Journal articles on the topic 'PET/CT image processing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'PET/CT image processing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rossi, Farli, and Ashrani Aizzuddin Abd Rahni. "Joint Segmentation Methods of Tumor Delineation in PET – CT Images: A Review." International Journal of Engineering & Technology 7, no. 3.32 (2018): 137. http://dx.doi.org/10.14419/ijet.v7i3.32.18414.
Full textMalczewski, Krzysztof. "Image Resolution Enhancement of Highly Compressively Sensed CT/PET Signals." Algorithms 13, no. 5 (2020): 129. http://dx.doi.org/10.3390/a13050129.
Full textPietrzyk, U. "Does PET/CT render software registration obsolete?" Nuklearmedizin 44, S 01 (2005): S13—S17. http://dx.doi.org/10.1055/s-0038-1625209.
Full textMarinelli, Martina, Vincenzo Positano, Francesco Tucci, Danilo Neglia, and Luigi Landini. "Automatic PET-CT Image Registration Method Based on Mutual Information and Genetic Algorithms." Scientific World Journal 2012 (2012): 1–12. http://dx.doi.org/10.1100/2012/567067.
Full textLiu, Jiahui, Xiangjun Zhang, Tana Bai, and Yiming Liu. "Analysis on Brain Image Characteristics of Patients with Parkinson's Disease Under Multimodal Magnetic Resonance Technology." Journal of Medical Imaging and Health Informatics 11, no. 2 (2021): 606–11. http://dx.doi.org/10.1166/jmihi.2021.3371.
Full textDeleu, Anne-Leen, Machaba Junior Sathekge, Alex Maes, Bart De Spiegeleer, Mike Sathekge, and Christophe Van de Wiele. "Characterization of FDG PET Images Using Texture Analysis in Tumors of the Gastro-Intestinal Tract: A Review." Biomedicines 8, no. 9 (2020): 304. http://dx.doi.org/10.3390/biomedicines8090304.
Full textElaiyaraja, K., and M. Senthil Kumar. "Fusion Imaging in Pixel Level Image Processing Technique – A Literature Review." International Journal of Engineering & Technology 7, no. 3.12 (2018): 175. http://dx.doi.org/10.14419/ijet.v7i3.12.15913.
Full textBercier, Y., M. Schwaiger, S. I. Ziegler, and M. J. Martínez. "PET/CT BiographTM Sensation 16." Nuklearmedizin 45, no. 03 (2006): 126–33. http://dx.doi.org/10.1055/s-0038-1625926.
Full textSyed Inthiyaz, Hasane Ahammad Sk, Praveen SR Konduri, et al. "A novel approach of MRI-CT Image fusion using CWT for finding Disease location." International Journal of Research in Pharmaceutical Sciences 11, no. 1 (2020): 497–506. http://dx.doi.org/10.26452/ijrps.v11i1.1850.
Full textRossi, Farli. "APPLICATION OF A SEMI-AUTOMATED TECHNIQUE IN LUNG LESION SEGMENTATION." Jurnal Teknoinfo 15, no. 1 (2021): 56. http://dx.doi.org/10.33365/jti.v15i1.945.
Full textLi, Zhen Wei, Xiao Li Yang, and Wei Dong Song. "A Novel Multi-Planar Fusion System for PET/CT Images." Applied Mechanics and Materials 373-375 (August 2013): 608–12. http://dx.doi.org/10.4028/www.scientific.net/amm.373-375.608.
Full textBajaj, Aaishwarya Sanjay, and Usha Chouhan. "A Review of Various Machine Learning Techniques for Brain Tumor Detection from MRI Images." Current Medical Imaging Formerly Current Medical Imaging Reviews 16, no. 8 (2020): 937–45. http://dx.doi.org/10.2174/1573405615666190903144419.
Full textKhan A, Mohsin, and Anuj Jain. "A Survey on Diagnosis of US Image Thyroid Nodules and Automated Classification." International Journal of Engineering & Technology 7, no. 3.12 (2018): 384. http://dx.doi.org/10.14419/ijet.v7i3.12.16112.
