Journal articles on the topic 'Persistent slip band'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Persistent slip band.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sauzay, Maxime, Pierre Evrard, and Karine Bavard. "Influence of Slip Localization on Surface Relief Formation and Grain Boundary Microcrack Nucleation." Key Engineering Materials 465 (January 2011): 35–40. http://dx.doi.org/10.4028/www.scientific.net/kem.465.35.
Full textSchiller, C., and D. Walgraef. "Numerical simulation of persistent slip band formation." Acta Metallurgica 36, no. 3 (1988): 563–74. http://dx.doi.org/10.1016/0001-6160(88)90089-2.
Full textKolář, M., M. Beneš, J. Kratochvíl, and P. Pauš. "Numerical Simulations of Glide Dislocations in Persistent Slip Band." Acta Physica Polonica A 128, no. 4 (2015): 506–10. http://dx.doi.org/10.12693/aphyspola.128.506.
Full textHunsche, A., and P. Neumann. "Quantitative measurement of persistent slip band profiles and crack initiation." Acta Metallurgica 34, no. 2 (1986): 207–17. http://dx.doi.org/10.1016/0001-6160(86)90192-6.
Full textDéprés, Christophe, Christian F. Robertson, Marc Fivel, and Suzanne Degallaix. "A Three Dimensional Discrete Dislocation Dynamics Analysis of Cyclic Straining in 316L Stainless Steel." Materials Science Forum 482 (April 2005): 163–66. http://dx.doi.org/10.4028/www.scientific.net/msf.482.163.
Full textCordero, L., A. Ahmadieh, and P. K. Mazumdar. "A cumulative fatigue damage formulation for persistent slip band type materials." Scripta Metallurgica 22, no. 11 (1988): 1761–64. http://dx.doi.org/10.1016/s0036-9748(88)80279-5.
Full textMatsuno, Hiroshi. "Characteristics of Complementary Plastic Energy Produced by Hysteresis Curves and Analyses of Microstructures in Fatigued Metals." Key Engineering Materials 340-341 (June 2007): 513–18. http://dx.doi.org/10.4028/www.scientific.net/kem.340-341.513.
Full textBaxter, W. J., and P. C. Wang. "A finite element calculation of the deformation of a persistent slip band." Scripta Metallurgica 22, no. 2 (1988): 207–11. http://dx.doi.org/10.1016/s0036-9748(88)80335-1.
Full textKřišťan, J., and J. Kratochvíl. "Interactions of glide dislocations in a channel of a persistent slip band." Philosophical Magazine 87, no. 29 (2007): 4593–613. http://dx.doi.org/10.1080/14786430701576324.
Full textCao, Wei-di, and Hans Conrad. "ON THE EFFECT OF PERSISTENT SLIP BAND (PSB) PARAMETERS ON FATIGUE LIFE." Fatigue & Fracture of Engineering Materials and Structures 15, no. 6 (1992): 573–83. http://dx.doi.org/10.1111/j.1460-2695.1992.tb01296.x.
Full textGregor, V., and J. Kratochvíl. "Self-organization approach to cyclic microplasticity: A model of a persistent slip band." International Journal of Plasticity 14, no. 1-3 (1998): 159–72. http://dx.doi.org/10.1016/s0749-6419(97)00046-6.
Full textMa, B. T., and C. Laird. "Comments on “A cumulative fatigue damage formulation for persistent slip band type materials”." Scripta Metallurgica 23, no. 6 (1989): 1029–31. http://dx.doi.org/10.1016/0036-9748(89)90291-3.
Full textPolák, Jaroslav, Jiří Man, Tomáš Vystavěl, and Lukáš Zouhar. "Fatigue Crack Initiation in Crystalline Materials – Experimental Evidence and Models." Key Engineering Materials 345-346 (August 2007): 379–82. http://dx.doi.org/10.4028/www.scientific.net/kem.345-346.379.
Full textKITAMURA, Takayuki, Takashi SUMIGAWA, and Kazuyoshi OISHI. "3-Dimensional Local Stress Field in Copper Polycrystal and Persistent Slip Band under Fatigue." Transactions of the Japan Society of Mechanical Engineers Series A 69, no. 677 (2003): 203–9. http://dx.doi.org/10.1299/kikaia.69.203.
Full textKochmann, Dennis M., and Klaus Hackl. "Formation of persistent slip band-structures during cyclic loading in finite-strain crystal plasticity." PAMM 10, no. 1 (2010): 301–2. http://dx.doi.org/10.1002/pamm.201010143.
Full textKřištán, Josef, Jan Kratochvíl, Vojtěch Minárik, and Michal Beneš. "Numerical simulation of interacting dislocations glide in a channel of a persistent slip band." Modelling and Simulation in Materials Science and Engineering 17, no. 4 (2009): 045009. http://dx.doi.org/10.1088/0965-0393/17/4/045009.
