Dissertations / Theses on the topic 'Perovskites solar cell'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Perovskites solar cell.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Sapori, Daniel. "Hybrid Perovskites : Fundamental properties and solar cell thin film technology." Thesis, Rennes, INSA, 2018. http://www.theses.fr/2018ISAR0017.
Full textIn the future, the world has to face up to major challenges: increasing the energy production, reducing the environmental impact, moving towards sustainability in energy, etc. Renewable energies such as photovoltaics can meet these challenges. This thesis concerns hybrid halide perovskite materials and their use in solar cells. These materials have recently attracted a lot of attention owing to their direct bandgaps, strong light absorption, large carrier diffusion lengths, tunable optoelectronic properties, and their facile and low-cost fabrication In few years, their energy conversion efficiency has rapidly increased from 3.8 % in 2009 to 22.7 % in 2017, hence approaching efficiencies of crystalline silicon based-devices which represent 90% of commercial photovoltaic cells. In the design of perovskite cells, the perovskite photoabsorber is generally sandwiched by two interfacial layers that yield selective charge collections: the hole and electron transport layers (HTM and ETM). Good quality and adapted interfacial layers are required to obtained high efficiency cells. In this thesis, both the perovskite material and the interfacial layers are investigated
Weber, Oliver. "Structural chemistry of hybrid halide perovskites for thin film photovoltaics." Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761012.
Full textHartono, Noor Titan Putri. "Interplay of optoelectronic properties and solar cell performance in multidimensional perovskites." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118669.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 68-72).
Perovskite is an emerging material for photovoltaic application that has reached 22.7% efficiency to date. Despite its excellent properties such as defect tolerance and long carrier lifetime, the high-performing perovskite material, methylammonium lead iodide (MAPI), which has 3D structure, is still unstable. Recent studies have hinted at the possibility of shifting focus from 3D to lower dimensional perovskite structures because lower dimensional structures are more environmentally stable for a longer period than the 3D analogues. We propose a detailed study where PbI₂ is used as the backbone and A-site cations are alloyed with various combinations: methylammonium, dimethylammonium, iso-propylammonium, and t-butylammonium. We measure the perovskite solar cell devices' performance and characterize the solar absorber to understand the optoelectronic properties. It is shown that the addition of large A-site cations change the structures into lower dimension, which increases the bandgap and decreases device performance properties such as efficiency, open-circuit voltage, and short-circuit current. Hence, there is a trade-off between having more stable perovskite and high-performance cell in using large A-site organic cations.
by Noor Titan Putri Hartono.
S.M.
Gheno, Alexandre. "Printable and printed perovskites photovoltaic solar cells for autonomous sensors network." Thesis, Limoges, 2017. http://www.theses.fr/2017LIMO0108/document.
Full textThis thesis is about the design of photovoltaic solar cells based on hybrid perovskite using inkjet printing technology. The first two chapters present the context of the thesis, namely the powering of an autonomous sensor network, and review the scientific aspects of inkjet and photovoltaic technologies. The third chapter presents the development of a state-of-the-art photovoltaic cell and its evolution towards a printable architecture at low annealing temperatures. The problem of the stability of photovoltaic cells with perovskite is also discussed. The last part presents the different aspects and problems of the inkjet printing of the three inner layers of a perovskite solar cell. At the end of this work the possibility of printing perovskite solar cells with efficiencies higher than 10% has been demonstrated, all in ambient conditions and at low temperature
Shi, Tingting. "Optoelectronic and Defect Properties in Earth Abundant Photovoltaic Materials: First-principle Calculations." University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1418391935.
Full textLini, Matilde. "Optoelectronic characterization of hybrid organic-inorganic halide perovskites for solar cell and X-ray detector applications." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23213/.
Full textLee, Michael M. "Organic-inorganic hybrid photovoltaics based on organometal halide perovskites." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:9384fc54-30de-4f0d-86fc-71c22d350102.
Full textUllah, Habib. "First-principles density functional theory study of novel materials for solar energy conversion and environment applications." Thesis, University of Exeter, 2018. http://hdl.handle.net/10871/32949.
Full textAversa, Pierfrancesco. "Primary Defects in Halide Perovskites : Effect on Stability and Performance for Photovoltaic Applications Effect of organic PCBM Electron transport Layers on natural and post-irradiation ageing of optical absorption and emission in methyl ammonium lead triiodide spin –coated on p-i-n Solar Sell Substrates Effect of organic PCBM Electron transport Layers on natural and post-irradiation ageing of optical absorption and emission in triple cation lead mixed halide perovskite spin –coated on p-i-n Solar Sell Substrates Electron Irradiation Induced Ageing Effects on Radiative Recombination Properties of methylammonium lead triiodide layers on p-i-n solar cell substrates Electron Irradiation Induced Ageing Effects on Methylammonium Lead Triiodide Based p-i-n Solar Cells Electron Irradiation Induced Ageing Effects on Radiative Recombination Properties of Quadruple Cation Organic-Inorganic Perovskite Layers." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX050.