Full textYang, Hang. "Application of nano-metric synthetic materials in medical imaging diagnosis." Materials Express 11, no. 7 (2021): 1168–76. http://dx.doi.org/10.1166/mex.2021.2020.
Full textChauvie, Stephane, Federico Dalmasso, Larry Pierce, et al. "A core laboratory approach to large-scale radiomics and machine-learning prediction of DLBCL outcomes after first-line treatment using results from the phase III GOYA study." Journal of Clinical Oncology 37, no. 15_suppl (2019): e19042-e19042. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.e19042.
Full textLo Faso, Enrico Antonio, Orazio Gambino, and Roberto Pirrone. "Head–Neck Cancer Delineation." Applied Sciences 11, no. 6 (2021): 2721. http://dx.doi.org/10.3390/app11062721.
Full textIgnatova, Mariya, Marina Tlostanova, and Andrey Stanzhevskiy. "THE FIRST EXPERIENCE OF PERFORMING COMBINED POSITRONEMISSION WITH COMPUTED TOMOGRAPHY WITH PROSTATE-SPECIFIC MEMBRANE ANTIGEN LABELED WITH GALLIUM-68 IN PATIENTS WITH MINIMAL LEVEL OF PROSTATE-SPECIFIC ANTIGEN AFTER RADICAL PROSTATECTOMY." Problems in oncology 64, no. 4 (2018): 508–14. http://dx.doi.org/10.37469/0507-3758-2018-64-4-508-514.
Full textPike, Lucy C., Christopher M. Thomas, Teresa Guerrero-Urbano, et al. "Guidance on the use of PET for treatment planning in radiotherapy clinical trials." British Journal of Radiology 92, no. 1103 (2019): 20190180. http://dx.doi.org/10.1259/bjr.20190180.
Full textNestle, U., S. Kremp, D. Hellwig, et al. "Multi-centre calibration of an adaptive thresholding method for PET-based delineation of tumour volumes in radiotherapy planning of lung cancer." Nuklearmedizin 51, no. 03 (2012): 101–10. http://dx.doi.org/10.3413/nukmed-0452-11-12.
Full textKaur, Pawandeep, and Rekha Bhatia. "Development of a Novel Lung Cancer Detection Technique based upon Micro Vessel Density Analysis." International Journal of Advanced Research in Computer Science and Software Engineering 7, no. 7 (2017): 157. http://dx.doi.org/10.23956/ijarcsse/v7i7/0170.
Full textFedorov, Andriy, David Clunie, Ethan Ulrich, et al. "DICOM for quantitative imaging biomarker development: a standards based approach to sharing clinical data and structured PET/CT analysis results in head and neck cancer research." PeerJ 4 (May 24, 2016): e2057. http://dx.doi.org/10.7717/peerj.2057.
Full textKrajnc, Denis, Laszlo Papp, Thomas S. Nakuz, et al. "Breast Tumor Characterization Using [18F]FDG-PET/CT Imaging Combined with Data Preprocessing and Radiomics." Cancers 13, no. 6 (2021): 1249. http://dx.doi.org/10.3390/cancers13061249.
Full textWang, Xiuying, Chaoqun Fang, Yong Xia, and Dagan Feng. "Airway segmentation for low-contrast CT images from combined PET/CT scanners based on airway modelling and seed prediction." Biomedical Signal Processing and Control 6, no. 1 (2011): 48–56. http://dx.doi.org/10.1016/j.bspc.2010.05.002.
Full textChoi, Bo-Hye, Donghwi Hwang, Seung-Kwan Kang та ін. "Accurate Transmission-Less Attenuation Correction Method for Amyloid-β Brain PET Using Deep Neural Network". Electronics 10, № 15 (2021): 1836. http://dx.doi.org/10.3390/electronics10151836.
