Academic literature on the topic 'Pests of oil palm'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pests of oil palm.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pests of oil palm"
Situmorang, Lamhot, and Fristi Riandari. "Expert System Mediagnosa Hama On Phon Oil With Certainty Factor Method." Journal Of Computer Networks, Architecture and High Performance Computing 2, no. 2 (June 1, 2020): 268–74. http://dx.doi.org/10.47709/cnapc.v2i2.416.
Full textCahya, Andi Nur, Iin Arsensi, and Purwati Purwati. "Identifikasi Jenis dan Tingkat Serangan Hama Pada Pembibitan Tanaman Kelapa Sawit (Elaeis guineensi Jacq) di PT. Sentosa Kalimantan Jaya, Kabupaten Berau Provinsi Kalimantan Timur." Agrifarm : Jurnal Ilmu Pertanian 8, no. 1 (September 3, 2019): 20. http://dx.doi.org/10.24903/ajip.v8i1.527.
Full textTawakkal, Muhammad Iqbal, Damayanti Buchori, Akhmad Rizali, Adha Sari, and Pudjianto Pudjianto. "Parasitoid Diversity and Host-Parasitoid Interaction in Oil Palm Plantations with Different Management System." Jurnal Perlindungan Tanaman Indonesia 23, no. 1 (July 3, 2019): 39. http://dx.doi.org/10.22146/jpti.31232.
Full textGerritsma, W., and M. Wessel. "Oil palm: domestication achieved?" Netherlands Journal of Agricultural Science 45, no. 4 (December 1, 1997): 463–75. http://dx.doi.org/10.18174/njas.v45i4.506.
Full textWidihastuty, Widihastuty, Maryani C. Tobing, Marheni Marheni, and Retna A. Kuswardani. "Microhabitat Characteristics of Myopopone Castanea (Hymenoptera: Formicidae) in Oil Palm Plantation." International Journal of Entomological Research 7, no. 1 (June 28, 2019): 19–25. http://dx.doi.org/10.33687/entomol.007.01.2731.
Full textRasywir, Errissya, Rudolf Sinaga, and Yovi Pratama. "Analisis dan Implementasi Diagnosis Penyakit Sawit dengan Metode Convolutional Neural Network (CNN)." Paradigma - Jurnal Komputer dan Informatika 22, no. 2 (September 10, 2020): 117–23. http://dx.doi.org/10.31294/p.v22i2.8907.
Full textS. Sadakathulla. "NEEM PRODUCTS AGAINST COCONUT INSECT PESTS." CORD 9, no. 02 (June 1, 1993): 34. http://dx.doi.org/10.37833/cord.v9i02.270.
Full textFadhillah, Muhammad Arif, Nur Ariyani Agustani, and Jurlaili Irni. "PENGARUH VARIASI KERAPATAN SPORA Beauveria bassiana DAN KONSENTRASI LCPKS TERHADAP MORTALITAS LARVA Oryctes rhinoceros." Jurnal Agro Estate 3, no. 2 (December 17, 2019): 63–72. http://dx.doi.org/10.47199/jae.v3i2.95.
Full textGani, Muhammad Abdul, Rusli Rustam, and Herman Herman. "Uji Kemampuan Pemangsaan Predator Eocanthecona furcellata Asal Riau pada Mangsa Ulat Api Setora nitens di Laboratorium." Jurnal Agroteknologi 10, no. 1 (August 31, 2019): 1. http://dx.doi.org/10.24014/ja.v10i1.4309.
Full textT. I., Aneni, Adaigbe V. C., Ogbebor C. O., Okere C. I., and Aghayedo C. O. "Impact of Weather Factors on Coelaenomenodera elaiedis MLK (Coleoptera: Chrysomelidae) in Nigeria." Journal of Biotechnology Research, no. 68 (October 31, 2020): 115–28. http://dx.doi.org/10.32861/jbr.68.115.128.
Full textDissertations / Theses on the topic "Pests of oil palm"
Tinôco, Ricardo Salles [UNESP]. "Determinação do nível de dano econômico para opsiphanes invirae Hübner, 1808 (Lepidoptera: Nymphalidae) em palma de óleo." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/143821.
