Academic literature on the topic 'Perovskity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Perovskity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Perovskity"
Meyer, Edson, Dorcas Mutukwa, Nyengerai Zingwe, and Raymond Taziwa. "Lead-Free Halide Double Perovskites: A Review of the Structural, Optical, and Stability Properties as Well as Their Viability to Replace Lead Halide Perovskites." Metals 8, no. 9 (August 27, 2018): 667. http://dx.doi.org/10.3390/met8090667.
Full textYang, Bilin, Yujun Xie, Pan Zeng, Yurong Dong, Qiongrong Ou, and Shuyu Zhang. "Tightly Compacted Perovskite Laminates on Flexible Substrates via Hot-Pressing." Applied Sciences 10, no. 6 (March 11, 2020): 1917. http://dx.doi.org/10.3390/app10061917.
Full textMitchell, Roger H., Mark D. Welch, and Anton R. Chakhmouradian. "Nomenclature of the perovskite supergroup: A hierarchical system of classification based on crystal structure and composition." Mineralogical Magazine 81, no. 3 (June 2017): 411–61. http://dx.doi.org/10.1180/minmag.2016.080.156.
Full textKorolev, Viacheslav I., Anatoly P. Pushkarev, Petr A. Obraztsov, Anton N. Tsypkin, Anvar A. Zakhidov, and Sergey V. Makarov. "Enhanced terahertz emission from imprinted halide perovskite nanostructures." Nanophotonics 9, no. 1 (December 27, 2019): 187–94. http://dx.doi.org/10.1515/nanoph-2019-0377.
Full textMcDonald, Calum, Chengsheng Ni, Paul Maguire, Paul Connor, John Irvine, Davide Mariotti, and Vladimir Svrcek. "Nanostructured Perovskite Solar Cells." Nanomaterials 9, no. 10 (October 18, 2019): 1481. http://dx.doi.org/10.3390/nano9101481.
Full textHeidari Gourji, Fatemeh, and Dhayalan Velauthapillai. "A Review on Cs-Based Pb-Free Double Halide Perovskites: From Theoretical and Experimental Studies to Doping and Applications." Molecules 26, no. 7 (April 1, 2021): 2010. http://dx.doi.org/10.3390/molecules26072010.
Full textEra, Masanao, Yumeko Komatsu, and Naotaka Sakamoto. "Enhancement of Exciton Emission in Lead Halide-Based Layered Perovskites by Cation Mixing." Journal of Nanoscience and Nanotechnology 16, no. 4 (April 1, 2016): 3338–42. http://dx.doi.org/10.1166/jnn.2016.12295.
Full textWyn Jones, Eurig, Peter James Holliman, Leon Bowen, Arthur Connell, Christopher Kershaw, and Diana Elizabeth Meza-Rojas. "Hybrid Al2O3-CH3NH3PbI3 Perovskites towards Avoiding Toxic Solvents." Materials 13, no. 1 (January 6, 2020): 243. http://dx.doi.org/10.3390/ma13010243.
Full textWang, Fangfang, Qing Chang, Yikai Yun, Sizhou Liu, You Liu, Jungan Wang, Yinyu Fang, et al. "Hole-Transporting Low-Dimensional Perovskite for Enhancing Photovoltaic Performance." Research 2021 (May 28, 2021): 1–11. http://dx.doi.org/10.34133/2021/9797053.
Full textWong, Walter P. D., John V. Hanna, and Andrew C. Grimsdale. "The classification of 1D `perovskites'." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 77, no. 3 (May 20, 2021): 408–15. http://dx.doi.org/10.1107/s2052520621004376.
Full textDissertations / Theses on the topic "Perovskity"
Strejček, Josef. "Studium syntézy a struktury keramických perovskitových materiálů pro energetické aplikace." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-229301.
Full textCihlář, Jaroslav. "Studium perovskitových oxidových katalyzátorů pro parciální oxidace metanu." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2011. http://www.nusl.cz/ntk/nusl-233339.
Full textBartoníčková, Eva. "Syntéza a analýza kompozitních oxidových keramik v přítomnosti nekonvenčních energetických polí." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2010. http://www.nusl.cz/ntk/nusl-233312.
Full textGavranović, Stevan. "Monokrystaly perovskitů pro detekci elektromagnetického záření." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-445139.
