Academic literature on the topic 'Perylene'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Perylene.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Perylene"
Lentijo, S., J. E. Expósito, G. Aullón, J. A. Miguel, and P. Espinet. "Highly fluorescent complexes with 3-isocyanoperylene and N-(2,5-di-tert-butylphenyl)-9-isocyano-perylene-3,4-dicarboximide." Dalton Trans. 43, no. 28 (2014): 10885–97. http://dx.doi.org/10.1039/c4dt01016g.
Full textLoewe, Robert S., Kin-ya Tomizaki, Fabien Chevalier, and Jonathan S. Lindsey. "Synthesis of perylene-porphyrin dyads for light-harvesting studies." Journal of Porphyrins and Phthalocyanines 06, no. 10 (October 2002): 626–42. http://dx.doi.org/10.1142/s1088424602000774.
Full textMauri, Luca, Alessia Colombo, Claudia Dragonetti, Francesco Fagnani, and Dominique Roberto. "Iridium and Ruthenium Complexes Bearing Perylene Ligands." Molecules 27, no. 22 (November 16, 2022): 7928. http://dx.doi.org/10.3390/molecules27227928.
Full textNakano, Masahiro, Kyohei Nakano, Kazuo Takimiya, and Keisuke Tajima. "Two isomeric perylenothiophene diimides: physicochemical properties and applications in organic semiconducting devices." Journal of Materials Chemistry C 7, no. 8 (2019): 2267–75. http://dx.doi.org/10.1039/c8tc05577g.
Full textGutman, Ivan, Boris Furtula, Jelena Djurdjevic, Rradmila Kovacevic, and Sonja Stankovic. "Annelated perylenes: Benzenoid molecules violating the Kekulé-structure-based cyclic conjugation models." Journal of the Serbian Chemical Society 70, no. 8-9 (2005): 1023–32. http://dx.doi.org/10.2298/jsc0509023g.
Full textDuncan, Katelyn M., Donald L. Kellis, Jonathan S. Huff, Matthew S. Barclay, Jeunghoon Lee, Daniel B. Turner, Paul H. Davis, Bernard Yurke, William B. Knowlton, and Ryan D. Pensack. "Symmetry Breaking Charge Transfer in DNA-Templated Perylene Dimer Aggregates." Molecules 27, no. 19 (October 5, 2022): 6612. http://dx.doi.org/10.3390/molecules27196612.
Full textFang, Xiangdong. "BN-Embedded Perylenes." Molecules 26, no. 23 (November 25, 2021): 7148. http://dx.doi.org/10.3390/molecules26237148.
Full textLiu, Yu, Han Zhong, Yu Qin, Yan Zhang, Xinfeng Liu, and Tao Zhang. "Non-covalent hydrophilization of reduced graphene oxide used as a paclitaxel vehicle." RSC Advances 6, no. 36 (2016): 30184–93. http://dx.doi.org/10.1039/c6ra04349f.
Full textNagasawa, Yuya, Takeshi Koyama, and Susumu Okada. "Energetics and electronic structures of perylene confined in carbon nanotubes." Royal Society Open Science 5, no. 6 (June 2018): 180359. http://dx.doi.org/10.1098/rsos.180359.
Full textCremer, Jens, and Peter Bäuerle. "Perylene-Oligothiophene-Perylene Triads for Photovoltaic Applications." European Journal of Organic Chemistry 2005, no. 17 (September 2005): 3715–23. http://dx.doi.org/10.1002/ejoc.200500147.
Full textDissertations / Theses on the topic "Perylene"
Haddow, Sarah Louise. "Perylene derivatives and silicon nanosheets." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/41873/.
Full textFerraro, Luca. "Physisorption of perylene dyes on graphite." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13851/.
Full textLu, Weiya Douglas. "Photophysical consequences from interactions of glutathione S-transferases with the photodynamic sensitizer hypericin /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/8638.
Full textLlewellyn, Ben. "Synthesis and characterisation of functionalised perylene diimides." Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/35539/.
Full textMaivaldová, Iva. "Interakce fosfolipidů s polyelektrolyty ve vodném prostředí." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2010. http://www.nusl.cz/ntk/nusl-216675.