Full textApproved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-09-08T20:37:53Z (GMT) No. of bitstreams: 1 tinoco_rs_dr_jabo.pdf: 3233887 bytes, checksum: f65245f5717f6d1e7bba353e15c39c11 (MD5)
Made available in DSpace on 2016-09-08T20:37:53Z (GMT). No. of bitstreams: 1 tinoco_rs_dr_jabo.pdf: 3233887 bytes, checksum: f65245f5717f6d1e7bba353e15c39c11 (MD5) Previous issue date: 2016-08-05
O óleo de palma destaca-se por ser a principal fonte alimentícia de óleo vegetal liderando a produção mundial seguido da soja. Devido à escassez de estudos básicos para manejo de desfolhadores em palma de óleo, este trabalho objetivou avaliar a resposta fisiológica das plantas sob desfolha e efeito da desfolha na produção, bem como determinar o nível de dano econômico. Esse trabalho mostrou que a injúria artificial com tesoura e natural por lagartas de B. sophorae não resultou em efeitos no processo fisiológico das folhas remanescentes em mudas de híbrido interespecífico (Elaeis guineensis Jacq. X Elaeis oleifera [Kunth, Cortés]) e, provavelmente, as plantas responderam com mecanismos compensatórios evitando assim interromper seus processos fisiológicos evitando a perda de água, mantendo seu processo autotrófico nos tecidos remanescentes. Os resultados mostraram ainda que a desfolha ocasionada pelas lagartas e a mecânica não apresentaram diferenças e que injúrias mecânicas podem ser usadas em estudos de desfolha simulada. Com isso, justificou-se o uso de desfolha artificial para estudar seu efeito sobre a produção. Paralelamente, obteve-se o consumo de área foliar total para larvas de Opsiphanes invirae Hübner, que foi de 286,064 cm2. O nível de dano econômico foi 5,14 e 2,98 lagartas por folha utilizando o produto Dipel® WP e SC, respectivamente para dados de perdas acumuladas em dois anos. Considerando apenas a injúria artificial obtida nas condições da Agropalma, o NDE utilizando Dipel® WP e SC foi de 3,72 e 2,15 lagartas por folha, respectivamente. Os valores atualmente adotados empiricamente para tomada de decisão pelas empresas são superiores aos valores encontrados nesse estudo, mostrando que devem ser revistos.
Palm oil is notable for being the main food source of vegetable oil leading the world production followed by soybeans. Due to the shortage of basic studies for management of palm oil defoliators, this study aimed to evaluate the physiological response of plants under defoliation and effect of defoliation on the production, as well as to determine economic injury level. This work showed that the artificial injury using scissors and natural using B. sophorae larvae did not result in effects to the physiological process of the remaining leaves in interspecific hybrid seedlings (Elaeis guineensis Jacq. X Elaeis oleifera [Kunth, Cortés]) and, probably, the plants responded with compensatory mechanisms avoiding interruption of the physiological processes preventing the loss of water, keeping the autotrophic process in the remaining tissues. The results also showed that the defoliation either caused by the larvae or by scissors did not show differences and mechanical injuries can be used in simulated defoliation studies. Thus, this justified the use of artificial defoliation to study its effect on production. At the same time, the consumption of total leaf area was obtained for Opsiphanes invirae Hübner larvae, which was 286.064 cm2 and the level of economic damage to this species in oil palm. The economic injury level was 5.14 and 2.98 larvae per leaf using the product Dipel® WP and SC, respectively, using two-year loss data. Considering only the artificial injury obtained at Agropalma, the economic injury level using Dipel® WP and SC was 3.72 and 2.15 larvae per leaf, respectively. The current values empirically adopted for decision making by companies are higher than the values found in this study, showing that they must be reviewed.
Ocampo, Duran Alvaro. "High lipid diets based on palm oil for growing-fattening pigs." Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270837.
Full textTinôco, Ricardo Salles. "Determinação do nível de dano econômico para opsiphanes invirae Hübner, 1808 (Lepidoptera:Nymphalidae) em palma de óleo /." Jaboticabal, 2016. http://hdl.handle.net/11449/143821.