Full textSzumowski, Piotr, Artur Szklarzewski, Łukasz Żukowski, et al. "Pre-Processing Method for Contouring the Uptake Levels of [18F] FDG for Enhanced Specificity of PET Imaging of Solitary Hypermetabolic Pulmonary Nodules." Journal of Clinical Medicine 10, no. 7 (2021): 1430. http://dx.doi.org/10.3390/jcm10071430.
Full textPandey, AnilKumar, Kartik Saroha, ParamDev Sharma, et al. "Development and validation of the suprathreshold stochastic resonance-based image processing method for the detection of abdomino-pelvic tumor on PET/CT scans." Indian Journal of Nuclear Medicine 32, no. 2 (2017): 103. http://dx.doi.org/10.4103/0972-3919.202247.
Full textSomai, Vencel, David Legrady, and Gabor Tolnai. "Singular value decomposition analysis of back projection operator of maximum likelihood expectation maximization PET image reconstruction." Radiology and Oncology 52, no. 3 (2018): 337–45. http://dx.doi.org/10.2478/raon-2018-0013.
Full textSivasangari, A., D. Deepa, L. Lakshmanan, A. Jesudoss, and M. S. Roobini. "Lung Nodule Classification on Computed Tomography Using Neural Networks." Journal of Computational and Theoretical Nanoscience 17, no. 8 (2020): 3427–31. http://dx.doi.org/10.1166/jctn.2020.9199.
Full textDuncan, John S. "Brain imaging in epilepsy." Practical Neurology 19, no. 5 (2019): 438–43. http://dx.doi.org/10.1136/practneurol-2018-002180.
Full textAhmed, Zeeshan, and Thomas Dandekar. "MSL: Facilitating automatic and physical analysis of published scientific literature in PDF format." F1000Research 4 (December 16, 2015): 1453. http://dx.doi.org/10.12688/f1000research.7329.1.
Full textAhmed, Zeeshan, and Thomas Dandekar. "MSL: Facilitating automatic and physical analysis of published scientific literature in PDF format." F1000Research 4 (April 12, 2017): 1453. http://dx.doi.org/10.12688/f1000research.7329.2.
Full textAhmed, Zeeshan, and Thomas Dandekar. "MSL: Facilitating automatic and physical analysis of published scientific literature in PDF format." F1000Research 4 (April 4, 2018): 1453. http://dx.doi.org/10.12688/f1000research.7329.3.
Full textJemaa, Skander, Jill Fredrickson, Alexandre Coimbra, et al. "A Fully Automated Measurement of Total Metabolic Tumor Burden in Diffuse Large B-Cell Lymphoma and Follicular Lymphoma." Blood 134, Supplement_1 (2019): 4666. http://dx.doi.org/10.1182/blood-2019-124793.
Full textSexauer, Raphael, Thomas Weikert, Kevin Mader, et al. "Towards More Structure: Comparing TNM Staging Completeness and Processing Time of Text-Based Reports versus Fully Segmented and Annotated PET/CT Data of Non-Small-Cell Lung Cancer." Contrast Media & Molecular Imaging 2018 (November 1, 2018): 1–10. http://dx.doi.org/10.1155/2018/5693058.
Full textZhou, Xiaoliang, Peter Cipriano, Brian Kim, et al. "Detection of nociceptive-related metabolic activity in the spinal cord of low back pain patients using 18F-FDG PET/CT." Scandinavian Journal of Pain 15, no. 1 (2017): 53–57. http://dx.doi.org/10.1016/j.sjpain.2016.11.017.
Full textKhagi, Bijen, and Goo-Rak Kwon. "3D CNN based Alzheimer’s diseases classification using segmented Grey matter extracted from whole-brain MRI." JOIV : International Journal on Informatics Visualization 5, no. 2 (2021): 200. http://dx.doi.org/10.30630/joiv.5.2.572.
Full textZhang, Lin, and Guanglei Zhang. "Brief review on learning-based methods for optical tomography." Journal of Innovative Optical Health Sciences 12, no. 06 (2019): 1930011. http://dx.doi.org/10.1142/s1793545819300118.