Full textDuring the last eleven years, Hybrid Organic Inorganic Perovskites (HOIPs) materials have emerged as an exciting topic of research for potential application in solar cell technologies due to their outstanding optoelectronic properties and processing advantages. However, HOIPs materials suffer from several drawbacks with, in peculiar, their lack of stability under operational conditions (light, bias, environment…). To improve this stability is one of the biggest challenges to be addressed before commercialization. The general formula for HOIPs is (A1,A2,A3,A4)Pb(X1,X2)3, where the A sites can be occupied by a distribution of 1 to 4 metallic/organic cations and X sites with halide anions. The role of native vacancy defects has been questioned as a possible cause for HOIPs solar cells degradation. The aim of this work is to understand the defect role in long term stability of HOIPs materials for photovoltaics. For this reason, primary defects were introduced in a controlled way via high energy electron irradiation (1MeV) in sets of layers and solar cells (SCs) fabricated using various HOIPs compounds. Those include the photovoltaic HOIPs prototype, MAPbI3 (A1PbX13), and emergent triple or quadruple cation mixed halide HOIPs, (CsMAFA)Pb(I1-xBrx)3 (A3PbX23) or (GACsMAFA)Pb(I1-yBry)3 (A4PbX23). The HOIPs layers are fabricated according to the same procedure as the HOIPs active SC layers and, subsequently, treated in similar conditions. For A1PbX13 and A3PbX23, the solar cells are of the p-i-n structure with organic hole and electron transport layer (HTL/ETL). The HOIPs layers are deposited on the glass/ITO/HTL (PEDOT:PSS) substrate without or with the top ETL layer (PCBM). For A4PbX23, the solar cells are of the n-i-p type with inorganic ETL (TiO2) and organic HTL (Spiro-OMeTAD) layers. The layers are directly deposited on glass without the ETL layer.Positron Annihilation Spectroscopy (PAS) gives direct evidence for native vacancy-type defects and irradiation induced ones in layers of each HOIP compound. The energy dependence of absorbance shows that natural and after irradiation ageing generates different defect populations in each HOIP compound. These populations strikingly also differ depending on the absence or presence of the top ETL layer for the A1PbX13 and A3PbX23 compounds. The defect populations evolve over ageing duration as long as 3 months. The prominent effects of ageing include (i) band gap modification, (ii) tailing of conduction/valence band extrema and (iii) optical absorption via deep subgap electronic levels. Illumination effects under laser also vary with ageing for each HOIP compound. Asymmetric photoluminescence (PL) peaks in each compound under continuous laser illumination reflect that radiative emission involves Gaussian emission rays with energy, FWHM and height evolving with illumination time. The emission transitions involve shallow localized electronic levels in A3PbX23 and A4PbX23 and resonant ones in A1PbX13. These electronic levels are attributed to specifically illumination-induced defect populations. Natural and after irradiation ageing result in PL decay lifetime spectra resolved into one or two exponential decay components. The decay components number and lifetime are strongly affected by the initial production of irradiation defects and HOIPs composition. Such effects last over 3 months at least in A4PbX23. The p-i-n solar cells exhibit most striking irradiation ageing induced photovoltaics performance. The External Quantum Efficiency (EQE versus photon energy) and the photovoltaic performance (I-V under illumination) of the irradiated solar cells have higher values than those in the reference SCs after 6 to 12 months of ageing. This gives evidence that defect engineering via high energy electron irradiation has a potential for providing innovative processing pathways to enhance the long-term stability of HOIPs photovoltaic performance
Bouich, Amal. "Study and Characterization of Hybrid Perovskites and Copper-Indium-Gallium Selenide thin films for Tandem Solar Cells." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/160621.
Full text[EN] The thesis work presented is part of the work in the Laboratory of New Materials for Photovoltaic Energy in the main target to use low cost techniques for elaboration of Perovskite and Copper, indium, gallium, and selenium CIGS materials for photovoltaic application. Organic-inorganic lead halides perovskites have currently and exceptionally appeared as new materials for low cost thin film solar cells specially that the efficiency of perovskite based solar cell have jumped from 3.8% to 22.7% in short time.in other hand, CIGS solar cells record 23.35% efficiency and still can be boosted. Here, we report the elaboration and characterization of CIGS as well as methylammonium lead iodide perovskites MAPbI3 and formamidinuim iodide lead iodide perovskites FAPbI3 absorbers for perovskite-based solar cells and Tandem Perovskites/ CIGS. The thin films prepared were characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis, atomic force microscopy (AFM), transmission electron microscopy (TEM), Photoluminescence analysis (PL) and UV-Vis spectroscopy. The first stage was devoted for the effect of different parameters on the growth of CIGS by electrodeposition and we investigate the impact of different back contact in structural and optical proprieties. In a second stage, we report the growth of CIGS films by spray pyrolysis, we studied the effect of experimental parameter also the annealing process which is the key factor for improving the performance of solar cells,subsequently we elaborated different films constituted CdZnS/CdS/CIGS/Mo solar cells, the approach is to change the toxic ZnO by using a transparent, conductive CdZnS layer. In other hand, MAPbI3 film was investigated in order to optimize the chemical composition and to study the crystallization process also to get sight about the stability of perovskite materials to meet the requirement of their application as an active layer in perovskite solar cell. For this purpose. the MAPbI3 film surface was treated by adding diethyl ether antisolvent with different rates. during the treatment complex exchanges are appearing at the same time under the influence of quite a lot of physicochemical properties. A whole understanding of this topic is critically important for improving solar cell performance. MAPbI3 doped by the tetrabutylammonium TBA is boosting the formation of perovskite structure, leading to a higher orientation along the (110) and shows better crystallinity, large grain size, pinhole-free, which is suitable for the manufacturing of the optoelectronic devices with higher performance. Also, we have identified the impact of TBA in the photo-physical properties, we have noticed that the TBA improve the photoluminescence emission by reducing the density of trap states and the optical absorption indicates a significant shift to the lower wavelength and optical bandgap varied from 1.8 to 1.52 eV. Finally, the stability was explored for 5% TBA, it found that after 15 days the stability remained excellent in relative humidity of ~60%. These results would be helpful for realizing stable and high performance MAPbI3-based devices. Furthermore, we inspect the effect of monovalent cation substitution of Guanidinium (GA) on the structural and optical properties of FAPbI3 thin films perovskites. The ratio between the desirable a-phase and the undesirable y yellow phase is studied as a function of GA content. GA doping is shown to be efficient in the control of a/y phases ratio and then in the stabilization of the a-FaPbI3 phase. We qualitatively evaluate the impact of 10% of guanidinium on the phase composition and microstructure of films. The results show that an adequate amount of 10% GA:FaPbI3 leads to a homogeneous perovskite film with stable a phase, large grains, and free pinholes. 10% GA: FaPbI3 films demonstrate excellent stability after aging for 15 days in relative humidity of~60%.