Full textCoorientador: LeonG. Higley
Banca: Paulo Roberto Silva Farias
Banca: Ivan Carlos Fernandes Martins
Banca: Walkymário de Paulo Lemos
Banca: Alessandra de Jesus Boari
Resumo: O óleo de palma destaca-se por ser a principal fonte alimentícia de óleo vegetal liderando a produção mundial seguido da soja. Devido à escassez de estudos básicos para manejo de desfolhadores em palma de óleo, este trabalho objetivou avaliar a resposta fisiológica das plantas sob desfolha e efeito da desfolha na produção, bem como determinar o nível de dano econômico. Esse trabalho mostrou que a injúria artificial com tesoura e natural por lagartas de B. sophorae não resultou em efeitos no processo fisiológico das folhas remanescentes em mudas de híbrido interespecífico (Elaeis guineensis Jacq. X Elaeis oleifera [Kunth, Cortés]) e, provavelmente, as plantas responderam com mecanismos compensatórios evitando assim interromper seus processos fisiológicos evitando a perda de água, mantendo seu processo autotrófico nos tecidos remanescentes. Os resultados mostraram ainda que a desfolha ocasionada pelas lagartas e a mecânica não apresentaram diferenças e que injúrias mecânicas podem ser usadas em estudos de desfolha simulada. Com isso, justificou-se o uso de desfolha artificial para estudar seu efeito sobre a produção. Paralelamente, obteve-se o consumo de área foliar total para larvas de Opsiphanes invirae Hübner, que foi de 286,064 cm2. O nível de dano econômico foi 5,14 e 2,98 lagartas por folha utilizando o produto Dipel® WP e SC, respectivamente para dados de perdas acumuladas em dois anos. Considerando apenas a injúria artificial obtida nas condições da Ag... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Palm oil is notable for being the main food source of vegetable oil leading the world production followed by soybeans. Due to the shortage of basic studies for management of palm oil defoliators, this study aimed to evaluate the physiological response of plants under defoliation and effect of defoliation on the production, as well as to determine economic injury level. This work showed that the artificial injury using scissors and natural using B. sophorae larvae did not result in effects to the physiological process of the remaining leaves in interspecific hybrid seedlings (Elaeis guineensis Jacq. X Elaeis oleifera [Kunth, Cortés]) and, probably, the plants responded with compensatory mechanisms avoiding interruption of the physiological processes preventing the loss of water, keeping the autotrophic process in the remaining tissues. The results also showed that the defoliation either caused by the larvae or by scissors did not show differences and mechanical injuries can be used in simulated defoliation studies. Thus, this justified the use of artificial defoliation to study its effect on production. At the same time, the consumption of total leaf area was obtained for Opsiphanes invirae Hübner larvae, which was 286.064 cm2 and the level of economic damage to this species in oil palm. The economic injury level was 5.14 and 2.98 larvae per leaf using the product Dipel® WP and SC, respectively, using two-year loss data. Considering only the artificial injury ... (Complete abstract click electronic access below)
Doutor
Verwilghen, Aude. "Rodent pest management and predators communities in oil palm plantations in Indonesia : comparison of two contrasted system." Thesis, Besançon, 2015. http://www.theses.fr/2015BESA2042/document.
Full textRodent pest control is often a major issue in agroecosystems. We conducted a 3-year comparative study (2010-2012) in oil palm plantations in Riau and Bangka provinces, in Indonesia: in both areas barn owls have been introduced for rat control, and were at least as abundant in Bangka plantations than in Riau, but in Riau rat populations have been maintained at an acceptable level without the use of rodenticide, whereas in Bangka intensive rodenticide applications did not prevent high levels of rat damage. We compared these two contrasting systems in terms of predator community (barn owls and small carnivores) abundance and/or diet. We found that small carnivores were much more abundant in Riau plantations than in Bangka, and that the leopard cat (Prionailurus bengalensis) was the dominant species in Riau while absent from Bangka. Our results on diet suggested that rat prey intake from barn owls and from the small carnivore community would be less in Bangka plantations than in Riau. Broadly, our results suggest that small carnivores, notably the leopard cat, play an important role in rodent control. In addition, we investigated spatial distribution of small carnivores within the oil palm habitat. Our results support the hypothesis that, although the oil palm may be habitable for some small carnivore species such as the leopard cat, where they supposedly forage at night, most species still need forest for their survival in oil palm landscapes. Oil palm plantations managers should adapt agricultural practices and land-use to enhance small carnivores, with the view to improve rodent control
Maia, Patricia Surama Parise [UNESP]. "Resistência de genótipos de palma de óleo (Elaeis guineensis Jacq.) ao ataque de Opsiphanes invirae Hübner, 1808 (lepidoptera: nymphalidae) no Estado do Pará." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/139437.