Full textDahlsson Leitao, Charles, Sara Rinne, Bogdan Mitran, et al. "Molecular Design of HER3-Targeting Affibody Molecules: Influence of Chelator and Presence of HEHEHE-Tag on Biodistribution of 68Ga-Labeled Tracers." International Journal of Molecular Sciences 20, no. 5 (2019): 1080. http://dx.doi.org/10.3390/ijms20051080.
Full textYap, Jeffrey T., Jonathan P. J. Carney, Nathan C. Hall, and David W. Townsend. "Image-Guided Cancer Therapy Using PET/CT." Cancer Journal 10, no. 4 (2004): 221–33. http://dx.doi.org/10.1097/00130404-200407000-00003.
Full textAntoch, G., and H. Kueh. "How much CT do we need for PET/CT?" Nuklearmedizin 44, S 01 (2005): S24—S31. http://dx.doi.org/10.1055/s-0038-1625211.
Full textKrause, B. J., S. M. Eschmann, K. U. Juergens, et al. "Lesion concordance, image quality and artefacts in PET/CT." Nuklearmedizin 49, no. 04 (2010): 129–37. http://dx.doi.org/10.3413/nukmed-0275.
Full textGhoshal, Abhishek, Aditya Aspat, and Elton Lemos. "OpenCV Image Processing for AI Pet Robot." International Journal of Applied Sciences and Smart Technologies 03, no. 01 (2021): 65–82. http://dx.doi.org/10.24071/ijasst.v3i1.2765.
Full textRömer, Wolfgang, Margaret Chung, Andrew Chan, et al. "Single-Detector Helical CT in PET–CT: Assessment of Image Quality." American Journal of Roentgenology 182, no. 6 (2004): 1571–77. http://dx.doi.org/10.2214/ajr.182.6.1821571.
Full textXia, Kai-jian, Jian-qiang Wang, and Jian Cai. "A Novel Adaptive PET/CT Image Fusion Algorithm." Current Bioinformatics 14, no. 7 (2019): 658–66. http://dx.doi.org/10.2174/1574893613666180704153946.
Full textTu, Dom-Gene, Cheng-Ren Chen, Yu-Wen Wang, Chi-Wen Tu, and Yung Cheng Huang. "Bowel-cleansing methods affecting PET-CT image interpretation." Nuclear Medicine Communications 32, no. 7 (2011): 570–74. http://dx.doi.org/10.1097/mnm.0b013e328345327b.
Full textSiman, Wendy, Osama Mawlawi, and Cheenu Kappadath. "90Y PET/CT quantitative accuracy and image quality." International Journal of Cancer Therapy and Oncology 2, no. 2 (2014): 020235. http://dx.doi.org/10.14319/ijcto.0202.35.
Full textCalabria, Ferdinando, Agostino Chiaravalloti, and Orazio Schillaci. "18F-Choline PET/CT Pitfalls in Image Interpretation." Clinical Nuclear Medicine 39, no. 2 (2014): 122–30. http://dx.doi.org/10.1097/rlu.0000000000000303.
Full textOnishi, Hideo, Keishi Kitamura, Taiga Yamaya, Kazuya Sakaguchi, and Makoto Hishinuma. "Property and Problems of Image Reconstruction Methods in PET and PET/CT." Japanese Journal of Radiological Technology 67, no. 7 (2011): 805–20. http://dx.doi.org/10.6009/jjrt.67.805.
Full textDuan Liming, 段黎明, and 周远非 Zhou Yuanfei. "Optimization of industrial CT image processing system." High Power Laser and Particle Beams 23, no. 2 (2011): 541–44. http://dx.doi.org/10.3788/hplpb20112302.0541.
Full textOGURA, TOSHIHIRO. "CT-pancreatography Using Various Image Processing Technique." Japanese Journal of Radiological Technology 59, no. 1 (2003): 55–59. http://dx.doi.org/10.6009/jjrt.kj00000921594.
Full text