Full textShaller, Andrew Douglas. "Synthesis and investigation of architecturally diverse supramolecular nanostructures related to dynamic self-assembly, folding, and energy transfer." Pullman, Wash. : Washington State University, 2009. http://www.dissertations.wsu.edu/Dissertations/Fall2009/A_Shaller_093009.pdf.
Full textSykora, Benedikt Reinhold. "Influence of emitter orientation in perylene based OLEDs." Master's thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/11828.
Full textOs díodos orgânicos emissores de luz (organic light-emitting diodes ou OLEDs) têm como elemento funcional um filme fino de um semicondutor orgânico para a criação de excitões (pares electrão-lacuna), que emitem luz quando relaxam. O objetivo desta dissertação de mestrado é investigar o efeito da orientação dipolar de filmes baseados em perilenos de tetraphenyldibenzoperiflanthene (DBP) e diindenoperylene ( DIP), e das mesmas moléculas dispersas numa ma matriz de 5,6,11,12- tetraphenylnaphthacene (rubreno). O estudo tenta identificar uma possível relação entre o comportamento destes filmes e a eficiência do respetivo OLED. Observa-se que os filmes de DBP são amorfos, apresentam uma superfície lisa e absorvem mais luz do que os filmes de DIP, que se caracterizam por uma estrutura cristalina e uma superfície irregular. Os resultados combinados de simulações e de medições de fotoluminescência com dependência angular revelam que as moléculas de DBP apresentam orientação horizontal, estando as moléculas de DIP orientadas verticalmente. Este facto pode explicar o acoplamento mais forte das moléculas de DIP aos plasmões de superfície, em comparação com o DBP. As características gerais dos filmes de DBP ou DIP mantêm-se mesmo quando estes são depositados nos substratos de N, N '-di(1-naftil-N,N-difenil-(1,1'- bifenil)-4,4' –diamina utilizados ma preparação dos OLEDs, o que permite a comparação direta entre as duas configurações. Os resultados obtidos com os OLEDs baseados em filmes puros de DBP ou DIP apresentam valores de eficiência quântica externa (EQE) da ordem de 0,2 e 0,04 %, respetivamente. Estes valores baixos podem explicar-se pela orientação vertical dos dipolos do DIP, conduzindo a um fator de emissão de 27% (light outcoupling), claramente superior ao obtido com o OLED baseado no DBP (16%). Estas diferenças acentuam-se quando na comparação destes filmes com o comportamento dos filmes rubreno equivalentes dopados com 1% de DBP e DIP. Se por um lado não se observa nenhuma orientação dipolar preferencial no caso do DIP, as moléculas de DBP na matriz de rubreno estão quase na sua totalidade orientadas horizontalmente, o que aumenta o factor de emissão. A forte orientação preferencial no caso do DBP pode igualmente justificar o aumento de EQE de 0,2 % e 0,04% nos OLEDs com os filmes puros de DBP e DIP, para 3% e 0,5% no caso dos OLEDs com os filmes dopados. O aumento da eficiência pode também dever-se ao aumento da transferência energética da matriz de rubreno para os centros emissores. O forte efeito da orientação horizontal do emissor na eficiência dos OLEDs manifesta-se igualmente no notável aumento do factor de emissão de luz observado entre os filmes de DBP (fortemente orientados) e DIP (pouco orientados), que é de cerca de 70% no caso das camadas de emissão baseadas nos filmes puros, e de 44 % no caso dos filmes dopados.