[CA] L'objectiu principal d'aquesta tesi és contribuir a l'avanç de noves tècniques d'elaboració de baix cost, fent servir materials d'aliatges del tipus de coure, indi, gal·li i seleni (CIGS) i perovskites, per a aplicacions en energia solar fotovoltaica. El CIGS sembla ser adequat ja que són de baix cost de producció i s'han reportat eficiències de conversió del 23,35%. D'altra banda, les perovskites híbrides d'halurs de plom orgànics-inorgànics han aparegut com a nous materials excepcionals per cel·les solars, especialment perquè l'eficiència de les cel·les solars basades en perovskites ha augmentat del 3.8% al 22.7% en menys d'un lustre. En el present treball, reportem l'elaboració i caracterització de CIGS y de perovskitas de iodur de plom de metilamoni (MAPbI3) i de iodur de plom de formamidini (FaPbI3) per a les cèl·lules solars de CIGS i tàndem Perovskites/CIGS. En les capes de CIGS dipositades per electrodeposició es va investigar l'efecte dels diferents paràmetres sobre el procés d'electrodeposició, així com l'efecte del contacte posterior sobre les propietats estructurals i òptiques del CIGS. Ens trobem que el tipus de contacte posterior té un efecte significatiu en la posterior interpretació de pel·lícules primes CIGS. A més, vam estudiar la tècnica de polvorització de la piròlisi per produir pel·lícules de CIGS. Es va estudiar el procés de recuit, que és el factor clau per millorar el rendiment de les cèl·lules solars. Es van produir diferents pel·lícules fines formades pel nostre dispositiu CdZnS/CdS/CIGS/Mo que utilitzaven una capa conductiva CdZnS transparent per minimitzar l'alineació de la interfície. D'altra banda, es van investigar perovskites MAPbI3, amb la finalitat d'optimitzar la composició química i estudiar el procés de cristal·lització també per a conèixer l'estabilitat dels materials de perovskita. la cristal·lització s'aconsegueix alentint la solubilitat en una solució saturada mitjançant l'addició d'una quantitat diferent de l'antisolvent d'èter dietílic. Durant el tractament apareixen al mateix temps intercanvis complexos sota la influència de moltes propietats fisicoquímiques. Una comprensió completa d'aquest tema és de vital importància per a millorar el rendiment. Amb l'objectiu principal d'augmentar l'estabilitat de MAPbI3, el tetrabutilamoni (TBA) es pot incorporar a MAPbI3, impulsant la formació de l'estructura de perovskita, la qual cosa porta a una major orientació al llarg de (110). MAPbI3 dopades amb TBA presenten una millora de la cristalinitat, major grandària, la qual cosa és adequada per a la fabricació de dispositius optoelectròniques de major rendiment. A més, hem identificat l'impacte de TBA en les propietats foto físiques de MAPbI3. Hem notat que el dopatge amb TBA millora tant l'emissió de la fotoluminiscència en reduir la densitat dels estats de trampes com l'absorció òptica on apareix un canvi significatiu de la banda òptica prohibida cap a longituds d'ona més llargues que significa disminuir l'energia del gap, que va variar de 1.8 a 1.52 eV. Finalment, es va explorar l'estabilitat per les perovsquites dopades amb 5%TBA. Es va trobar que després de 15 dies l'estabilitat romania excel·lent en un humitat de 60%. A més, hem estudiat FAPbI3 com un dels materials de perovskita més atractius. Hem investigat l'efecte de la substitució de guanidini (GA) sobre les propietats estructurals i òptiques de FAPbI3. La relació entre la fase a de perovskita desitjable i la fase indesitjable y es va estudiar en funció del contingut de GA. Es mostra que el dopatge amb GA és eficaç en el control de la relació de fases a /y i després en l'estabilització de la fase a-FaPbI3. Els resultats mostren que una quantitat adequada de 10% GA condueix a una pel·lícula homogènia amb fase a estable, grans grans lliures de porus i forats. Les pel·lícules de 10% GA:FaPbI3 demostraren una excel·lent estabilitat després de l'envelliment durant 15 dies en un ambient humit (humitat relativa de 60%).
Bouich, A. (2020). Study and Characterization of Hybrid Perovskites and Copper-Indium-Gallium Selenide thin films for Tandem Solar Cells [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/160621
TESIS
Stenberg, Jonas. "Perovskite solar cells." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-137302.
Full textBett, Alexander Jürgen [Verfasser], and Stefan [Akademischer Betreuer] Glunz. "Perovskite silicon tandem solar cells : : two-terminal perovskite silicon tandem solar cells using optimized n-i-p perovskite solar cells." Freiburg : Universität, 2020. http://d-nb.info/1214179703/34.
Full textDiab, Hiba. "Propriétés optiques des pérovskites hybrides 3D pour le photovoltaique." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLN061/document.
Full textIn the last five years, hybrid organic-inorganic perovskites have emerged as a novel class of semiconductors owing to their interesting electronic and optical properties for photovoltaic and light-emitting devices. This thesis reports an experimental study using optical spectroscopy to explore the optical properties and excitonic effects of hybrid perovskites such as CH3NH3PbX3 with X = I or Br.We studied the optical properties of spin-coated thin films and solution processed single crystals. Thin films present a granular structure and a high density of defects which induce a great variability of the optical properties. The study of single crystals allows us to highlight the intrinsic properties of material: free exciton emission, electron-phonon coupling and charge carriers recombination dynamics. Besides, we have investigated the impact of the orthorhombic-tetragonal phase transition on the optical properties of CH3NH3PbI3. Finally, we have quantified the effect of reabsorption on the emission properties of hybrid perovskites. The accurate estimate of this effect is particularly important for the interpretation of the optical properties of hybrid perovskites and explains the great heterogeneity of the results in the literature
Montero, Rama María Del Pilar. "TOWARD NANOSTRUCTURED PEROVSKITE SOLAR CELLS BASED ON NANOPOROUS ANODIC ALUMINA TECHNOLOGY." Doctoral thesis, Universitat Rovira i Virgili, 2020. http://hdl.handle.net/10803/670596.
