Journal articles on the topic 'Pest detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Pest detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rana, Harshil, and Reema Pandya. "Pest Detection System." International Journal of Computer Sciences and Engineering 9, no. 12 (2021): 23–25. http://dx.doi.org/10.26438/ijcse/v9i12.2325.
Full textGuo, Boyu, Jianji Wang, Minghui Guo, Miao Chen, Yanan Chen, and Yisheng Miao. "Overview of Pest Detection and Recognition Algorithms." Electronics 13, no. 15 (2024): 3008. http://dx.doi.org/10.3390/electronics13153008.
Full textZhu, Ruixue, Fengqi Hao, and Dexin Ma. "Research on Polygon Pest-Infected Leaf Region Detection Based on YOLOv8." Agriculture 13, no. 12 (2023): 2253. http://dx.doi.org/10.3390/agriculture13122253.
Full textP. Radha, V. Arockia Mary Epsy,. "Pest Detection Using Image Denoising and Cascaded Unet Segmentation for Pest Images." Tuijin Jishu/Journal of Propulsion Technology 44, no. 4 (2023): 1359–71. http://dx.doi.org/10.52783/tjjpt.v44.i4.1040.
Full textDoan, Thanh-Nghi. "Large-Scale Insect Detection With Fine-Tuning YOLOX." International Journal of Membrane Science and Technology 10, no. 2 (2023): 892–915. http://dx.doi.org/10.15379/ijmst.v10i2.1306.
Full textFang, Hao, Binbin Shi, Yongpeng Sun, Neal Xiong, and Lijuan Zhang. "APest-YOLO: A Multi-Scale Agricultural Pest Detection Model Based on Deep Learning." Applied Engineering in Agriculture 40, no. 5 (2024): 553–64. http://dx.doi.org/10.13031/aea.15987.
Full textYin, Jianjun, Pengfei Huang, Deqin Xiao, and Bin Zhang. "A Lightweight Rice Pest Detection Algorithm Using Improved Attention Mechanism and YOLOv8." Agriculture 14, no. 7 (2024): 1052. http://dx.doi.org/10.3390/agriculture14071052.
Full textElci, Brundha, and Moulyashree S. "Pest Detection System for Farmers." International Research Journal of Computer Science 12, no. 04 (2025): 171–76. https://doi.org/10.26562/irjcs.2025.v1204.10.
Full textLiu, Dayang, Feng Lv, Jingtao Guo, Huiting Zhang, and Liangkuan Zhu. "Detection of Forestry Pests Based on Improved YOLOv5 and Transfer Learning." Forests 14, no. 7 (2023): 1484. http://dx.doi.org/10.3390/f14071484.
Full textHuang, Yiqi, Zhenhao Liu, Hehua Zhao, et al. "YOLO-YSTs: An Improved YOLOv10n-Based Method for Real-Time Field Pest Detection." Agronomy 15, no. 3 (2025): 575. https://doi.org/10.3390/agronomy15030575.
Full textXiang, Qiuchi, Xiaoning Huang, Zhouxu Huang, Xingming Chen, Jintao Cheng, and Xiaoyu Tang. "Yolo-Pest: An Insect Pest Object Detection Algorithm via CAC3 Module." Sensors 23, no. 6 (2023): 3221. http://dx.doi.org/10.3390/s23063221.
Full textSrilekha, N., V. Tejaswini, M. Sneha, Abdul Aas Shaik, Sohail Zahid, and Zaheer Shaik. "Deep Learning for Pest Detection and Extraction." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 03 (2025): 1–9. https://doi.org/10.55041/ijsrem42777.
Full textWanbo Luo. "Pest-YOLO: A YOLOv5-Based Lightweight Crop Pest Detection Algorithm." International Journal of Engineering and Technology Innovation 15, no. 1 (2024): 11–25. https://doi.org/10.46604/ijeti.2024.13748.
Full textZhu, Xueyan, Dandan Li, Yancheng Zheng, et al. "A YOLO-Based Model for Detecting Stored-Grain Insects on Surface of Grain Bulks." Insects 16, no. 2 (2025): 210. https://doi.org/10.3390/insects16020210.
Full textPazhanivelan, Sellaperumal, K. P. Ragunath, N. S. Sudarmanian, S. Satheesh, and P. Shanmugapriya. "Deep Learning-Based Multi-Class Pest and Disease Detection in Agricultural Fields." Journal of Scientific Research and Reports 31, no. 1 (2025): 538–46. https://doi.org/10.9734/jsrr/2025/v31i12797.
Full textWang, Xuqi, Shanwen Zhang, Xianfeng Wang, and Cong Xu. "Crop pest detection by three-scale convolutional neural network with attention." PLOS ONE 18, no. 6 (2023): e0276456. http://dx.doi.org/10.1371/journal.pone.0276456.
Full textYue, Guangbo, Yaqiu Liu, Tong Niu, et al. "GLU-YOLOv8: An Improved Pest and Disease Target Detection Algorithm Based on YOLOv8." Forests 15, no. 9 (2024): 1486. http://dx.doi.org/10.3390/f15091486.