Full textApproved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-06-08T17:29:41Z (GMT) No. of bitstreams: 1 maia_psp_dr_jabo.pdf: 2373662 bytes, checksum: b5375ff641c78b9ad795cae545478b5b (MD5)
Made available in DSpace on 2016-06-08T17:29:41Z (GMT). No. of bitstreams: 1 maia_psp_dr_jabo.pdf: 2373662 bytes, checksum: b5375ff641c78b9ad795cae545478b5b (MD5) Previous issue date: 2016-05-31
A presente pesquisa teve por objetivos estabelecer uma metodologia para criação de O. invirae e identificar genótipos de palma de óleo que apresentem fontes de resistência a esse inseto, nas categorias por não preferência para alimentação, antibiose e tolerância, sendo esta última baseada na produtividade após simulação de desfolha nas plantas. Os experimentos foram conduzidos em laboratório, exceto o teste de tolerância, o qual foi em condições de campo. Para a metodologia de criação, as lagartas foram criadas individualmente em placas de Petri até o quarto ínstar e posteriormente transferidas para recipientes maiores onde permaneceram até a emergência dos adultos. Foram utilizados 5 genótipos de palma de óleo para os testes de não preferência para alimentação, antibiose e tolerância, quais sejam: Deli x LaMe tratamento testemunha, Compacta x Ekona; Deli x Ekona; Compacta x Nigéria e Compacta x Ghana. Os testes com e sem chance de escolha, foram realizados com lagartas de O. invirae recém-eclodidas e com 12 dias de idade. Foram avaliados o consumo e a atratividade a 1, 3, 5, 10, 15 e 30 minutos e 1, 2, 6, 12, 24, 48 e 72 horas, após a liberação dos insetos. No teste de antibiose, as lagartas de O. invirae foram alimentadas com folíolos dos cinco genótipos até o final da fase larval. No teste de tolerância, os genótipos foram submetidos a desfolha simulada, ou seja, 0%, 25%, 50%, 75% e 100%. Avaliando a produção por 14 meses após a desfolha. O ciclo de vida desde o ovo até a emergência do adulto de O. invirae se completou em 64,59 dias. No teste com chance de escolha, os genótipos mais atrativos foram Compacta x Ekona e Compacta x Ghana, enquanto que o Compacta x Nigéria foi o menos atrativo e menos consumido nos dois testes com lagartas recém-eclodidas. No teste sem chance de escolha com lagartas de 12 dias de idade o tratamento Deli x LaMe foi o menos consumido, o Compacta x Ghana, foi o mais consumido em teste com e sem chance de escolha. No entanto no teste de antibiose foram verificados maiores efeitos dos genótipos estudados nas viabilidades do quinto ínstar larval, no período total da fase larval e fase pupal. No teste de tolerância, os genótipos Deli x LaMe e Compacta x Ekona apresentaram os melhores resultados de produtividade. O genótipo Compacta x Nigéria apresenta resistência do tipo não preferência para alimentação a lagartas recém-eclodidas de O. invirae; o genótipo Deli x LaMe apresenta resistência na categoria antibiose e os genótipos mais tolerantes a desfolha simulada são Deli x Lame, Compacta x Ekona e Compacta x Nigéria.
This research aimed to establish a methodology for creating O. invirae and identify genotypes palm oil presenting this insect resistance sources in the categories by not feeding preference, antibiosis and tolerance, the latter being based on productivity simulation after defoliation in plants. The experiments were conducted in the laboratory, but the tolerance test, which was under field conditions. For the creation of methodology, the caterpillars were reared individually in Petri dishes until the fourth instar and then transferred to larger containers where they remained until the emergence of adults. 5 oil palm genotypes were used for the test no preference for food, antibiosis and tolerance, which are: Deli x Lame control treatment, Compact x Ekona; Deli x Ekona; Compact x Nigeria and Compact x Ghana. The tests with and without choice, were carried out with crawler O. invirae newly hatched and 12 days old. They were evaluated consumption and attractiveness to 1, 3, 5, 10, 15 and 30 minutes and 1, 2, 6, 12, 24, 48 and 72 hours after the release of the insects. In antibiosis test, Crawler O. invirae were fed leaflets of the five genotypes by the end of the larval stage. In the tolerance test, the genotypes were simulated peeling, is, 0%, 25%, 50%, 75% and 100%. Evaluating production for 14 months after defoliation. The life cycle from egg to the emergence of O. invirae adult was completed in 64.59 days. In the test free choice, the most attractive genotypes were Compacta x Ekona and Compact x Ghana, while the Compact x Nigeria was the least attractive and least consumed in both tests with newly hatched caterpillars. In the test no choice with caterpillars 12 days old the Deli x Lame treatment was the least consumed, Compact x Ghana, was the most consumed in test and no choice. However the antibiosis test were observed greater effects of the genotypes studied the viability of the fifth instar larvae, the total period of the larval and pupal stage. In the tolerance test, the Deli x Lame and Compact x Ekona genotypes showed the best productivity results. The Compact x Nigeria genotype is resistant type no preference for feeding the newly hatched larvae of O. invirae; the Deli x Lame genotype presents resistance in antibiose category and the most tolerant genotypes simulated defoliation are Delhi x Lame, Compact x Ekona and Compact x Nigeria.
Nurdiansyah, Fuad [Verfasser], Teja [Akademischer Betreuer] Tscharntke, Kerstin [Gutachter] Wiegand, and Yann [Gutachter] Clough. "Local and Landscape Management of Biological Pest Control in Oil Palm Plantations / Fuad Nurdiansyah. Betreuer: Teja Tscharntke. Gutachter: Kerstin Wiegand ; Yann Clough." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2016. http://d-nb.info/1103656104/34.
Full textRibeiro, Rafael Coelho. "Parasitóide de pupas Trichospilus diatraeae (Hymenoptera: Eulophidae): desenvolvimento e reprodução em lepidópteros-praga do dendezeiro." Universidade Federal de Viçosa, 2010. http://locus.ufv.br/handle/123456789/3916.