Full textEn esta tesis se plantea fabricar una celda solar nano-estructurada de perovskita utilizando alúmina nano-porosa anodizada (NAA de sus siglas en inglés) como soporte. Se eligió la perovskita ya que las celdas solares de este material han alcanzado una eficiencia muy similar a las celdas existentes de silicio. Además, son baratas y fáciles de preparar. El hecho de que la celda este nano-estructurada aportará estabilidad frente a la radiación, temperatura y humedad, siendo este el principal problema de estos dispositivos. Los nano-poros de la NAA tienen una forma cilíndrica muy bien definida cuyo tamaño se puede controlar fácilmente siendo todos los nano-poros iguales, lo cual permitirá un mayor control sobre la homogeneidad del material infiltrado. Por lo que el objetivo de esta tesis es aplicar la tecnología de NAA a las celdas solares de perovskita (CSP). Para ello primero tuvo lugar el proceso de familiarización con la fabricación y caracterización de NAA, así como de CSPs de alta eficiencia, mediante métodos estándar conocidos. Una vez se consiguió la fabricación de NAA con diferentes tamaños de poro, la capa barrera de alúmina que existe entre el aluminio y el fondo del poro tuvo que ser eliminada, para poder aprovechar el aluminio (base de la NAA) como contacto eléctrico. Para lo cual se investigó y desarrolló un nuevo método, ya que los métodos existentes no son adecuados para eliminar capa de barrera de espesores superiores a los 200 nm. Finalmente se estudió la infiltración de los materiales que forman una CSP en los nano-poros, mediante métodos simples de deposición. Se obtuvo una celda solar nano-estructurada de perovskita utilizando como soporte NAA, cuyos resultados de eficiencia son humildes, debido a que la estructura planteada en este trabajo es totalmente novedosa. Lo cual abre un amplio camino para futuros trabajos.
In this thesis, the nanostructured perovskite solar cell manufacture using nanoporous anodic alumina (NAA) as a scaffold is proposed. The perovskite was chosen since the solar cells made with this material have achieved very similar efficiency to silicon cells. Also, they are cheap and easy to prepare. The fact that the cell will be nanostructured will provide stability against radiation, temperature and humidity, this being the main problem of these devices. The NAA nanopores have a very well defined cylindrical shape, whose size can be easily controlled, all nanopores being ident, which will allow greater control over the homogeneity of the infiltrated material. Therefore, this thesis aims to apply NAA technology to perovskite solar cells (PSCs). First, the familiarization process with the manufacture and characterization of NAA, as well as of high-efficiency PSCs, through known standard methods were carried out. Once the manufacture of NAA with different pore sizes was achieved, the alumina barrier layer that exists between the aluminium and the bottom of the nanopores had to be removed, to take advantage of the aluminium (base of the NAA) as an electrical contact. For which a new method was investigated and developed since existing methods are not suitable for removing barrier layer thicknesses greater than 200 nm. Finally, the infiltration of the materials that form a PSC within the nanopores was studied, utilizing simple deposition methods. A full working nanostructured perovskite solar cell was obtained using NAA as a scaffold, whose efficiency results are modest because the structure proposed in this work is novel. Which opens a wide path for future work.
Jiménez, López Jesús. "Analysis of the Different Kinetic Processes in Perovskite Solar Cells." Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/668405.
Full textLa energía fotovoltaica se ha convertido en una de las alternativas más populares como fuente de energía renovable. Se basa en la transformación directa de radiación solar en electricidad. Se encuentra disponible a escala global y además no precisa de ningún transformador para convertir la energía mecánica en energía eléctrica, lo que hace que sea fácil de implementar. Hoy en día, el material más utilizado para aplicaciones fotovoltaicas sigue siendo el silicio. En cambio, el desarrollo de nuevas tecnologías, más baratas, fáciles de procesar y que además pueden utilizarse en sustratos flexibles, ha surgido como alternativa al silicio. De todas ellas, las perovskitas basadas en haluros de plomo se han convertido en una de las mejores opciones para la comunidad científica debido a las excelentes propiedades fotovoltaicas que presenta. Aunque las eficiencias de los dispositivos preparados con perovskitas han alcanzado el 25%, un valor que se encuentra muy cercano a su máximo teórico, los procesos que tienen lugar en estos dispositivos aún no son del todo conocidos. En esta tesis se trata de obtener información acerca de los procesos de los transportadores de carga, desde cómo se generan hasta la recombinación, tanto en las interfaces como en el interior del propio material. Para ello, se han utilizado distintas técnicas de caracterización avanzadas como el fotovoltaje transitorio (TPV), fotocorriente transitoria (TPC), la extracción de carga (CE) y la espectrocopía de absorción transitoria en la escala del femtosegundo (fsTA), obteniendo importantes conclusiones sobre pérdidas
Photovoltaics have become one of the most popular renewable source of energy. Photovoltaic technologies transform sunlight into electricity, and they are also available worldwide, and they do not depend on the conversion of motive power, making this technology quite easy to implement. Nowadays, silicon is still the most used material for photovoltaics. Anyway, new photovoltaic technologies have emerged as alternatives to silicon, as they are cheaper, easier to process, and, they are possible to use on flexible substrates. Among them, lead halide perovskites have become one of the most popular choice in the scientific community, due to the great properties that this material presents. While efficiencies have risen above 25%, which is close to their maximum theoretical limit, there is still debate about the processes happening in the device. In this thesis, we try to gain insight into charge carrier processes from their generation to their recombination at both perovskite interfaces, and also in the bulk of the material. Using advanced characterization techniques, such as transient photovoltage (TPV), transient photocurrent (TPC), charge extraction (CE), and femtosecond transient absorption spectroscopy (fsTA) we obtained important findings about charge carrier losses, and artifacts affecting charge carrier recombination in functional devices that lead to lower power conversion efficiencies.
Pockett, Adam. "Characterization of perovskite solar cells." Thesis, University of Bath, 2017. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.715261.
Full textGelmetti, Ilario. "Advanced Characterization and Modelling of Charge Transfer in Perovskite Solar Cells." Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/668085.