Full textSushma D S, Mohammed Alqhama, Aravind M, Jayanth A B, and Rakshith Kumar K. "Pest Detection and Classification in Peanut Crops." International Research Journal on Advanced Engineering and Management (IRJAEM) 2, no. 05 (2024): 1372–79. http://dx.doi.org/10.47392/irjaem.2024.0189.
Full textLi, Kai-Run, Li-Jun Duan, Yang-Jun Deng, Jin-Ling Liu, Chen-Feng Long, and Xin-Hui Zhu. "Pest Detection Based on Lightweight Locality-Aware Faster R-CNN." Agronomy 14, no. 10 (2024): 2303. http://dx.doi.org/10.3390/agronomy14102303.
Full textKhalid, Saim, Hadi Mohsen Oqaibi, Muhammad Aqib, and Yaser Hafeez. "Small Pests Detection in Field Crops Using Deep Learning Object Detection." Sustainability 15, no. 8 (2023): 6815. http://dx.doi.org/10.3390/su15086815.
Full textSun, Daozong, Kai Zhang, Hongsheng Zhong, et al. "Efficient Tobacco Pest Detection in Complex Environments Using an Enhanced YOLOv8 Model." Agriculture 14, no. 3 (2024): 353. http://dx.doi.org/10.3390/agriculture14030353.
Full textMiranda, Johnny L., Bobby D. Gerardo, and Bartolome T. Tanguilig III. "Pest Detection and Extraction Using Image Processing Techniques." International Journal of Computer and Communication Engineering 3, no. 3 (2014): 189–92. http://dx.doi.org/10.7763/ijcce.2014.v3.317.
Full textWang, Wanqing, and Haoyue Fu. "A Lightweight Crop Pest Detection Method Based on Improved RTMDet." Information 15, no. 9 (2024): 519. http://dx.doi.org/10.3390/info15090519.
Full textM, S. Aishwarya, Karthik K, Nandan D, and Rachana N. "A Survey on Pest Detection Systems." Perspectives in Communication, Embedded-systems and Signal-processing - PiCES 6, no. 3 (2022): 14–15. https://doi.org/10.5281/zenodo.6969876.
Full textShi, Wenxiu and Li Nianqiang. "APPLICATION OF TARGET DETECTION ALGORITHM BASED ON DEEP LEARNING IN FARMLAND PEST RECOGNITION." International Journal of Artificial Intelligence & Applications (IJAIA) 11, May (2020): 1–10. https://doi.org/10.5281/zenodo.3889762.
Full textZhao, Zikun, Sai Xu, Huazhong Lu, Xin Liang, Hongli Feng, and Wenjing Li. "Nondestructive Detection of Litchi Stem Borers Using Multi-Sensor Data Fusion." Agronomy 14, no. 11 (2024): 2691. http://dx.doi.org/10.3390/agronomy14112691.
Full textYu, Junwei, Shihao Chen, Nan Liu, Fupin Zhai, and Quan Pan. "Cascaded Aggregation Convolution Network for Salient Grain Pests Detection." Insects 15, no. 7 (2024): 557. http://dx.doi.org/10.3390/insects15070557.
Full textValderrama Solis, Manuel Alejandro, Javier Valenzuela Nina, German Alberto Echaiz Espinoza, et al. "Innovative Machine Learning and Image Processing Methodology for Enhanced Detection of Aleurothrixus Floccosus." Electronics 14, no. 2 (2025): 358. https://doi.org/10.3390/electronics14020358.
Full textGuo, Qingwen, Chuntao Wang, Deqin Xiao, and Qiong Huang. "An Enhanced Insect Pest Counter Based on Saliency Map and Improved Non-Maximum Suppression." Insects 12, no. 8 (2021): 705. http://dx.doi.org/10.3390/insects12080705.
Full textLi, Kunhong, Yi Li, Xuan Wen, et al. "Sticky Trap-Embedded Machine Vision for Tea Pest Monitoring: A Cross-Domain Transfer Learning Framework Addressing Few-Shot Small Target Detection." Agronomy 15, no. 3 (2025): 693. https://doi.org/10.3390/agronomy15030693.
Full textBastian, Ade, Adie Iman Nurzaman, Tri Ferga Prasetyo, and Sri Fatimah. "Roselle Pest Detection and Classification Using Threshold and Template Matching." Journal of Image and Graphics 11, no. 4 (2023): 330–42. http://dx.doi.org/10.18178/joig.11.4.330-342.
Full textXiong, Peng, Cong Zhang, Linfeng He, Xiaoyun Zhan, and Yuantao Han. "Deep learning-based rice pest detection research." PLOS ONE 19, no. 11 (2024): e0313387. http://dx.doi.org/10.1371/journal.pone.0313387.
Full textCarnegie, Angus J., and Helen F. Nahrung. "Post-Border Forest Biosecurity in Australia: Response to Recent Exotic Detections, Current Surveillance and Ongoing Needs." Forests 10, no. 4 (2019): 336. http://dx.doi.org/10.3390/f10040336.
Full textSargunar Thomas, Jaya Christa, Suhidhana Manikandarajan, and Tinaga Kamalakkannan Subha. "AI based pest detection and alert system for farmers using IoT." E3S Web of Conferences 387 (2023): 05003. http://dx.doi.org/10.1051/e3sconf/202338705003.