Full textAgropalma - Cia. Refinadora da Amazônia
The African palm or oil palm (Elaeis guineensis Jacq.) is a plant of African origin and considered the major industrialized activity in humid areas, similar in Amazon area. The expansion of oil palm, especially in northern region of Brazil, has presented more phytosanitary problems, including the caterpillars defoliating Brassolis sophorae L. Opsiphanes invirae Hübner (Lepidoptera: Nymphalidae) and borers-of-strain Eupalamides cyparissias cyparissias (Fabricius) (Lepidoptera: Castniidae), weeds and more frequent in the State of Pará. This study aimed to evaluate the potential Trichospilus diatraeae Cherian & Margabandhu (Hymenoptera: Eulophidae) in pupae of O. invirae, B. sophorae and E. cyparissias cyparissias under laboratory conditions. This research was conducted in the laboratory of Plant Complex Agropalma in Thailand city, southeast of Pará State in a room temperature of 25 ± 2 ºC, relative humidity of 70 ± 10% and photophase of 12 hours. The potential of parasitism and progeny production of T. diatraeae in pupae of three species of lepidopteran pests on the cultivation of oil palm, showed that this parasitoid was parasite and progeny produced in pupae of defoliating B. sophorae and O. invirae. The second study was evaluated the reproductive features of T. diatraeae in defoliating species of oil palm (B. sophorae and O. invirae). Results showing that the rate of parasitism and progeny emergence of T. diatraeae pupae was similar in both species. The life cycle of T. diatraeae was lower in pupae of O. invirae (21.50 ± 0.42 days) than in B. sophorae (27.60 ± 1.80 days), but the amount of progeny (669.00 ± 89.62) and dead immature (217.13 ± 58.18) were higher in B. sophorae than in O. invirae (447.83 ± 51.52 and 13.50 ± 5.23), respectively. The sex ratio, longevity of females and males of T. diatraeae were similar in both species were tested. In the third study, the influence of T. diatraeae female age with 12-24, 24- 48, 48-72 and 72 to 96 hours of life was assessed in the reproductive performance of parasitoids in pupae of B. sophorae. Female ages did not affect on parasitism rate of T. diatraeae in B. sophorae pupae, but the emergence of progeny was higher in pupae parasitized by females with 48 to 72 and 72 to 96 hours (70 and 60%) than those parasitized by females between 12 and 24 and 24 to 48 hours old with 20 and 20 %, respectively. The age of T. diatraeae affected on fecundity, the number of dead immature and sex ratio of offspring in pupae of B. sophorae. However, the age of females did not affect on the life cycle of the progeny of T. diatraeae with range from 20.0 ± 1.0 days and 23.0 ± 0.0 days, respectively. Different densities did not affect on parasitism of female T. diatraeae, but the rate of emergence and progeny were higher at 30:1 and 20:1 female/host immature parasitoid and the numbers of deaths were lower in density (1:1, 10:1, 20:1 and 30:1 females/host). The period from egg to adult offspring of T. diatraeae was similar at the different densities of females of this parasitoid. The sex ratio of offspring emerged was the lower density with 10:1 female/host. Females and males of T. diatraeae emerged from the pupae parasitized of B. sophorae were larger (body length) at densities of 20:1 and 30:1 and the head capsules of females were higher at 30:1, 20:1 and 40:1 female/host, with similar values in males. Trichospilus diatraeae was parasite and produced progeny in pupae of B. sophorae and O. invirae, but pupae of B. sophorae were more suitable for producing larger number of offspring of this parasitoid. The best period of reproductive females of T. diatraeae parasitoid in pupae of B. sophorae was between 48 to 96 hours of life at a density of 20 or 30 females/host that provides the highest rates of parasitism, emergence and larger individuals of this parasitoid. The parasitoid T. diatraeae has been good potential to control lepidopteran defoliator pests of oil palm.