Full textEsta tesis incluye el trabajo hecho en ICIQ sobre fabricación, caracterización, y modelización de celdas solares de perovskita hibrida. Provenientes desde la investigación en otros tipos de celdas solares, las herramientas de análisis, las metodologías, y, aún más importante, su interpretación han sido analizadas y adaptadas a este nuevo tipo de dispositivo. Entonces, estas técnicas han sido utilizadas para analizar y entender la influencia de cuatros diferentes y novedosos transportadores de huecos electrónicos sobre el voltaje de celdas de perovskita. Otro estudio ha investigado la acumulación de electrones en las celdas utilizando pequeños cambios en el grosor de cada capa y analizando las muestras con las mismas técnicas. Desde mi estancia internacional en los grupos del Dr. Piers Barnes y de la Prof. Jenny Nelson en Imperial College London otro estudio ha sido llevado al cabo sobre la complexa interpretación de los resultados de espectroscopia de impedancia en presencia de iones móviles en las celdas de perovskita. Además, se expone todos los programas libres que han sido desarrollados para la adquisición y procesamiento de datos y para la modelización deriva-difusión de celdas solares de perovskita. Una versión actualizada de esta tesis se puede encontrar en https://github.com/ilario/documents_in_latex-PhD_thesis/
This thesis includes the work done in ICIQ about fabrication, characterization, and modelling of hybrid perovskite solar cells. Coming from other kind of solar cells, the analysis tools, the methods, and, most importantly, their interpretation have been analysed and adapted to this new kind of device. Then, these techniques has been employed for analysing and understanding the influence of four different and novel hole transport materials on perovskite solar cells voltage. Another study focussed on the electrons accumulation in devices employing small variations in each stacked layer thickness and analysing the samples using the same techniques. From by international stay in Dr. Piers Barnes and Prof. Jenny Nelson groups in Imperial College London another study was originated exploring the complex interpretation of impedance spectroscopy results when applied on perovskite solar cells with mobile ions. Finally, all the free software that has been developed for data acquisition and processing and for drift-diffusion modelling of perovskite solar cells have been exposed. An updated version of this thesis can be found on https://github.com/ilario/documents_in_latex-PhD_thesis/
Tainter, Gregory Demaray. "Spatially resolved charge transport and recombination in metal-halide perovskite films and solar cells." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/286026.
Full textBrivio, Federico. "Atomistic modelling of perovskite solar cells." Thesis, University of Bath, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.698992.
Full textLee, Heejae. "Analysis of Current-Voltage Hysteresis and Ageing Characteristics for CH3NH3PbI3-xClxBased Perovskite Thin Film Solar Cells." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX009/document.
Full textOrganic-inorganic lead halide perovskites are very promising materials for the next generation of solar cells with intrinsic advantages such as a low-cost material due to the availability of source materials and low-temperature solution processing as well as a high power conversion efficiency of the sunlight. However, perovskite solar cells are still unstable and show deleterious current-voltage hysteresis effects. Inthis thesis, analyses of CH3NH3PbI3-xClx based perovskite thin films and solar cells are presented. The electrical transport characteristics and the ageing processes are investigated using different approaches.The synthesis of the halide perovskite materials is optimized in a first step by controlling the deposition conditions such as annealing temperature (80°C) and spinning rate (6000 rpm) in the one step-spin-casted process. CH3NH3PbI3-xClx based perovskite solar cells are then fabricated in the inverted planar structure and characterized optically and electrically in a second step.Direct experimental evidence of the motion of the halide ions under an applied voltage has been observed using glow discharge optical emission spectroscopy (GDOES). Ionic diffusion length of 140 nm and ratio of mobile iodide ions of 65 % have been deduced. It is shown that the current-voltage hysteresis in the dark is strongly affected by the halide migration which causes a substantial screening of the applied electric field. Thus we have found a shift of voltage at zero current (< 0.25 V) and a leakage current (< 0.1 mA/cm2) in the dark versus measurement condition. Through the current-voltage curves as a function of temperature we have identified the freezing temperature of the mobile iodides at 260K. Using the Nernst-Einstein equation we have deduced a value of 0.253 eV for the activation energy of the mobile ions.Finally, the ageing process of the solar cell has been investigated with optical and electrical measurements. We deduced that the ageing process appear at first at the perovskite grain surface and boundaries. The electrical characteristics are degraded through a deterioration of the silver top-electrode due to the diffusion of iodides toward the silver as shown by GDOES analysis
Marín, Beloqui José Manuel. "Solution processed inorganic semiconductor solar cells." Doctoral thesis, Universitat Rovira i Virgili, 2015. http://hdl.handle.net/10803/334407.
Full textEn esta tesis, el estudio optoelectrónico y la fabricación de diferentes solución de procesado de semiconductores inorgánicos tales como PbS Quantum Dots y células solares de perovskita se han fabricado. A lo largo de esta tesis medidas optoelectrónicos como fotoinducidas carga Extracción (PICE), fotoinducidas transitoria fotovoltaje (PIT-PV), fotoinducidas transitoria fotocorriente (PIT-PC) Laser transitoria Espectroscopia de Absorción (L-TAS) se han realizado a las células solares eficientes con el fin de estudiar los diferentes procesos eléctricos internos presentes en el dispositivo bajo condiciones de trabajo. Usando estas técnicas, el desdoblamiento de los niveles de Fermi ha sido encontrado como el origen de la tensión en PbS QD células solares (Capítulo 2). Además, en el capítulo 4.1 de un estudio optoelectrónico intensiva se ha realizado a las células solares perovskita mesoporosos, donde se descubrieron decaimientos biexponenciales de TPV y carga diferencial se propuso manera tan adecuada para obtener la carga generada en el dispositivo. Por otra parte, los dispositivos fueron fabricados utilizando diferentes polímeros como HTM, y los resultados proporcionados confirmaron que la regeneración fue superior al 90%, y que PIT-PV realizado en condiciones de oscuridad corresponden a la recombinación entre los huecos de la HTM y los electrones en el TiO2, como presentado en el capítulo 4.2. También, los resultados presentados en el capítulo 4.3 mostraron que una capa de Al2O3 monoatómico ralentiza la recombinación en el dispositivo de aumento de la tensión del dispositivo.