Full textJančík, Procházková Anna. "Syntéza a studium nano-strukturovaných perovskitů pro aplikace v organické elektronice." Doctoral thesis, Vysoké učení technické v Brně. Fakulta chemická, 2020. http://www.nusl.cz/ntk/nusl-433268.
Full textLiška, Petr. "Optická charakterizace pokročilých nanomateriálů s vysokým laterálním rozlišením." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443725.
Full textDobeš, Jiří. "Studium přípravy a katalytické aktivity dopovaných ABO3 perovskitů pro syntézu vodíku." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2015. http://www.nusl.cz/ntk/nusl-217156.
Full textMlčkovová, Hana. "Studium dielektrických vlastností krystalů perovskitů." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-445134.
Full textBufaiçal, Leandro Félix de Sousa. "Propriedades estruturais, eletrônicas e magnéticas dos óxidos Ca2-xLaxFelrO6, Sr2-xLaxFelrO6 e TbMnO3." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/278527.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin
Made available in DSpace on 2018-08-15T19:42:04Z (GMT). No. of bitstreams: 1 Bufaical_LeandroFelixdeSousa_D.pdf: 2467040 bytes, checksum: 4460b75c04d570fb27584b7dfff2c5f3 (MD5) Previous issue date: 2010
Resumo: Há muitas décadas os óxidos de metais de transição são tema de grande interesse científico devido à grande variedade de propriedades físicas interessantes que apresentam, com suas possíveis aplicações tecnológicas. Mais recentemente, por exemplo, os óxidos de metais de transição com propriedades multiferróicas ganharam destaque na comunidade científica como potenciais dispositivos magneto-eletrônicos. Muitos óxidos de metais de transição se formam na estrutura cristalina chamada perovskita simples, com simetria cúbica ou distorcida. Muitos outros óxidos podem se cristalizar numa variante da perovskita simples, a chamada perovskita dupla ordenada (PDO), que possui fórmula geral A2B¿B¿¿O6, onde o íon A ocupa os vértices do cubo enquanto os cátions B¿ e B¿¿ se alternam nos centros dos octaedros de oxigênio. Dois compostos com estrutura PDO bastante estudados são o Sr2FeReO6 e Sr2FeMoO6 devido ao fato de apresentarem, entre outras propriedades interessantes, comportamento meio-metálico (halfmetal), magnetrorresistência por tunelamento à temperatura ambiente, ferrimagnetismo com TC acima de 400K em ambos os compostos. As propriedades estruturais, eletrônicas e magnéticas dessas PDOs estão altamente conectadas e são fortemente dependentes do grau de hibridização dos orbitais d dos cátions B¿¿. Assim, se fazem importantes os estudos de novos compostos PDO a fim de se investigar as idéias correntes propostas em literatura e, nesse contexto, reportamos aqui os resultados da síntese e caracterização das séries inéditas Ca2-xLaxFeIrO6 e Sr2-xLaxFeIrO6, onde o Ir, assim como o Re e Mo, é metal de transição, no caso com caráter 5d, e pode assumir diferentes estados de valência. As medidas de magnetização indicaram que estes sistemas tendem a evoluir de antiferromagnéticos nas extremidades das séries, x = 0 e x = 2, para ferrimagnéticos em regiões intermediárias da série. Medidas realizadas no composto de maior magnetização da série de Sr, o Sr1.2La0.8FeIrO6, indicaram que este composto se ordena ferrimagneticamente em torno de 700 K, sendo esta a mais elevada TC já reportada para perovskitas duplas. Medidas de resistividade em função da temperatura indicaram que os compostos apresentam comportamento isolante e praticamente nenhum efeito magneto-resistivo. No composto antiferromagnético Sr2FeIrO6 foi estudada a resistividade sob efeito de pressão e, embora não tenha ocorrido nenhuma transição metal-isolante, ocorre uma diminuição sistemática da resistência do material e da inclinação da curva à medida que a pressão aumenta, indicando um comportamento do tipo isolante de Mott nesse composto. Neste trabalho são apresentados também resultados dos estudos realizados na perovskita TbMnO3. Realizamos neste óxido medidas de susceptibilidade magnética, calor específico, Ressonância Paramagnética Eletrônica (EPR) e absorção de microondas para várias temperaturas. A susceptibilidade magnética e o calor específico confirmaram para a amostra estudada as temperaturas de transição de fase magnética (TN = 41 K) e ferroelétrica (Tlock) já reportadas em literatura. Os espectros de EPR mostraram para todo o intervalo de temperatura uma única linha consistente com uma forma de linha Lorentziana e um valor de g independente da temperatura g = 1.96(3) consistente com Mn3+ em um meio isolante. A largura de linha sofreu um alargamento com a temperatura seguindo uma lei do tipo C/T. Esse alargamento impediu a observação dos espectros de ressonância em torno das regiões de temperaturas das transições de fase magnética e ferroelétrica. Devido à forte dependência da constante dielétrica com a freqüência, as medidas realizadas com a cavidade de campo elétrico não permitiram a observação de qualquer anomalia em torno das temperaturas de transições