O dendezeiro ou palma africana (Elaeis guineensis, Jacq.) é uma planta de origem africana e considerada a principal atividade agroindustrial em regiões tropicais úmidas, semelhantes às da Amazônia. A expansão da dendeicultura, em especial na região Norte do Brasil, tem apresentado mais problemas fitossanitários, incluindo as lagartas desfolhadoras Brassolis sophorae L., Opsiphanes invirae Hübner (Lepidoptera: Nymphalidae) e a broqueadora-da-estirpe Eupalamides cyparissias cyparissias (Fabricius) (Lepidoptera: Castniidae), mais daninhas e freqüentes no Estado do Pará. Esse estudo teve por objetivo avaliar o potencial de Trichospilus diatraeae Cherian & Margabandhu (Hymenoptera: Eulophidae) em pupas de O. invirae, B. sophorae e E. cyparissias cyparissias em laboratório. Esta pesquisa foi realizada no laboratório de Fitossanidade do Complexo Agropalma no município de Tailândia, sudeste do Estado do Pará em sala climatizada à temperatura de 25 ± 2 ºC, umidade relativa de 70 ± 10 % e fotofase de 12 horas. O potencial de parasitismo e produção de descendentes de T. diatraeae em pupas de três espécies de lepidópteros daninhos ao cultivo do dendezeiro, mostrou que esse parasitóide parasita e produz progênie, em pupas das desfolhadoras B. sophorae e O. invirae. O segundo estudo avaliou os aspectos reprodutivos de T. diatraeae nas espécies desfolhadoras do dendê (B. sophorae e O. invirae) mostrando que a taxa de parasitismo e emergência da progênie de T. diatraeae foi semelhante em pupas de ambas as espécies. O ciclo de vida de T. diatraeae foi menor em pupas de O. invirae (21,50 ± 0,42 dias) que nas de B. sophorae (27,60 ± 1,80 dias), mas a quantidade de progênie (669,00 ± 89,62) e imaturos mortos 217,13 ± 58,18 foi maior em B. sophorae que em O. invirae (447,83 ± 51,52 e 13,50 ± 5,23), respectivamente. A razão sexual, longevidade de fêmeas e machos de T. diatraeae emergidos foram semelhantes em ambas as espécies dos lepidópteros-praga. No terceiro estudo, a influência da idade de fêmeas de T. diatraeae com 12 a 24, 24 a 48, 48 a 72 e 72 a 96 horas de vida foi avaliada, no desempenho reprodutivo desse parasitóide em pupas de B. sophorae. A idade de fêmeas não afetou a taxa de parasitismo de T. diatraeae em pupas de B. sophorae, porém a emergência da progênie foi maior em pupas parasitadas por fêmeas com 48 a 72 e 72 a 96 horas (70 e 60%) em relação aquelas parasitadas por fêmeas com 12 a 24 e 24 a 48 horas de idade (20 e 20%), respectivamente. A idade de T. diatraeae afetou, também, a fecundidade, o número de imaturos mortos e a razão sexual da progênie em pupas de B. sophorae. No entanto, a idade de fêmeas não afetou o ciclo de vida da progênie de T. diatraeae que variou de 20,0 ± 1,0 dias a 23,0 ± 0,0 dias, respectivamente. As diferentes densidades não afetaram o parasitismo de fêmeas de T. diatraeae, mas a taxa de emergência e a progênie foram maiores nas densidades de 30:1 e 20:1 fêmeas/hospedeiro e a quantidade de imaturos mortos foram menores nas densidades (1:1, 10:1, 20:1 e 30:1 fêmeas/hospedeiro). O período de ovo a adulto da progênie de T. diatraeae foi semelhante nas diferentes densidades de fêmeas desse parasitóide. A razão sexual da progênie emergida foi menor na densidade de 10:1 fêmeas/hospedeiro. Fêmeas e machos de T. diatraeae, emergidos de pupas de B. sophorae parasitadas foram maiores (comprimento do corpo) nas densidades de 20:1 e 30:1 e as cápsulas cefálicas de fêmeas foram maiores nas densidades de 30:1, 20:1 e 40:1 fêmeas/hospedeiro, com valores semelhantes em machos. Portanto, Trichospilus diatraeae parasita e produz progênie em pupas de B. sophorae e O. invirae, mas aquelas pupas de B. sophorae são mais adequadas por produzir maior número de descendentes desse parasitóide. O melhor período reprodutivo de fêmeas de T. diatraeae parasitando pupas de B. sophorae foi entre 48 a 96 horas de vida na com densidade de 20 ou 30 fêmeas/hospedeiro que proporciona maiores taxas de parasitismo, emergência e maior tamanho de indivíduos desse parasitóide. O parasitóide T. diatraeae apresenta potencial para controlar lepidópteros desfolhadores do dendê.
Raja, Deris Raja Razuan. "Combustion and slow pyrolysis of oil palm stones and palm kernel cake." Thesis, University of Sheffield, 2011. http://etheses.whiterose.ac.uk/2168/.
Full textChoong, Chee Guan. "Sustainability in the Malaysian palm oil industry." Thesis, University of Leeds, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.589047.
Full textLucey, Jennifer Marie. "Insect diversity across rainforest-oil palm ecotones." Thesis, University of York, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.547326.
Full textBooks on the topic "Pests of oil palm"
Polanía, Ingeborg Zenner de. Manejo de insectos, plagas y beneficos de la palma africana. Santafé de Bogotá: Instituto Colombiano Agropecuario, Subgerencia de Investigación, División de Proyectos Especiales de Investigación Agrícola, 1993.