In this thesis, the optoelectronic study and fabrication of different solution processed inorganic semiconductor such as PbS Quantum Dots and perovskite solar cells have been fabricated. Along this thesis optoelectronic measurements such as PhotoInduced Charge Extraction (PICE), PhotoInduced Transient PhotoVoltage (PIT-PV), PhotoInduced Transient PhotoCurrent (PIT-PC) Laser Transient Absorption Spectroscopy (L-TAS) have been performed to efficient solar cells in order to study the different inner electrical processes present in the device under working conditions. Using these techniques, the splitting of Fermi levels have found to be the origin of the voltage in PbS QD solar cells (Chapter 2). Besides, in chapter 4.1 an intensive optoelectronic study has been performed to mesoporous perovskite solar cells, where biexponential decays of TPV were discovered and Differential Charging was proposed as suitable way to obtain the charge generated in the device. Moreover, devices were fabricated using different polymers as HTM, and results provided confirmed that the regeneration was over 90%, and that PIT-PV performed in dark conditions correspond to the recombination between the holes in the HTM and the electrons in the TiO2, as presented in chapter 4.2. Also, results presented in chapter 4.3 showed that a monoatomic layer of Al2O3 slow down the recombination in the device increasing the device voltage..
Noel, Nakita K. "Advances in hybrid solar cells : from dye-sensitised to perovskite solar cells." Thesis, University of Oxford, 2014. https://ora.ox.ac.uk/objects/uuid:e0f54943-546a-49cd-8fd9-5ff07ec7bf0a.
Full textHassler, Julia. "Mesoporous metal oxides for perovskite solar cells." Thesis, Uppsala universitet, Molekyl- och kondenserade materiens fysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-263064.
Full textHoerantner, Maximilian. "Novel device architectures for perovskite solar cells." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:bb0ebbb0-5743-45fa-a69a-3848dc2018bb.
Full textWojciechowski, Konrad. "Electron selective contact in perovskite solar cells." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:0fa3b171-4db3-43d7-9950-1ef338874376.
Full textLiang, Xinxing. "Synthesis of perovskite nanocrystals and their applications in perovskite solar cells." Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.767584.
Full textLi, Yifan Li. "High Performance Perovskite Hybrid Solar Cell Via Interfacial Engineering." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1462812515.
Full textEperon, Giles E. "Active layer control for high efficiency perovskite solar cells." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:1fa78aab-7479-4fe2-8192-e1be1d12c171.
Full textMathiazhagan, Gayathri [Verfasser], and Stefan [Akademischer Betreuer] Glunz. "Interfacial analysis of perovskite solar cells using sub-cells." Freiburg : Universität, 2020. http://d-nb.info/1221523961/34.
Full textSaliba, Michael. "Plasmonic nanostructures and film crystallization in perovskite solar cells." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:fdb36a9e-ddf5-4d27-a8dc-23fffe32a2c5.
Full textLiu, Tianyu. "Perovskite Solar Cells fabrication and Azobenzene Perovskite synthesis: a study in understanding organic-inorganic hybrid lead halide perovskite." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1576840261464488.
Full textAlmora, Rodríguez Osbel. "Hysteresis and Capacitive Features of Perovskite Solar Cells." Doctoral thesis, Universitat Jaume I, 2020. http://hdl.handle.net/10803/669272.
Full textEn el presente trabajo se estudian por varios métodos las distorsiones anómalas en la característica de corriente-voltaje de las celdas solares de perovskita (PSC), típicamente llamada histéresis de J-V. Esto incluye experimentos dinámicos de J-V en modo de corriente continua (DC) y análisis de espectroscopía de impedancia (IS) en oscuridad y bajo iluminación. Las curvas J-V en oscuridad de las PSCs exhiben corrientes capacitivas, relacionadas con un exceso de capacitancia de baja frecuencia en los espectros de IS. Estas dos características están correlacionadas con la respuesta de iones móviles en regiones espaciales de carga hacia las interfaces. Los grandes valores de capacitancia bajo iluminación a frecuencias por debajo de las unidades de Hz se explicaron en términos de regiones de cargas espaciales de iones móviles y capacitancias químicas, suponiendo una proporcionalidad entre el número de iones móviles ionizados/activados y la concentración de portadores de carga y flujo de fotones.
Wang, Jacob Tse-Wei. "Investigation of interface behaviour on perovskite solar cells." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:9b81f5bf-1c5a-40c1-8abe-2978bd44853e.
Full textHambsch, Mike, Qianqian Lin, Ardalan Armin, Paul L. Burn, and Paul Meredith. "Efficient, monolithic large area organohalide perovskite solar cells." Royal Society of Chemistry, 2016. https://tud.qucosa.de/id/qucosa%3A36282.
Full textCacovich, Stefania. "Electron microscopy studies of hybrid perovskite solar cells." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/276753.
Full textSchoenauer, Mathilde. "Enhancing perovskite solar cells through upconversion nanoparticles insertion." Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS369.
Full textRenewable energies represent nowadays one of the keys that can tackle at the same time energy supply needs and a sustainable environmental behavior. Photovoltaic devices convert the energy of sunlight into electricity, and solar energy remains one of the most common renewable energy sources. In the search for cost-effective solar cells, the recently discovered solution-processable hybrid organic-inorganic perovskites are considered as one of the most important candidates. They belong to the category of thin-film technologies and require much less and as abundant resource than Si. One limiting parameter of such photovoltaic devices is however the absorption of low-energy photons (wavelength over 800 nm, the near-infrared range). In order to address this specific loss of sub bandgap photons’ absorption, this PhD thesis aims to develop plasmonic-enhanced upconversion approaches to extend the spectral sensitivity of organo-metal halide perovskite solar cells to the near-IR spectrum. Near-infrared-to-visible up-conversion fluorescent materials can be used to widen the part of the spectrum used for electric current generation. Two low-energy photons are added up in order to give a higher energy photon. However, this effect has a rather small efficiency. This effect being quite inefficient, the idea is to combine those particles with metallic nanoparticles, that have the property to enhance electromagnetic field intensity at a certain wavelength (this is called plasmonic effect). By combining both types of particles, we thus enhance the activity of up-conversion materials (higher emission). Once implemented in a perovskite solar cell, this increases its efficiency
Yang, Fengjiu. "Architecture design for highly efficient perovskite solar cells." Kyoto University, 2019. http://hdl.handle.net/2433/244572.
