite Photovoltaics XXII, edited by Zakya H. Kafafi, Paul A. Lane, Gang Li, Ana Flávia Nogueira, and Ellen Moons. SPIE, 2021. http://dx.doi.org/10.1117/12.2602805.
Full textSayenko, Aleksandr, Sergey Malyukov, and Aleksandr Palii. "NUMERICAL SIMULATION OF SOLAR CELL WITH TiO2/CH3NH3SnI3/Cu2O STRUCTURE." In Mathematical modeling in materials science of electronic component. LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1531.mmmsec-2020/98-100.
Full textZhang, Hua, Xianfeng Qiao, Yan Shen, and Mingkui Wang. "Organometallic Perovskite Solar Cells-Temperature Effect Study." In Optics for Solar Energy. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/ose.2015.rtu4c.3.
Full textChen, Peter, Yueh-Ya Chiu, Pei-Ying Lin, Itaru Raifuku, and Shao-Tung Chang. "Pseudohalide Perovskite Solar Cells." In 4th Asia-Pacific International Conference on Perovskite, Organic Photovoltaics and Optoelectronics. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.iperop.2020.010.
Full textLee, M. M., J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith. "Hybrid Perovskite Solar Cells." In 2013 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2013. http://dx.doi.org/10.7567/ssdm.2013.n-4-1.
Full textYang, L., A. Yu, and X. Li. "Flexible Perovskite Solar Cells." In 2018 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2018. http://dx.doi.org/10.7567/ssdm.2018.f-4-01.
Full textReports on the topic "Perovskites solar cell"
Mitzi, David, and Yanfa Yan. High Performance Perovskite-Based Solar Cells. Office of Scientific and Technical Information (OSTI), January 2020. http://dx.doi.org/10.2172/1582433.
Full textMcGehee, Michael, and Tonio Buonassisi. Perovskite Solar Cells for High-Efficiency Tandems. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1420976.
Full textOng, Alison. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1213129.
Full textFthenakis, Vasilis. Comparative Life Cycle Analysis of Scalable Single-Junction and Tandem Perovskite Solar Cell (PSC) Systems. Office of Scientific and Technical Information (OSTI), October 2020. http://dx.doi.org/10.2172/1691513.
Full textPike, Christopher. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells - Oral Presentation. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1213179.
Full textOng, Alison J. Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells - Oral Presentation. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1213180.
Full textHsu, Julia. Higher Throughput, Lower Cost Processing of Flexible Perovskite Solar Cells by Photonic Curing. Office of Scientific and Technical Information (OSTI), February 2021. http://dx.doi.org/10.2172/1766656.
Full textSellinger, Alan. Perovskite Solar Cells: Addressing Low Cost, High Efficiency, and Reliability Through Novel Hole-Transport Materials. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1559859.
Full textVan Hest, Maikel. Development of Perovskite (PVSK) Technology Related to Solar Cell Manufacturing Equipment: Cooperative Research and Development Final Report, CRADA Number CRD-18-733. Office of Scientific and Technical Information (OSTI), April 2020. http://dx.doi.org/10.2172/1659916.
Full textZunger, Alex. Isovalent Alloying and Heterovalent Substititution as Routes to Accelerate the Development and Optimization of Super-Efficient Halide Perovskite PV Solar Cells. Office of Scientific and Technical Information (OSTI), February 2019. http://dx.doi.org/10.2172/1544426.
Full text