Find full textCorley, R. H. V., and P. B. Tinker, eds. The Oil Palm. Oxford, UK: Blackwell Science Ltd, 2003. http://dx.doi.org/10.1002/9780470750971.
Full textCorley, R. H. V., and P. B. Tinker. The Oil Palm. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118953297.
Full textSoh, Aik Chin, Sean Mayes, and Jeremy Roberts, eds. Oil Palm Breeding. Boca Raton : Taylor & Francis, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315119724.
Full textMalaysia, Lembaga Minyak Sawit, ed. Palm oil: Empowering change. Kuala Lumpur, Malaysia: Malaysian Palm Oil Board, Ministry of Plantation Industries and Commodities, Malaysia, 2007.
Find full textLarson, Donald F. Indonesia's palm oil subsector. Washington, DC: World Bank, International Economics Dept., Commodity Policy and Analysis Unit, 1996.
Find full textIthnin, Maizura, and Ahmad Kushairi, eds. The Oil Palm Genome. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-22549-0.
Full textSoroker, Victoria, and Stefano Colazza, eds. Handbook of Major Palm Pests. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119057468.
Full textBook chapters on the topic "Pests of oil palm"
Laksono, N. D., U. Setiawati, F. Nur, M. Rahmaningsih, Y. Anwar, H. Rusfiandi, B. P. Forster, E. H. Sembiring, A. S. Subbarao, and H. Zahara. "Pests and diseases." In Nursery practices in oil palm: a manual, 77–85. Wallingford: CABI, 2019. http://dx.doi.org/10.1079/9781789242140.0077.
Full textPonnamma, K. N. "Biological Control of Pests of Oil Palm." In Biocontrol Potential and its Exploitation in Sustainable Agriculture, 235–60. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1377-3_15.
Full textMostafa, Salama A., Ahmed Abdulbasit Hazeem, Shihab Hamad Khaleefahand, Aida Mustapha, and Rozanawati Darman. "A Collaborative Multi-agent System for Oil Palm Pests and Diseases Global Situation Awareness." In Proceedings of the Future Technologies Conference (FTC) 2018, 763–75. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02686-8_57.
Full textKrist, Sabine. "Palm Kernel Oil/Palm Oil." In Vegetable Fats and Oils, 513–21. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-30314-3_82.
Full textLin, Siew Wai. "Palm Oil." In Vegetable Oils in Food Technology, 25–58. Oxford, UK: Wiley-Blackwell, 2011. http://dx.doi.org/10.1002/9781444339925.ch2.
Full textSoh, Aik Chin, Choo Kien Wong, Yuk Wah Ho, and Chieh Wean Choong. "Oil Palm." In Oil Crops, 333–67. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-77594-4_11.
Full textKalidas, P. "Oil Palm." In Mealybugs and their Management in Agricultural and Horticultural crops, 569–71. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2677-2_61.
Full textSuresh, K., R. K. Mathur, and S. K. Behera. "Oil Palm." In Abiotic Stress Physiology of Horticultural Crops, 333–42. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2725-0_18.
Full textNgando-Ebongue, G. F., W. N. Ajambang, P. Koona, B. Lalu Firman, and V. Arondel. "Oil Palm." In Technological Innovations in Major World Oil Crops, Volume 1, 165–200. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0356-2_7.
Full textBährle-Rapp, Marina. "palm oil." In Springer Lexikon Kosmetik und Körperpflege, 398. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_7391.
Full textConference papers on the topic "Pests of oil palm"
Qi, Rui, Paul-Henry Cournède, René Lecoustre, and Philippe de Reffye. "Tri-trophic Ecosystem Oil Palm-Pests-Auxiliaries: I. Modeling and Simulation." In 2009 Third International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA). IEEE, 2009. http://dx.doi.org/10.1109/pma.2009.48.
Full textQi, Rui, Paul-Henry Cournède, and Philippe de Reffye. "Tri-trophic Ecosystem Oil Palm-Pests-Auxiliaries: II. Sensitivity Analysis, Parameter Identification and Control." In 2009 Third International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA). IEEE, 2009. http://dx.doi.org/10.1109/pma.2009.49.
Full textBukhori, Alan Akbar, A. Rahim Matondang, and Juliza Hidayati. "Pest Control and Palm Oil Plant Disease by Application of Expert System." In APCORISE 2020: 3rd Asia Pacific Conference on Research in Industrial and Systems Engineering 2020. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3400934.3401003.
Full textAisagbonhi, Charles Iziegboya. "Integrated pest management ofOryctes monoceros,Rhynchophorus phoenicis,andLatoia viridissimain Okomu oil palm plantation, Nigeria." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.109703.