Full textZhang, Jingyi. "A Life Cycle Sustainability Study of Perovskite Solar Cell Technologies." Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case1554289816394232.
Full textLin, Wei-Chun. "IN-SITU SOLAR CELL STUDIES OF PEROVSKITE FORMATION AND DEGRADATION." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1491403121789203.
Full textAlsalloum, Abdullah Yousef. "Single-Crystal Halide Perovskites for High Efficiency Photovoltaics." Thesis, 2019. http://hdl.handle.net/10754/656579.
Full textWANG, SZU-TAN, and 王斯坦. "Studies of Two-dimensional Perovskites Materials in Solar Cell and Improvement of their Conversion Efficiency." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/8ncr8h.
Full text東海大學
化學系
107
Inorganic-organic perovskite solar cell are one of the most significant materials because of its high absorption and power conversion efficiency and belongs to the direct bandgap, that can make the solar cell thin and can be high efficiency. At present, many types of perovskite solar cells have been developed, and many different electron transport layers, perovskite layers and hole transport layers have been exchanged or replaced. However high efficient perovskite solar cells still uses high temperature sintered TiO2 as the electron transport layer,3D perovskite as the perovskite layer and Spiro-OMeTAD as the hole transport layer. However, since TiO2 needed this structure is too high sintering temperature(550 oC), and therefore increase the difficulty and cost of fabrication of the device, and the 3D perovskite is closely stacked, resulting decreased stability and have more hysteresis-free. In our research, we using different low-temperture to be our electron transport layer, and added urea into 2D perovskite(BA2(MA)2Pb3I10) .The efficiency of ‘ITO/SnO2/CPTA/BA2(MA)2Pb3I10/Spiro-OMeTAD/Au’ was 7.9 % under AM 1.5 sunlight.
"A Fundamental Study of Bulk, Layered, and Monolayers of Hybrid Perovskites." Master's thesis, 2019. http://hdl.handle.net/2286/R.I.54981.
Full textDissertation/Thesis
Masters Thesis Electrical Engineering 2019
Tang, Ming-Chun. "Hybrid Lead Halide Perovskite and Bismuth-Based Perovskite-Inspired Photovoltaics: An In Situ Investigation." Diss., 2019. http://hdl.handle.net/10754/659517.
Full textChiou, Jia-Wei, and 邱嘉威. "Perovskite Solar Cell." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/57794764966117330445.
Full text國立臺灣科技大學
化學工程系
103
Due to own the tunable band gap, high absorption coefficient (1.54x104 cm-1), low non-radiation carrier recombination and long carrier diffusion length, organic-inorganic hybrid perovskite materials received significant attention by many researchers in recent. There are many researchers used organic-inorganic hybrid perovskite materials as light-harvesting materials for solar cells. However, the perovskite materials is not stable in the ambient because it is very sensitive for the humidity and oxygen. Therefore, the performance of perovskite solar cells often affected by the deposition method, annealing temperature… In this study, perovskite solar cells were fabricated inside the glove box under low humidity and oxygen content. For the structure of perovskite solar cells, titanium dioxide (TiO2) nanoparticles were used to construct the mesoporous structural layer. Perovskite light harvesting materials were coated on the TiO2 structural layer via two steps process. Firstly, PbI2, CH3NH3I and hole transport medium (HTM) were coated sequentially via spin coating. Then the metal electrode was deposited by thermal evaporation. From this study, we could observe that the coating method would affect the morphologies of perovskite material and influence the performance of solar cells. In this study, the performance of perovskite solar cell fabricated by the optimal conditions can achieve Jsc=21.3 mA/cm2, Voc=0.99 V, FF=0.69, PCE=14.42 %.
Lin, Jin-Tai, and 林金泰. "Decay Mechanism of Perovskite Solar Cell and Development of Lead-free Perovskite Solar Cells." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/43wua4.
Full text國立臺灣大學
化學研究所
106
Initially, we investigated the degradation of perovskite solar cells under operating situations through in situ X-ray diffraction and in situ X-ray absorption spectroscopies, which revealed that lead hydroxide iodide (PbIOH), a new phase that has not previously been identified as the degradation product of perovskite solar cells, was formed as an end decomposition product inside the cell. The formation of PbIOH could break the interface inside and be the key reason behind the problem of reduced cell life. In second part, we replaced the lead perovskite in carbon-electrode based solar cell with tin perovskite. In third part, we use a zwitterion additive to improve the film morphology of tin perovskite active layer by retarding nucleation process, and the efficiency of corresponding solar cells with 4 cm2 area can achieve 2.1%. In addition, the additive also significantly enhances the stability of device. The final part is about tin perovskite quantum material. We have successfully prepared tin perovskite nanoplate which demonstrates excellent quantum yield of 6.4%, narrow full width at half maximum (FWHM) of 37 nm, and wide tunability window.
Liu, Li-Ting, and 留麗婷. "Research and Development Dye Sensitized Solar Cell and Perovskite Solar Cells." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/14702528770787260979.
Full text中原大學
化學研究所
104
Solar cell research and development from 1954 to the first generation is now in its third generation dye-sensitized solar cell, however, due to the low absorption coefficient of the organic dye and the absorbance spectrum narrow, can not effectively get solar energy, so that the photoelectric conversion efficiency can not go beyond the first generation of conventional silicon solar cells. To compensate for the dye absorption spectrum of sunlight defects, particularly a quantum dot solar cells can be improved photovoltaic characteristics such problems. However, quantum dot solar cells with quantum dots using different materials, for example thirty-five (III-V) family of quantum dot solar cells will be connected to the surface of the electron hole easy to complex, resulting in decreased conductive element; or metal sulfide materials have chemical instability and other issues to be improved. To overcome these problems the quantum dot material, perovskite type lead halide sensitized material i.e. propose to do to resolve the policy. And then opened a new type of perovskite solar cells. In this paper, the development and application of the dye-sensitized solar cells and solar cell perovskite do for discussion.
