Academic literature on the topic 'Petroleum - Microbial'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Petroleum - Microbial.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Petroleum - Microbial"
Li, Dongmei, and Philip Hendry. "Microbial diversity in petroleum reservoirs." Microbiology Australia 29, no. 1 (2008): 25. http://dx.doi.org/10.1071/ma08025.
Full textVarjani, Sunita J. "Microbial degradation of petroleum hydrocarbons." Bioresource Technology 223 (January 2017): 277–86. http://dx.doi.org/10.1016/j.biortech.2016.10.037.
Full textSui, Xin, Xuemei Wang, Yuhuan Li, and Hongbing Ji. "Remediation of Petroleum-Contaminated Soils with Microbial and Microbial Combined Methods: Advances, Mechanisms, and Challenges." Sustainability 13, no. 16 (August 18, 2021): 9267. http://dx.doi.org/10.3390/su13169267.
Full textWang, Jing, and Jiti Zhou. "The effects of offshore petroleum exploitation on microbial community and antibiotic resistome of adjacent marine sediments." Water Science and Technology 81, no. 12 (June 15, 2020): 2501–10. http://dx.doi.org/10.2166/wst.2020.289.
Full textWang, Ji Hua, and Shan Shan Zhang. "The Application of Microbes in Petroleum Industry." Advanced Materials Research 868 (December 2013): 542–46. http://dx.doi.org/10.4028/www.scientific.net/amr.868.542.
Full textMaruthamuthu, Sundaram, Baskaran Dinesh Kumar, Shanmugavel Ramachandran, Balakrishnan Anandkumar, Seeni Palanichamy, Maruthai Chandrasekaran, Palani Subramanian, and Narayanan Palaniswamy. "Microbial Corrosion in Petroleum Product Transporting Pipelines." Industrial & Engineering Chemistry Research 50, no. 13 (July 6, 2011): 8006–15. http://dx.doi.org/10.1021/ie1023707.
Full textSen, Ramkrishna. "Biotechnology in petroleum recovery: The microbial EOR." Progress in Energy and Combustion Science 34, no. 6 (December 2008): 714–24. http://dx.doi.org/10.1016/j.pecs.2008.05.001.
Full textAdkins, Jon P., Laura A. Cornell, and Ralph S. Tanner. "Microbial composition of carbonate petroleum reservoir fluids." Geomicrobiology Journal 10, no. 2 (April 1992): 87–97. http://dx.doi.org/10.1080/01490459209377909.
Full textBanks, M. Katherine, Hadessa Mallede, and Karrie Rathbone. "Rhizosphere Microbial Characterization in Petroleum-Contaminated Soil." Soil and Sediment Contamination: An International Journal 12, no. 3 (May 2003): 371–85. http://dx.doi.org/10.1080/713610978.
Full textJoshi, Madhvi N., Shivangi V. Dhebar, Shivani V. Dhebar, Poonam Bhargava, Aanal Pandit, Riddhi P. Patel, Akshay Saxena, and Snehal B. Bagatharia. "Metagenomics of petroleum muck: revealing microbial diversity and depicting microbial syntrophy." Archives of Microbiology 196, no. 8 (May 17, 2014): 531–44. http://dx.doi.org/10.1007/s00203-014-0992-0.
Full textDissertations / Theses on the topic "Petroleum - Microbial"
Morais, Daniel Kumazawa. "Petroleum effects on soil microbial communities." Universidade Federal de Viçosa, 2015. http://www.locus.ufv.br/handle/123456789/8468.
Full textMade available in DSpace on 2016-09-05T12:12:19Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1636988 bytes, checksum: 82f0e2495b29689e04e4a8d2ad963aa3 (MD5) Previous issue date: 2015-07-29
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
O petróleo é a principal fonte de energia no Brasil, onde o consumo de óleo continua subindo desde 2013, atingindo atualmente 2.2% do total de energia consumida no mundo. A descoberta recente de petróleo nas baias do Espirito Santo, Campos e Santos, pode representar uma excelente oportunidade para atender as demandas energéticas nacionais. Entretanto, a exploração de petróleo oferece riscos a microbiota e toda a vida marinha. Microrganismos são responsáveis pela ciclagem de nutrientes, podem degradar compostos orgânicos recalcitrantes e muitas espécies são reportadas como sensíveis à contaminação por hidrocarbonetos do petróleo. Esse trabalho teve o objetivo de avaliar as alterações na comunidade microbiana em solos sob a contaminação por petróleo e avaliar os efeitos do Co-produto de biodiesel (BCP) como um agente protetor da microbiota do solo perante a adição de petróleo. Foram utilizados solos da Ilha da Trindade, e da estação de pesquisa Highfield no Rothamsted Research, UK. Foram montados microcosmos com 20 gramas de solo e os tratamentos utilizaram petróleo intemperizado. Os solos foram incubados a 26° C com correção da umidade para cerca de 60% da capacidade de retenção de água dos solos. Foi utilizada a medição de evolução de CO2 para avaliar a atividade do solo, durante o período de incubação, e a extração de DNA genômico do solo, ao final do período de incubação, para avaliar as mudanças nas comunidades microbianas dos tratamentos e controles. O DNA foi submetido para o sequenciamento de amplicons de 16S rDNA para a avaliação de Bacteria e Archaea e de amplicons da região ITS1 para a avaliação de Fungos utilizando a plataforma Illumina HiSeq. Foi feita a comparação das diversidades alpha e beta e análise das alterações taxonômicas. Essa tese está dividida em dois capítulos. O primeiro descreve os efeitos do petróleo nas comunidades microbianas do solo da Ilha da Trindade. No segundo capítulo foi testado o efeito protetor do BCP sobre a microbiota dos solos da Ilha da Trindade, do campo Bare Fallow e do campo Grassland do Rothamsted Research contra a adição de óleo. O petróleo teve um grande efeito negativo sobre a diversidade microbiana da Ilha da Trindade, mas não mudou a diversidade microbiana dos solos agrícolas do Rothamsted. A comparação taxonômica mostrou aumento do filo Actinobacteria, mudanças em várias classes de Proteobacteria e redução da classe Nitrosphaerales do filo Archaea. Esse é o primeiro esforço para aquisição de conhecimento sobre o efeito da contaminação de solos de uma ilha oceânica brasileira com petróleo. Essa informação é importante para guiar qualquer futura estratégia de biorremediação que se faça necessária.