Full textBaxter, William J., and Pei-Chung Wang. "A finite element model of a persistent slip band based upon electron microscopic evidence." Metallurgical Transactions A 19, no. 10 (1988): 2457–65. http://dx.doi.org/10.1007/bf02645473.
Full textLavenstein, Steven, Yejun Gu, Dylan Madisetti, and Jaafar A. El-Awady. "The heterogeneity of persistent slip band nucleation and evolution in metals at the micrometer scale." Science 370, no. 6513 (2020): eabb2690. http://dx.doi.org/10.1126/science.abb2690.
Full textFöckel, H. J., and Th Goldberg. "Role of eigenstresses in the propagation of a persistent slip band nucleus near a free surface." Physica Status Solidi (a) 105, no. 2 (1988): K111—K114. http://dx.doi.org/10.1002/pssa.2211050250.
Full textŠittner, P., V. Novák, and J. Brádler. "Persistent slip band — Grain boundary interactions in low strain fatigue of isoaxial Fe-14wt. %Cr bicrystals." Scripta Metallurgica et Materialia 27, no. 6 (1992): 705–10. http://dx.doi.org/10.1016/0956-716x(92)90492-w.
Full textMeng, Fanshi, Emilie Ferrié, Christophe Déprés, and Marc Fivel. "3D discrete dislocation dynamic investigations of persistent slip band formation in FCC metals under cyclical deformation." International Journal of Fatigue 149 (August 2021): 106234. http://dx.doi.org/10.1016/j.ijfatigue.2021.106234.
Full textOu, Chun-Yu, and C. Richard Liu. "The Effects of Grain Size and Strain Amplitude on Persistent Slip Band Formation and Fatigue Crack Initiation." Metallurgical and Materials Transactions A 50, no. 11 (2019): 5056–65. http://dx.doi.org/10.1007/s11661-019-05423-6.
Full textMeyers, C. A., and D. S. Grummon. "A finite element model of persistent slip band interaction with strengthened surface films during low cycle fatigue." Materials Science and Engineering: A 130, no. 2 (1990): 127–38. http://dx.doi.org/10.1016/0921-5093(90)90054-7.
Full textFourel, Lucas, Jean-Philippe Noyel, Etienne Bossy, Xavier Kleber, Philippe Sainsot, and Fabrice Ville. "Towards a grain-scale modeling of crack initiation in rolling contact fatigue - Part 2: Persistent slip band modeling." Tribology International 163 (November 2021): 107173. http://dx.doi.org/10.1016/j.triboint.2021.107173.
Full textLi, Wei. "Review on Surface Failure Mode of Metallic Materials in Very High Cycle Fatigue Regime." Advanced Materials Research 902 (February 2014): 66–69. http://dx.doi.org/10.4028/www.scientific.net/amr.902.66.
Full textZhong, Wei Hua, Zhen Feng Tong, Zheng Wang, Jin Xu Li, and Wen Yang. "Fatigue Mechanism of Domestic 316LN Stainless Steel in Simulated AP1000 First-Loop Water Environment." Materials Science Forum 913 (February 2018): 247–53. http://dx.doi.org/10.4028/www.scientific.net/msf.913.247.
Full textPrasad Reddy, G. V., R. Sandhya, K. Laha, C. Depres, C. Robertson, and A. K. Bhaduri. "The effect of the location of stage-I fatigue crack across the persistent slip band on its growth rate – A 3D dislocation dynamics study." Philosophical Magazine 97, no. 16 (2017): 1265–80. http://dx.doi.org/10.1080/14786435.2017.1294269.
Full textWang, Dong Ming, Wei Li, Ping Wang, and Wei Xian Chu. "Review on Surface Failure Mode of Metallic Materials in Very High Cycle Fatigue Regime." Advanced Materials Research 652-654 (January 2013): 1295–300. http://dx.doi.org/10.4028/www.scientific.net/amr.652-654.1295.
Full textShodja, H. M., Y. Hirose, and T. Mura. "Intergranular Crack Nucleation in Bicrystalline Materials Under Fatigue." Journal of Applied Mechanics 63, no. 3 (1996): 788–95. http://dx.doi.org/10.1115/1.2823364.
Full textWeidner, Anja, and Werner Skrotzki. "Persistent Slip Bands." Materials Testing 51, no. 9 (2009): 526–31. http://dx.doi.org/10.3139/120.110065.
Full textMatsuno, Hiroshi. "Fundamental Concepts for Formulating Fatigue Strength Diagrams of Notched Metals." Advanced Materials Research 891-892 (March 2014): 1379–84. http://dx.doi.org/10.4028/www.scientific.net/amr.891-892.1379.
Full textWeidner, A., R. Beyer, C. Blochwitz, C. Holste, A. Schwab, and W. Tirschler. "Slip activity of persistent slip bands in polycrystalline nickel." Materials Science and Engineering: A 435-436 (November 2006): 540–46. http://dx.doi.org/10.1016/j.msea.2006.07.039.