Yan-HaoChen and 陳彥豪. "Analysis of Doubled Metal Cations Perovskite’s Properties and Their Application for Perovskite Solar Cells." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/79aq44.
Full text國立成功大學
航空太空工程學系
105
The paper presents study of replacing the Pb element in the perovskite and using solvent engineering to fabricate perovskite solar cells. By replacing the Pb element to different metals to fabricate the solar cells, not only the mixture can have the advantages of each element, but also can enhance the performance of the perovskite solar cells liftime. Finally, we fabricated the inverted perovskite solar cells with the efficiency of 9.64%(CuBr2),10.56%(CuCl2),10.04%(CuI) by using the Cu metal. After 200 hours, the solar cells with 0.05M CuBr shows only approximately 5% drop in efficiency, whereas the base cell shows drop in efficiency around 50%. It appears that mixed perovskite solar cells with doubled metal cations can much improve the lifetime Key Words: mix perovskite、metal cation、perovskite solar cell、stability
Chen, Sheng-Ya, and 陳聖亞. "Development of Perovskite Solar Cell Fabrication Process." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/5dbsjc.
Full text國立宜蘭大學
化學工程與材料工程學系碩士班
105
The purpose of this thesis is to investigate the different process perovskite film for the perovskite solar cells (PSCs). The first part of this thesis was pervosktie materials of different halogen. In this stage, PSCs was made form TiO2 electron transport layer, CH3NH3PbI(3-x)Clx or CH3NH3PbI3 perovskite layer by One-step process, Sprio-OMeTAD hole transport layer and Ag electrode. In the same time, change heating temperature to preparation perovskite layer. First, CH3NH3PbI(3-x)Clx perovskite layer heat adjusted from 150℃ to 240℃.When heating temperature was 210℃, the current density was 10.98 mA/cm2 and efficiency obtained 4.67%. Second, CH3NH3PbI3 perovskite layer heat adjusted from 100℃ to 140℃. When heating temperature was 120℃, the current density was 13.88 mA/cm2 and efficiency obtained was 6.16%. In prove CH3NH3PbI3 pervosktie materials was better than CH3NH3PbI(3-x)Clx perovskite materials The second part of this thesis was mainly forcused on the One-Step process perovskite layer and Two-Step Process perovskite layer. In this stage, perovskite solar cells was made form TiO2 electron transport layer, CH3NH3PbI3 perovskite layer, Sprio-OMeTAD hole transport layer and Ag electrode. Two step process perovskite solar cells the current density increased form 10.98 mA/cm2 to 13.88 mA/cm2.The efficiency obatained was 8.06%. Make sure the Two-step process PSCs was better than One-step process PSCs. The third part of this thesis was the optimum condition PSCs. In this stage, PSCs was made form TiO2 electron transport layer, CH3NH3PbI3 perovskite layer by Two-step process, Sprio-OMeTAD hole transport layer and Ag electrode. In the same time, investigate effects PSCs of the diffirent PbI2 Volume. When use 80μL PbI2, the optimum condition PSCs attained current density of 20.87 mA/cm2 and the efficiency to a best value of 12.21%.
Yu, Te-An, and 宇德安. "Solution-Processed Perovskite Solar Cell on Flexible Substrates." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/szzynf.
Full text國立臺灣大學
光電工程學研究所
106
In the first part of this thesis, We synthesize TiO2 nanoparticles and fabricate low-temperature Perovskite solar cells in conventional structure using drop-casting solution process. Device performance was sequentially improved by several testing, including concentration, layer number, spin rate and the annealing temperature of TiO2 nanoparticles which serve as electron transporting layer (ETL) in perovskite solar cell. Annealing temperature and spin rate of Perovskite layer are also discussed in this part by analyzing the Scanning electron microscopy(SEM) figure of Perovskite of different temperature and measuring thickness of Perovskite at different spin rates, respectively. It proves that the drop-casting process, a fast and simple process, is beneficial for complete crystallization of Perovskite . We also discuss the difference between low-temp.(<150℃) TiO2 process and high-temp.( 550℃) sintering TiO2 by using AFM to measure the morphology of different TiO2 film and discussing its impact on the device performance. Finally the power conversion efficiency of the low-temperature Perovskite solar cells in this study has reached 13.42%, with a fill factor (F.F) of 66.45%. In the second part, we fabricated perovskite solar cell on flexible substrate. We found out that with the increase of TiO2 layer, the coverage of TiO2 increases, which is proved by AFM figure of different layer TiO2. Our best cell with tri-layer TiO2 has reached a power conversion efficiency of 6.67% . We also tested the bending stability of our flexible devices. After 500 bending cycles with radius of curvature set at 2.5mm, 91% of the original efficiency has remained. In order order to increase the conductivity of ITO on PEN substrate, we use Pedot between ITO and TiO2 and discuss the effect of Pedot.
JUNG, LEE HSIN, and 李欣容. "Fabrication of Perovskite Solar Cell by Solution Processing." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/33745536342938684530.
Full text中華科技大學
機電光工程研究所碩士班
103
With global warming and energy crisis ,many plans of renewable energy are invesigated to replace traditional fossil fuel. But all of they are still high cost, so I would like to find a low-cost way to fabricate solar cell which can be made on large-scale.Organometal halide perovskites have attracted many researcher as a promising light-harvesting material for high-efficiency in the short six years. Here we fabricate ZnO nanorod incorporating into Pero-vskite absorber layer, and control the growth time of nanorod to investigate the variation of conversion efficiency. We have power conversion efficiency of 7.76% when the ZnO nanorod grow 75 minutes, better than the PCE of 4.16% when grow 55 minutes.(as measured under simulated full sunlight),and with a good short-circuit current density Jsc of 20.08 mA/cm2 .This demonstrates that ZnO nanorod is a good charge collector in perovskite solar cell.