Abstract: For many decades the transition metal oxides are subject of great scientific interest because of the wide variety of interesting physical properties and their potential technological applications. More recently, for example, oxides of transition metals with multiferroic properties have been considered as potential magneto-electronic devices. Many transition metal oxides form in the perovskite crystalline structure, with cubic or distorted symmetry. Many other oxides can crystallize in a variant of the simple perovskite, called the ordered double perovskite (ODP), which has the general formula A2B'B''O6, where the A ion occupies the vertices of the cube while the cations B 'and B'' alternate in the centers of the oxygen octahedra. Sr2FeReO6 and Sr2FeMoO6 are two compounds with the ODP structure which were extensively studied due to their interesting properties such as half-metal behavior, tunneling magnetoresistance at room temperature and ferrimagnetic order (TC above 400 K). The structural, electronic and magnetic properties of these ODPs are highly correlated and are strongly dependent on the strong d orbitals hybridization of the of the B'' cations. Therefore, studies of new ODP compounds are important in order to investigate the current ideas proposed in the literature and improve the understanding of their physical properties. We report here our results of synthesis and characterization of the unpublished series Ca2-xLaxFeIrO6 and Sr2-xLaxFeIrO6, where the Ir such as Re and Mo are transition metal, with d character that can assume different valence states. The magnetic measurements indicated that those systems tend to evolve from antiferromagnetics at the ends of the series, x = 0 and x = 2, to ferrimagnetic for intermediate regions of the series. Measurements performed in the compound of higher magnetization in the Sr serie, Sr1.2La0.8FeIrO6 indicated that this compound orders ferrimagnetic around 700 K, which is the highest TC ever reported for double perovskites. Resistivity measurements as a function of temperature indicated that these compounds also exhibit insulating behavior and virtually no magneto-resistive effect. In the antiferromagnetic compound Sr2FeIrO6, the effect of pressure on the resistivity was investigated, and although no metal-insulator transition was seen, there is a systematic decrease of the resistance and the slope of the curve as the pressure increases, indicating a Mott insulator-like behavior in this compound. This work also presents results on the TbMnO3 perovskite. We have performed magnetic susceptibility, specific heat, Electron Paramagnetic Resonance (EPR) and microwave absorption measurements at various temperatures. Magnetic susceptibility and specific heat data confirmed the ocurrence of a magnetic (TN = 41 K) and ferroelectric (Tlock) phase transition. The EPR spectra showed, for the entire temperature range measured, a single Lorentzian line shape and T independent g-value = 1.96 (3), consistent with the resonance of Mn3+ in an insulating environment. The width line broadens with the decreasing temperature following a C/T law. This broadening prevented the observation of the resonance spectra near the magnetic and ferroelectric phase transitions. Because of the strong frequency dependence of the dielectric constant, the measurements performed with the electric field cavity also did not allow observation of any anomaly around the ferroelectric transition
Doutorado
Física da Matéria Condensada
Doutor em Ciências
Tanabe, Eurico Yuji. "\"Óxidos do tipo Perovskitas para reações de decomposição direta de NO e redução de NO com CO\"." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/75/75131/tde-16042007-111408/.
Full textA important technology to reduce the atmospheric pollution is the use of catalysts, to transform high pollutant as NO in other inoffensive gases to the environment. In this work, the perovskite oxides La2CuO4, LaNiO3, LaMnO3, La1,4Sr0,6CuO4, La0,7Sr0,3NiO3 e La0,7Sr0,3MnO3 were prepared through co-precipitation method and characterized by X-ray diffraction and temperature programmed reduction, nitrogen physsisorption and subsequent valued on the reduction of NO by CO and the direct decomposition of NO. These reaction were tested at 400oC and 500oC temperatures and times of reaction between 7 and 10 hours. Through the catalytic tests the La2CuO4 catalyst shown the best activity to the reduce reaction, and when the La is partially substituted by strontium all the catalyst showed a better significant for all the catalysts. The XRD analysis shown that the catalytic structure of the catalysts were preserved after the catalytic test yet.