Full textSetiyowati, Susi, Rida F. Nugraha, and Utriweni Mukhaiyar. "Non-stationary time series modeling on caterpillars pest of palm oil for early warning system." In 1ST INTERNATIONAL CONFERENCE ON ACTUARIAL SCIENCE AND STATISTICS (ICASS 2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4936439.
Full text"The Bunch Moth of the Tirathaba Species As A Hidden Pest on The Peat Soil of Oil Palm Plantations: Implications of Biological Life Cycles, The DNA Barcoding Approach, and Infestation Pattern Detection." In 3rd International Conference on Chemical, Agricultural and Medical Sciences. International Institute of Chemical, Biological & Environmental Engineering, 2015. http://dx.doi.org/10.15242/iicbe.c1215036.
Full textMoo, Yee Teng. "Development in Palm Oil Sustainability." In Virtual 2020 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2020. http://dx.doi.org/10.21748/am20.206.
Full textMorad, Noor Azian, Wan Asma Ibrahim, Nur Syuhana Muda, Yoshihito Shirai, Mustafa Kamal Abdul Aziz, and Hon Loong Lam. "Utilization of felled oil palm trunk: Trunk sections storage on oil palm sap production." In 2015 10th Asian Control Conference (ASCC). IEEE, 2015. http://dx.doi.org/10.1109/ascc.2015.7244841.
Full textNovella, Tarahani, and Mohammad Riduansyah. "Supervisory Analysis by Indonesian Sustainable Palm Oil Commission in Implementationof Sustainable Palm Oil Policy." In Proceedings of the 3rd International Conference on Administrative Science, Policy, and Governance Studies, ICAS-PGS 2019, October 30-31, Universitas Indonesia, Depok. Indonesia. EAI, 2020. http://dx.doi.org/10.4108/eai.30-10-2019.2299323.
Full textBahri, Syaiful, Edy Saputra, Irene Detrina, Yusnitawati, and Muhdarina. "Bio oil from palm oil industry solid waste." In International Conference on Energy and Sustainable Development: Issues and Strategies (ESD 2010). IEEE, 2010. http://dx.doi.org/10.1109/esd.2010.5598783.
Full textReports on the topic "Pests of oil palm"
S., Savilaakso, Petrokofsky G., Zrust M., and Guariguata M.R. Palm oil and biodiversity. Center for International Forestry Research (CIFOR), 2014. http://dx.doi.org/10.17528/cifor/004559.
Full textY.K., Nchanji, Tataw O., Nkongho R.N., and Levang P. Artisanal Milling of Palm Oil in Cameroon. Center for International Forestry Research (CIFOR), 2013. http://dx.doi.org/10.17528/cifor/004378.
Full textR.N., Nkongho, Feintrenie L., and Levang P. The non-industrial palm oil sector in Cameroon. Center for International Forestry Research (CIFOR), 2014. http://dx.doi.org/10.17528/cifor/004859.
Full textAsante, Kofi Takyi. Political Economy of the Oil Palm Value Chain in Ghana. Institute of Development Studies (IDS), March 2021. http://dx.doi.org/10.19088/apra.2021.008.
Full textKinoshita, Eiji, Kazunori Hamasaki, Ishikawa Takashi, and Thet Myo. Combustion Characteristics of Emulsified Palm Oil Methyl Ester for Diesel Fuel. Warrendale, PA: SAE International, October 2005. http://dx.doi.org/10.4271/2005-32-0041.
Full textResearch Institute (IFPRI), International Food Policy. The palm oil dilemma: Policy tensions among higher productivity, rising demand, and deforestation. Washington, DC: International Food Policy Research Institute, 2019. http://dx.doi.org/10.2499/9780896296879.
Full textZ.R., Anderson, Kusters K., and Obidzinski K. Reducing green house gas emissions from oil palm in Indonesia: Lessons from East Kalimantan. Center for International Forestry Research (CIFOR), 2015. http://dx.doi.org/10.17528/cifor/005749.
Full textKarabörklü, Salih, Urgur Azizoglu, Semih Yilmaz, Abdurrahman Ayvaz, and Mehmet Akdeniz. The Chemical Composition of Cyclotrichium origanifolium Essential Oil and Its Insecticidal Activity against Four Stored-product Insect Pests. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, June 2019. http://dx.doi.org/10.7546/crabs.2019.06.18.
Full textP., Pacheco. Soybean and oil palm expansion in South America: a review of main trends and implications. Center for International Forestry Research (CIFOR), 2012. http://dx.doi.org/10.17528/cifor/003776.
Full textF., Brandão, and Schoneveld G. The state of oil palm development in the Brazilian Amazon: Trends, value chain dynamics, and business models. Center for International Forestry Research (CIFOR), 2015. http://dx.doi.org/10.17528/cifor/005861.
Full text