Organic light-emitting diodes (OLEDs) contain thin films of organic semiconductors to create excitons (electron-hole-pairs), which will emit light if they de-excite. The aim of this master thesis is to investigate a possible link between the dipole orientation of perylene based films of tetraphenyldibenzoperiflanthene (DBP) and diindenoperylene (DIP), and of the same molecules dispersed in a 5,6,11,12-tetraphenylnaphthacene matrix. The study also compares the behavior of these films with that of the corresponding OLEDs. It is shown that DBP neat films are essentially amorphous, with a rather smooth surface and they absorb more light than the DIP films, which are crystalline and have a rough surface. Simulation results and angle-dependent p-polarised photoluminescence measurements reveal that the DBP molecules have a horizontal orientation, while the DIP molecules are vertically oriented. This explains the stronger coupling of DIP molecules to the surface plasmons, when compared to the DBP molecules. The general characteristics of the DBP or DIP films do not change when these are deposited onto N,N’-di(1-naphtyl-N,N’-diphenyl-(1,1’-biphenyl)-4,4’diamine hole transport layers used as substrates in OLEDs, thus allowing a direct comparison between both configurations. The OLEDs comprising neat films of DBP or DIP have small external quantum efficiency (EQE) values of 0.2 and 0.04%, respectively. This is probably due to the strong vertical molecular orientation of the DBP, leading to a high lightoutcoupling factor of 27%, when compared to 16% of the DIP OLED. These differences are accentuated when comparing the behavior of the neat films with equivalent rubrene films doped with 1% of DBP or DIP. While the DIP exhibits a rather isotropic orientation, the DBP molecules are fully horizontal within the doped film, thus improving the light-outcoupling. This may partly justify the increase of EQE from 0.2% and 0.04% of the neat film OLEDs to 3% and 0.5% for the doped DBP and DIP OLEDs, respectively. The improvement of the efficiency may also be due to the enhancement of the energy transfer from the rubrene matrix to the emitter dyes. The horizontal orientation of the emitter has a huge effect on the efficiency of perylene-based OLEDs, apparent also on the remarkable increase of the lightoutcoupling of strongly oriented DBP dipoles in comparison to the weakly oriented DIP, which is of the order of 70% in the case of the neat emission layers, and of 44% in the case of the doped counterparts.
Engel, Egbert Konstantin. "Ultrafast exciton relaxation in quasi-one-dimensional perylene derivatives." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=97940665X.
Full textLi, Xueqing. "Hydrogen Bond-directed Self-assembly of Perylene Bisimide Organogelators." kostenfrei, 2009. http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:20-opus-43727.
Full textEngel, Egbert. "Ultrafast exciton relaxation in quasi-one-dimensional perylene derivatives." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2006. http://nbn-resolving.de/urn:nbn:de:swb:14-1143653858595-30675.
Full textBooks on the topic "Perylene"
Wilhoit, R. C. 1- and 2-methylnaphthalene and dibenzanthracenes. Washington, D.C. (1220 L St., N.W., Washington 20005): American Petroleum Institute, 1985.
Find full textMilton, Margarita. Perylene Diimide: A Versatile Building Block for Complex Molecular Architectures and a Stable Charge Storage Material. [New York, N.Y.?]: [publisher not identified], 2018.
Find full textFoegen, Neil. Investigations into the Optical and Electronic Properties of Perylene Diimide-Based Organic Materials as a Function of Molecular Aggregation in Solution and in Thin Films. [New York, N.Y.?]: [publisher not identified], 2021.
Find full textBook chapters on the topic "Perylene"
Gooch, Jan W. "Perylene Pigments." In Encyclopedic Dictionary of Polymers, 528. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_8599.
Full textSchmidt, Cordula D., and Andreas Hirsch. "Water-Soluble Perylene Dyes." In Ideas in Chemistry and Molecular Sciences, 283–304. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527630554.ch13.
Full textWinkelmann, Jochen. "Self-diffusion coefficient of perylene." In Diffusion in Gases, Liquids and Electrolytes, 435. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-540-73735-3_265.
Full textHiramoto, Masahiro. "Avalanche Multiplication in Perylene Molecular Crystals." In Electronic Materials: Science & Technology, 163–73. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1237-7_10.
Full textWinkelmann, Jochen. "Diffusion coefficient of perylene in methyl-cyclohexane." In Diffusion in Gases, Liquids and Electrolytes, 1161. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-540-73735-3_937.
Full textWinkelmann, Jochen. "Diffusion coefficient of perylene in butyl-cyclohexane." In Diffusion in Gases, Liquids and Electrolytes, 1163. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-540-73735-3_939.
Full textWinkelmann, Jochen. "Diffusion coefficient of perylene in cis-decahydro-naphthalene." In Diffusion in Gases, Liquids and Electrolytes, 1162. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-540-73735-3_938.
Full textWinkelmann, Jochen. "Diffusion coefficient of perylene in 2,6,10,15,19,23-hexamethyl-tetracosane." In Diffusion in Gases, Liquids and Electrolytes, 1164. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-540-73735-3_940.
Full textWellner, Christian, Claudia Stubinitzky, and Hans-Achim Wagenknecht. "Metal Ion- and Perylene Diimide-Mediated DNA Architectures." In DNA in Supramolecular Chemistry and Nanotechnology, 38–51. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118696880.ch1.3.