Full textBrown, L. M. "Dislocation plasticity in persistent slip bands." Materials Science and Engineering: A 285, no. 1-2 (2000): 35–42. http://dx.doi.org/10.1016/s0921-5093(00)00662-6.
Full textPolák, J., V. Mazánová, M. Heczko, I. Kuběna, and J. Man. "Profiles of persistent slip markings and internal structure of underlying persistent slip bands." Fatigue & Fracture of Engineering Materials & Structures 40, no. 7 (2017): 1101–16. http://dx.doi.org/10.1111/ffe.12567.
Full textLukáš, P., and L. Kunz ‡. "Role of persistent slip bands in fatigue." Philosophical Magazine 84, no. 3-5 (2004): 317–30. http://dx.doi.org/10.1080/14786430310001610339.
Full textKubin, Ladislas, and Maxime Sauzay. "Persistent slip bands: Similitude and its consequences." Acta Materialia 104 (February 2016): 295–302. http://dx.doi.org/10.1016/j.actamat.2015.11.010.
Full textWeidner, A., W. Tirschler, C. Blochwitz, and Werner Skrotzki. "The Half-Cycle Slip Activity of Persistent Slip Bands in Polycrystals." Materials Science Forum 567-568 (December 2007): 123–27. http://dx.doi.org/10.4028/www.scientific.net/msf.567-568.123.
Full textPolák, Jaroslav, Jiří Man, and Ivo Kuběna. "The True Shape of Persistent Slip Markings in Fatigued Metals." Key Engineering Materials 592-593 (November 2013): 781–84. http://dx.doi.org/10.4028/www.scientific.net/kem.592-593.781.
Full textBuque, C. "Persistent slip bands in cyclically deformed nickel polycrystals." International Journal of Fatigue 23, no. 6 (2001): 459–66. http://dx.doi.org/10.1016/s0142-1123(01)00013-5.
Full textBrown, L. M. "Dislocation bowing and passing in persistent slip bands." Philosophical Magazine 86, no. 25-26 (2006): 4055–68. http://dx.doi.org/10.1080/14786430500501689.
Full textBrown, L. M. "Cracks and extrusions caused by persistent slip bands." Philosophical Magazine 93, no. 28-30 (2013): 3809–20. http://dx.doi.org/10.1080/14786435.2013.798048.
Full textSchwartz, Julien, Olivier Fandeur, and Colette Rey. "Modelling of Low Cycle Fatigue Initiation of 316LN Based on Crystalline Plasticity and Geometrically Necessary Dislocations." Materials Science Forum 636-637 (January 2010): 1137–42. http://dx.doi.org/10.4028/www.scientific.net/msf.636-637.1137.
Full textZhang, Z. F., Z. G. Wang, and J. Eckert. "What types of grain boundaries can be passed through by persistent slip bands?" Journal of Materials Research 18, no. 5 (2003): 1031–34. http://dx.doi.org/10.1557/jmr.2003.0141.
Full textPetrenec, Martin, Jaroslav Polák, Tomáš Šamořil, Jiří Dluhoš, and Karel Obrtlík. "In Situ Study of the Mechanisms of High Temperature Damage in Elastic-Plastic Cyclic Loading of Nickel Superalloy." Advanced Materials Research 891-892 (March 2014): 530–35. http://dx.doi.org/10.4028/www.scientific.net/amr.891-892.530.
Full textTrochidis, A. "Formation and evolution of persistent slip bands in metals." Journal of the Mechanics and Physics of Solids 48, no. 8 (2000): 1761–75. http://dx.doi.org/10.1016/s0022-5096(99)00077-0.
Full textKubin, Ladislas, and Maxime Sauzay. "Persistent slip bands: The bowing and passing model revisited." Acta Materialia 132 (June 2017): 517–24. http://dx.doi.org/10.1016/j.actamat.2017.04.064.
Full textDodaran, M., M. M. Khonsari, and S. Shao. "Critical operating stress of persistent slip bands in Cu." Computational Materials Science 165 (July 2019): 114–20. http://dx.doi.org/10.1016/j.commatsci.2019.04.036.
Full textPolák, Jaroslav, and Jiří Man. "Cyclic Slip Localization and Crack Initiation in Crystalline Materials." Advanced Materials Research 891-892 (March 2014): 452–57. http://dx.doi.org/10.4028/www.scientific.net/amr.891-892.452.
Full textAifantis, Elias C. "On the Problem of Dislocation Patterning and Persistent Slip Bands." Solid State Phenomena 3-4 (January 1991): 397–405. http://dx.doi.org/10.4028/www.scientific.net/ssp.3-4.397.
Full textSedla´cˇek, R. "Internal stresses in dislocation wall structure of persistent slip bands." Computational Materials Science 7, no. 1-2 (1996): 21–26. http://dx.doi.org/10.1016/s0927-0256(96)00055-9.
Full text