Books on the topic "Perovskity"
Tilley, Richard J. D. Perovskites. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118935651.
Full textZhou, Ye, and Yan Wang, eds. Perovskite Quantum Dots. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6637-0.
Full textArul, Narayanasamy Sabari, and Vellalapalayam Devaraj Nithya, eds. Revolution of Perovskite. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1267-4.
Full textSum, Tze-Chien, and Nripan Mathews, eds. Halide Perovskites. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527800766.
Full textKundu, Asish K. Magnetic Perovskites. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2761-8.
Full textOsako, Masahiro. Thermal diffusivity of MgSiO₃ perovskite. Misasa, Japan: Institute for Study of the Earth's Interior, Okayama University, 1990.
Find full textPark, Nam-Gyu, Michael Grätzel, and Tsutomu Miyasaka, eds. Organic-Inorganic Halide Perovskite Photovoltaics. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-35114-8.
Full textWijn, H. P. J., ed. Halide Perovskite-Type Layer Structures. Berlin/Heidelberg: Springer-Verlag, 2001. http://dx.doi.org/10.1007/b79064.
Full textProkopalo, O. I. Ėlektrofizicheskie svoĭstva oksidov semeĭstva perovskita. Rostov-na-Donu: Izd-vo Rostovskogo universiteta, 1985.
Find full textWijn, H. P. J., ed. Perovskites I (Part a). Berlin/Heidelberg: Springer-Verlag, 1996. http://dx.doi.org/10.1007/b42332.
Full textBook chapters on the topic "Perovskity"
Tiwari, Udit, and Sahab Dass. "Moisture Stable Soot Coated Methylammonium Lead Iodide Perovskite Photoelectrodes for Hydrogen Production in Water." In Springer Proceedings in Energy, 141–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_18.
Full textGiorno, Lidietta, and Heiner Strathmann. "Perovskite Membranes." In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_2250-1.
Full textSurendran, K. P., and Rick Ubic. "Perovskites." In Microwave Materials and Applications 2V Set, 81–148. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119208549.ch3.
Full textFedorov, Vladimir. "Perovskites." In Ceramics Science and Technology, 257–97. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527631735.ch6.
Full textFedorov, Vladimir. "Perovskites." In Ceramics Science and Technology, 257–97. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527631940.ch18.
Full textFu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Organic Hole-Transporting Materials." In Perovskite Solar Cells, 159–82. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-10.
Full textFu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Inorganic Hole-Transporting Materials." In Perovskite Solar Cells, 183–200. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-11.
Full textFu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Hole-Transporting-Free Perovskite Solar Cells." In Perovskite Solar Cells, 201–18. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-12.
Full textFu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Tin-Based Perovskites." In Perovskite Solar Cells, 221–34. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-14.
Full textFu, Kunwu, Anita Wing Yi Ho-Baillie, Hemant Kumar Mulmudi, and Pham Thi Thu Trang. "Germanium-Based Perovskites." In Perovskite Solar Cells, 235–38. Includes bibliographical references and index.: Apple Academic Press, 2019. http://dx.doi.org/10.1201/9780429469749-15.
Full textConference papers on the topic "Perovskity"
Cai, Zhuangli, Zuolin Liu, Bin Yang, Min Yang, and Shangchao Lin. "Diffusion-Mediated Anharmonic Phonon Transport and Thermal Conductivity Reduction in Defective Hybrid Perovskites." In ASME 2021 Heat Transfer Summer Conference collocated with the ASME 2021 15th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/ht2021-62601.
Full textJena, Hrudananda, and B. Rambabu. "Effect of Sonochemical, Regenerative Sol Gel and Microwave Assisted Synthesis Techniques on the Formation of Dense Electrolytes and Porus Electrodes for All Perovskite IT-SOFCs." In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97262.
Full textHameed, Areeba, Khulood Logade, Naba Ali, Priya Ghosh, Sadiya Shafath, Sumaiya Salim, Anchu Ashok, Anand Kumar, and Mohd Ali H. Saleh Saad. "Highly active Bifunctional Lamo3 (M=Cr, Mn, Fe, Co, Ni) Perovskites for Oxygen Reduction and Oxygen Evolution Reaction in Alkaline Media." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0106.
