Academic literature on the topic 'Perturbative expansion of Chern-Simons theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Perturbative expansion of Chern-Simons theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Perturbative expansion of Chern-Simons theory"

1

EMPARAN, R., and M. A. VALLE BASAGOITI. "THREE-LOOP CALCULATION OF THE ANYONIC FULL CLUSTER EXPANSION." Modern Physics Letters A 08, no. 34 (1993): 3291–99. http://dx.doi.org/10.1142/s0217732393002221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

de-la-Cruz-Moreno, J., H. García-Compeán, and E. López-González. "Vassiliev invariants for flows via Chern–Simons perturbation theory." International Journal of Modern Physics A 36, no. 15 (2021): 2150089. http://dx.doi.org/10.1142/s0217751x21500895.

Full text
Abstract:
The perturbative expansion of Chern–Simons gauge theory leads to invariants of knots and links, the so-called finite type invariants or Vassiliev invariants. It has been proved that at any order in perturbation theory the superposition of certain amplitudes is an invariant of that order. Bott–Taubes integrals on configuration spaces are introduced in the present context to write Feynman diagrams at a given order in perturbation theory in a geometrical and topological framework. One of the consequences of this formalism is that the resulting amplitudes are rewritten in cohomological terms in co
APA, Harvard, Vancouver, ISO, and other styles
3

Albeverio, Sergio, and Itaru Mitoma. "Asymptotic expansion of perturbative Chern–Simons theory via Wiener space." Bulletin des Sciences Mathématiques 133, no. 3 (2009): 272–314. http://dx.doi.org/10.1016/j.bulsci.2007.07.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bar-Natan, Dror, and Edward Witten. "Perturbative expansion of Chern-Simons theory with non-compact gauge group." Communications in Mathematical Physics 141, no. 2 (1991): 423–40. http://dx.doi.org/10.1007/bf02101513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

FERRARI, FRANCO, and IGNAZIO LAZZIZZERA. "PERTURBATIVE ANALYSIS OF CHERN–SIMONS FIELD THEORY IN THE COULOMB GAUGE." International Journal of Modern Physics A 13, no. 11 (1998): 1773–83. http://dx.doi.org/10.1142/s0217751x98000767.

Full text
Abstract:
In this paper, we analyse the perturbative aspects of Chern–Simons field theories in the Coulomb gauge. We show that in the perturbative expansion of the Green functions there are neither ultraviolet nor infrared divergences. Moreover, all the radiative corrections are zero at any loop order. Some problems connected with the Coulomb gauge fixing, like the appearance of spurious singularities in the computation of the Feynman diagrams, are discussed and solved. The regularization used here for the spurious singularities can be easily applied also to the Yang–Mills case, which is affected by sim
APA, Harvard, Vancouver, ISO, and other styles
6

Hirshfeld, Allen C., Uwe Sassenberg, and Thomas Klöker. "A Combinatorial Link Invariant of Finite Type Derived from Chern-Simons Theory." Journal of Knot Theory and Its Ramifications 06, no. 02 (1997): 243–80. http://dx.doi.org/10.1142/s0218216597000169.

Full text
Abstract:
We derive from the perturbation expansion of the Wilson loop expectation value in the Chern-Simons theory an explicit combinatorial expression for a third-order finite link invariant, thereby generalising the knot invariant considered in a previous article.
APA, Harvard, Vancouver, ISO, and other styles
7

Hagen, C. R. "Perturbative expansion in the Galilean-invariant spin-1/2Chern-Simons field theory." Physical Review D 56, no. 4 (1997): 2250–56. http://dx.doi.org/10.1103/physrevd.56.2250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

BAR-NATAN, DROR. "PERTURBATIVE CHERN-SIMONS THEORY." Journal of Knot Theory and Its Ramifications 04, no. 04 (1995): 503–47. http://dx.doi.org/10.1142/s0218216595000247.