Full textWang, Zhengran, Lina Zhang, Yuwen Feng, Jingze Bi, Huanzhi Yang, Zhenhu Zhang, Chunxiu Zhang, and Jialing Pu. "Synthesis and Mesomorphism of Triphenylene-Perylene Discotic Mesogenic Dyad." In Lecture Notes in Electrical Engineering, 821–26. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1864-5_112.
Full textConference papers on the topic "Perylene"
Alcacer, L., J. Morgado, R. T. Henriques, and M. Almeida. "Modified perylene molecular conductors." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.834655.
Full textSasaki, Yoshihiko, Hiroyuki Takamo, and Kazuo Kasatani. "Optical nonlinearities of perylene derivatives." In Photonics Asia 2007, edited by Yiping Cui, Qihuang Gong, and Yuen-Ron Shen. SPIE, 2007. http://dx.doi.org/10.1117/12.757661.
Full textBarbedo, A., A. G. Pelosi, J. V. P. Valverde, O. D. Marbello, L. de Boni, and C. R. Mendonça. "Study of the Spectroscopic Properties of Perylene." In Latin America Optics and Photonics Conference. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/laop.2022.w4a.42.
Full textPratiwi, Herlina, Timothy Siahaan, Mirza Satriawan, Pekik Nurwantoro, Kuwat Triyana, L. T. Handoko, and Masbah R. T. Siregar. "Theoretical Determination of The Optimum Thickness of Perylene Layer in Bilayer Phthalocyanine∕Perylene Photovoltaic Device." In INTERNATIONAL WORKSHOP ON ADVANCED MATERIAL FOR NEW AND RENEWABLE ENERGY. AIP, 2009. http://dx.doi.org/10.1063/1.3243259.
Full textNayak, Sudhanshu Kumar, Md Soif Ahmed, Someshwar Pola, Dipanjan Banerjee, Venugopal Rao Soma, Prabhakar Chetti, and Sai Santosh Kumar Raavi. "Ultrafast Nonlinear Optical Studies of Polycyclic Aromatic Hydrocarbon (PAHs) based Benzo[b]naphtho[1,2,3,4-pqr] Perylene using Femtosecond Z-scan." In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/fio.2022.jtu4b.15.
Full textHusanova, Dilfuza, Jurat Ochilov, Maksudbek Yusupov, and Umedjon Khalilov. "PRE-NUCLEATION MECHANISMS OF FLAT PERYLENE-BASED ORGANIC NANOCRYSTALS." In Proceedings of MMIT’23 International Conference 25 May 2023y. Tashkent International University of Education, 2023. http://dx.doi.org/10.61587/mmit.uz.vi.54.
Full textYU, Zhen, Ying WANG, Wen-guang WANG, and Jia-ling PU. "Synthesis and Characterization of Novel Perylene Diimide." In International Conference on Advanced Material Science and Engineeering (AMSE2016). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813141612_0039.
Full textMier, L., Y. Min, E. O. Danilov, A. J. Epstein, T. L. Gustafson, P. M. Champion, and L. D. Ziegler. "Ultrafast Vibrational Spectroscopy of Perylene Diimide Complexes." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482517.
Full textGao, Jie, Jingjing Cheng, Yan Wang, and Juan Li. "Research on perylene diimide organic solar cells." In 2022 International Conference on Optoelectronic Materials and Devices, edited by Qiang Huang. SPIE, 2023. http://dx.doi.org/10.1117/12.2674139.
Full textNg, A. M. C., W. Y. Tong, A. B. Djurišić, and W. K. Chan. "Perylene tetracarboxylic diimide (PTCDI) nanowires: synthesis and characterization." In SPIE Optics + Photonics, edited by Zeno Gaburro and Stefano Cabrini. SPIE, 2006. http://dx.doi.org/10.1117/12.677626.
Full textReports on the topic "Perylene"
Higgins, Daniel A., Aifang Xie, and Bei Liu. Characterization of New Materials for Photovoltaic Thin Films: Aggregation Phenomena in Self-Assembled Perylene-Based Diimides. Fort Belvoir, VA: Defense Technical Information Center, July 2005. http://dx.doi.org/10.21236/ada435695.
Full text