Full textPedesseau, L., M. Kepenekian, D. Sapori, Y. Huang, A. Rolland, A. Beck, C. Cornet, et al. "Dielectric properties of hybrid perovskites and drift-diffusion modeling of perovskite cells." In SPIE OPTO, edited by Alexandre Freundlich, Laurent Lombez, and Masakazu Sugiyama. SPIE, 2016. http://dx.doi.org/10.1117/12.2214007.
Full textZhang, Jingyi, Xianfeng Gao, Yelin Deng, Yuanchun Zha, and Chris Yuan. "Cradle-to-Grave Life Cycle Assessment of Solid-State Perovskite Solar Cells." In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-2970.
Full textYu, Zhengshan J., Bo Chen, Jinsong Huang, and Zachary C. Holman. "Manufacturable Perovskite/Silicon Tandems with Solution-Processed Perovskites on Textured Silicon Bottom Cells." In 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC). IEEE, 2020. http://dx.doi.org/10.1109/pvsc45281.2020.9300605.
Full textGhahremani, Amir H., and Thad Druffel. "Intense Pulse Light Annealing for Perovskite Photovoltaics." In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8394.
Full textCtibor, P., P. Rohan, K. Neufuss, B. Kolman, J. Dubsky, and P. Chraska. "Plasma Spraying of Titanates I." In ITSC 2000, edited by Christopher C. Berndt. ASM International, 2000. http://dx.doi.org/10.31399/asm.cp.itsc2000p0945.
Full textStefanovsky, S. V., A. G. Ptashkin, Y. M. Kuliako, S. A. Perevalov, S. V. Yudintsev, A. M. Chekmarev, A. V. Ochkin, and A. M. Chemarev. "Development of Actinide-Containing Waste Immobilization Process." In ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4673.
Full textManzoor, Salman, Jakob Hausele, Kevin A. Bush, Zhengshan J. Yu, Michael D. McGehee, and Zachary C.Holman. "Current-matching in two-terminal perovskite/silicon tandems employing wide-bandgap perovskites and varying light-management schemes." In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). IEEE, 2018. http://dx.doi.org/10.1109/pvsc.2018.8547757.
Full textReports on the topic "Perovskity"
Brosha, E. L., B. W. Chung, and F. H. Garzon. Electrochemical studies of perovskite mixed conductors. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/10103797.
Full textNowicki, Suzanne Florence, Charles Olson Leak, Jeremy Tyler Tisdale, Duc Ta Vo, and Michael Duncan Yoho. Performance Characterization of Halide Perovskite Detectors. Office of Scientific and Technical Information (OSTI), February 2020. http://dx.doi.org/10.2172/1599027.
Full textHuang, Jinsong. Developing Efficient Perovskite/Silicon Tandem Devices. Office of Scientific and Technical Information (OSTI), December 2019. http://dx.doi.org/10.2172/1583171.
Full textMitzi, David, and Yanfa Yan. High Performance Perovskite-Based Solar Cells. Office of Scientific and Technical Information (OSTI), January 2020. http://dx.doi.org/10.2172/1582433.
Full textMcGehee, Michael, and Tonio Buonassisi. Perovskite Solar Cells for High-Efficiency Tandems. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1420976.
Full textChern, Ming Y., F. J. DiSalvo, J. B. Parise, and Joyce A. Goldstone. The Distortion of Anti-Perovskite Nitride AsNCa3. Fort Belvoir, VA: Defense Technical Information Center, May 1991. http://dx.doi.org/10.21236/ada236719.
Full textVanderbilt, David. Structural Properties of Ferroelectric Perovskites. Fort Belvoir, VA: Defense Technical Information Center, February 1998. http://dx.doi.org/10.21236/ada337843.
Full textRigdon, Katharine, and Anthony McDaniel. Solar thermochemical hydrogen production with complex perovskite oxides. Office of Scientific and Technical Information (OSTI), August 2019. http://dx.doi.org/10.2172/1762991.
Full textNowick, A. Protons and lattice defects in perovskite-related oxides. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/7172698.
Full textRambabu Bobba. Dense Membranes for Anode Supported all Perovskite IT-SOFCs. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/902844.
Full text