Full textDong, Shifeng, Jianming Du, Lin Jiao, et al. "Automatic Crop Pest Detection Oriented Multiscale Feature Fusion Approach." Insects 13, no. 6 (2022): 554. http://dx.doi.org/10.3390/insects13060554.
Full textWang, Shaohua, Dachuan Xu, Haojian Liang, et al. "Advances in Deep Learning Applications for Plant Disease and Pest Detection: A Review." Remote Sensing 17, no. 4 (2025): 698. https://doi.org/10.3390/rs17040698.
Full textYuan, Wenxia, Lingfang Lan, Jiayi Xu, et al. "Smart Agricultural Pest Detection Using I-YOLOv10-SC: An Improved Object Detection Framework." Agronomy 15, no. 1 (2025): 221. https://doi.org/10.3390/agronomy15010221.
Full textJ, S. Vandana Shree, and S. Ayaz Pasha. "Pest Detection And Obliteration Based Robotic System." Perspectives in Communication, Embedded-systems and Signal-processing - PiCES 6, no. 4 (2022): 23–24. https://doi.org/10.5281/zenodo.6969951.
Full textJ, S. Vandana Shree, and S. Ayaz Pasha. "Pest Detection and Obliteration Based Robotic System." Perspectives in Communication, Embedded-systems and Signal-processing - PiCES 5, no. 11 (2022): 107–9. https://doi.org/10.5281/zenodo.6331644.
Full textDai, Min, Md Mehedi Hassan Dorjoy, Hong Miao, and Shanwen Zhang. "A New Pest Detection Method Based on Improved YOLOv5m." Insects 14, no. 1 (2023): 54. http://dx.doi.org/10.3390/insects14010054.
Full textYang, Shuai, Ziyao Xing, Hengbin Wang, et al. "Maize-YOLO: A New High-Precision and Real-Time Method for Maize Pest Detection." Insects 14, no. 3 (2023): 278. http://dx.doi.org/10.3390/insects14030278.
Full textP, Venkatasaichandrakanth, and Iyapparaja M. "GROUNDNUT CROP PEST DETECTION AND CLASSIFICATION USING COMPREHENSIVE DEEP-LEARNING MODELS." Suranaree Journal of Science and Technology 31, no. 1 (2024): 020028(1–17). http://dx.doi.org/10.55766/sujst-2024-01-e02544.
Full textTang, Ke, Yurong Qian, Hualong Dong, et al. "SP-YOLO: A Real-Time and Efficient Multi-Scale Model for Pest Detection in Sugar Beet Fields." Insects 16, no. 1 (2025): 102. https://doi.org/10.3390/insects16010102.
Full textGuan, Bolun, Yaqian Wu, Jingbo Zhu, Juanjuan Kong, and Wei Dong. "GC-Faster RCNN: The Object Detection Algorithm for Agricultural Pests Based on Improved Hybrid Attention Mechanism." Plants 14, no. 7 (2025): 1106. https://doi.org/10.3390/plants14071106.
Full textCheng, Zekai, Rongqing Huang, Rong Qian, Wei Dong, Jingbo Zhu, and Meifang Liu. "A Lightweight Crop Pest Detection Method Based on Convolutional Neural Networks." Applied Sciences 12, no. 15 (2022): 7378. http://dx.doi.org/10.3390/app12157378.
Full textAs'ad, Avif, Suroso Suroso, Ciksadan Ciksadan, and Erni Hawayanti. "Penerapan Algoritma Yolov3 pada Sistem Cerdas Pendeteksi dan Pengendali Hama Bawang Merah Berbasis IoT." Building of Informatics, Technology and Science (BITS) 6, no. 2 (2024): 930–39. https://doi.org/10.47065/bits.v6i2.5697.
Full textPantoni, Rodrigo, and Otávio Toraça Dias. "Detection of Diatraea Saccharalis in images using convolutional neural networks." Revista Engenharia na Agricultura - REVENG 33, Contínua (2025): 32–44. https://doi.org/10.13083/reveng.v33i1.18733.
Full textLee, Jae-Hyeon, Chang-Hwan Son, and Hwijong Yi. "Multiscale CenterNet for Pest Detection and Counting." Journal of Korean Institute of Information Technology 20, no. 7 (2022): 111–21. http://dx.doi.org/10.14801/jkiit.2022.20.7.111.
Full textG, Madhavi, Jhansi Rani A., and Srinivasa Rao S. "Pest Detection for Rice Using Artificial Intelligence." International Research Journal on Advanced Science Hub 3, Special Issue ICITCA-2021 5S (2021): 54–60. http://dx.doi.org/10.47392/irjash.2021.140.
Full textT, Devika, Santhiyakumari N, Nagaraj J, Arun S K, Sam Sundhar T, and Siva Sakthi K. "Crop Pest Detection using Convolutional Neural Network." Journal of Soft Computing Paradigm 6, no. 3 (2024): 314–23. http://dx.doi.org/10.36548/jscp.2024.3.007.
Full text