Full text
Abstract:
We present the perturbation theory of the Chern-Simons gauge field theory and prove that to second order it indeed gives knot invariants. We identify these invariants and show that in fact we get a previously unknown integral formula for the Arf invariant of a knot, in complete agreement with earlier non-perturbative results of Witten. We outline our expectations for the behavior of the theory beyond two loops.
APA, Harvard, Vancouver, ISO, and other styles
9

Alvarez-Gaumé, L. "A note on perturbative Chern-Simons theory." Nuclear Physics B 334, no. 1 (1990): 103–24. http://dx.doi.org/10.1016/0550-3213(90)90658-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chair, Noureddine. "Perturbative Chern–Simons theory from the Penner model." Journal of Physics A: Mathematical and Theoretical 40, no. 24 (2007): F443—F448. http://dx.doi.org/10.1088/1751-8113/40/24/f02.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Perturbative expansion of Chern-Simons theory"

1

Nosaka, Tomoki. "M2-branes in M-theory and exact large N expansion." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Corbineau, Kévin. "Sur une anomalie du développement perturbatif de la théorie de Chern-Simons." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM038/document.

Full text
Abstract:
Maxim Kontsevich a défini un invariant $Z$ des sphères d'homologie rationnelle orientées de dimension $3$ en 1992, en poursuivant l'étude initiée par Edward Witten du développement perturbatif de la théorie de Chern-Simons.L'invariant $Z$ de Kontsevich est gradué. Il s'écrit $Z=(Z_n)_{nin NN }$, où $Z_n$ prend ses valeurs dans un espace $CA_n$ engendré par des diagrammes trivalents à $2n$ sommets appelésdiagrammes de Feynman-Jacobi de degré $n$.L'invariant $Z$ apparait d'abord comme un invariant $Z(M,tau)$ des sphères d'homologie rationnelle $M$ de dimension $3$ munies d'une parallélisation $t
APA, Harvard, Vancouver, ISO, and other styles
3

Hajek, Pavel [Verfasser], and Kai [Akademischer Betreuer] Cieliebak. "IBL-Infinity Model of String Topology from Perturbative Chern-Simons Theory / Pavel Hajek ; Betreuer: Kai Cieliebak." Augsburg : Universität Augsburg, 2020. http://d-nb.info/1210424916/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stone, Richard. "2-loop perturbative invariants of lens spaces and a test of Chern-Simons quantum field theory." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/33263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sergio, Cássio Sanguini. "Transporte quântico em poços parabólicos largos." Universidade de São Paulo, 2003. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-18072012-133932/.

Full text
Abstract:
A passagem progressiva de estados de Landau bidimensional (2D) para estados tridimensional (3D) foi estudada em Poços Quânticos Parabólicos (PQW) largos (W = 1000 6000 Å). Utilizou-se como técnica de transporte medidas da magnetoresistência em campo magnético intenso (B = 0 15 T) e inclinado ( = 0 90°; perpendicular paralelo), a baixas temperaturas (T = 50 mK). Observou-se, através da dependência angular das oscilações de Shubnikov de Haas ( = 0 90°), em PQWs cheios, várias sub-bandas ocupadas (5 a 8), a coexistência de estados de Landau 2D e 3D, sendo o gás 3D formado pelo colapso das
APA, Harvard, Vancouver, ISO, and other styles
6

Turner, Carl Peter. "BPS approaches to anyons, quantum Hall states and quantum gravity." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267810.

Full text
Abstract:
We study three types of theories, using supersymmetry and ideas from string theory as tools to gain understanding of systems of more general interest. Firstly, we introduce non-relativistic Chern-Simons-matter field theories in three dimensions and study their anyonic spectrum in a conformal phase. These theories have supersymmetric completions, which in the non-relativistic case suffices to protect certain would-be BPS quantities from corrections. This allows us to compute one-loop exact anomalous dimensions of various bound states of non-Abelian anyons, analyse some interesting unitarity bou
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Perturbative expansion of Chern-Simons theory"

1

"Fermionization and convergent perturbation expansions in Chern-Simons gauge theory." In Chern-Simons Gauge Theory: 20 Years After. American Mathematical Society, 2011. http://dx.doi.org/10.1090/amsip/050/18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"Chern-Simons theory, the 1/𝑁 expansion, and string theory." In Chern-Simons Gauge Theory: 20 Years After. American Mathematical Society, 2011. http://dx.doi.org/10.1090/amsip/050/12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Perturbative expansion of Chern-Simons theory"

1

Sawon, Justin. "Perturbative expansion of Chern–Simons theory." In The interaction of finite-type and Gromov--Witten invariants. Mathematical Sciences Publishers, 2006. http://dx.doi.org/10.2140/gtm.2006.8.145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!