Crude oil is still the dominant energy source in Brazil where oil consumption keeps rising since 2013, reaching nowadays 2.2% of the world‟s energy consumption. A recent discovery of crude oil reservoirs at the Espirito Santo, Campos and Santos basins, can represent an excellent opportunity to meet the country‟s economic and energetic demands. However, offshore exploration offers risks to the microbiota and the whole sea life. Microbes are responsible for nutrient cycling can degrade recalcitrant organic compounds and several species have been reported as sensitive to petroleum hydrocarbons. This work aimed to evaluate microbial community shifts in soils under crude oil contamination and assess the effects of Biodiesel co-product (BCP) as a protecting agent of soil microbiota under crude oil addition. We used soils from the Trindade Island and from the Highfield research station at Rothamsted Research, UK. We assembled microcosms of 20 grams and contaminated the soils using weathered crude oil. Soils were incubated at 26° C with moisture correction to ca. 60% water holding capacity. We used CO2 evolution measurements to evaluate soil activity, during the incubation, and soil genomic DNA extraction, at the end of incubation period, to evaluate microbial community changes from treatments and controls. DNA was submitted to amplicon sequencing of 16S rDNA for Bacteria and Archaea and the ITS1 region for Fungi using Illumina MiSeq platform. We compared alpha and beta-diversity and taxonomic shifts. This thesis is divided in two chapters. The first describes the effects of crude oil on Trindade Island‟s soil microbial communities. In the second chapter we tested the protective effects of BCP on Trindade Island, Rothamsted‟s Bare Fallow and Grassland soils, against the amendment with crude oil. Crude oil had a major negative effect on microbial diversity for Trindade Island, but didn‟t change the diversity of Rothamsted agricultural soils. Taxonomy comparisons showed rise of the Actinobacteria phylum, shifts in several Proteobacteria classes and reduction of the Archaea class Nitrososphaerales. This is the first effort in acquiring knowledge concerning the effect of crude oil contamination in soils of a Brazilian oceanic island. This information is important to guide any future bioremediation strategy that can be required.
Adelaja, O. "Bioremediation of petroleum hydrocarbons using microbial fuel cells." Thesis, University of Westminster, 2015. https://westminsterresearch.westminster.ac.uk/item/9qvyy/bioremediation-of-petroleum-hydrocarbons-using-microbial-fuel-cells.
Full textPhillips, Pamela June. "Microbial degradation of hydrocarbons in aqueous systems." Thesis, University of Surrey, 2003. http://epubs.surrey.ac.uk/842666/.
Full textSilva, Tiago Rodrigues e. "Caracterização polifásica da microbiota presente em amostras de petróleo de reservatórios brasileiros." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/317328.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Insituto de Biologia
Made available in DSpace on 2018-08-16T20:58:52Z (GMT). No. of bitstreams: 1 Silva_TiagoRodriguese_M.pdf: 5632148 bytes, checksum: 82526f541aaf1c9b32cf5fbca6bc03aa (MD5) Previous issue date: 2010
Resumo: Estudos realizados em reservatórios de petróleo têm evidenciado que parte da microbiota associada a este tipo de ambiente é representada por bactérias e arqueias de distribuição geográfica bastante ampla e que diversos destes organismos têm potencial para transformar compostos orgânicos e inorgânicos, atuando na interface óleo-água dos reservatórios. A investigação de micro-organismos com potencial para biodeterioração, biodegradação e biocorrosão encontrados em depósitos petrolíferos é de grande importância, uma vez que estes organismos podem estar relacionados com a perda da qualidade do petróleo nos reservatórios e etapas subseqüentes de exploração. Este estudo teve como finalidade comparar a microbiota presente em amostras de óleo de dois poços de petróleo terrestres da Bacia Potiguar (RN), identificados como GMR75 (poço biodegradado) e PTS1 (poço não-biodegradado). As comunidades microbianas foram estudadas usando técnicas de cultivo (enriquecimentos microbianos e isolamento) e independentes de cultivo (construção de bibliotecas de genes RNAr 16S). Os micro-organismos cultivados de ambos os poços mostraram-se afiliados aos filos Actinobacteria, Firmicutes e Proteobacteria. As bibliotecas de gene RNAr 16S foram construídas a partir de DNA total extraído do petróleo bruto. Ambas as bibliotecas de bactérias revelaram uma grande diversidade, com 8 filos diferentes para o poço GMR75, Actinobacteria, Bacteroidetes, Deferribacteres, Spirochaetes, Firmicutes, Proteobacteria, Thermotoga e Synergistetes, e 5 filos para o poço PTS1, Actinobacteria, Chloroflexi, Firmicutes, Proteobacteria e Thermotogae. A biblioteca de genes RNAr 16S de arqueias só foi obtida para o poço GMR75 e todos os clones encontrados mostraram-se relacionados a membros da ordem Methanobacteriales. Os resultados de diversidade sugerem que a metanogênese é o processo terminal dominante no poço, o que indica uma biodegradação anaeróbia. A comparação dos estudos dependente e independente de cultivo mostrou que alguns gêneros, como Janibacter, Georgenia, Saccharopolyspora, Tessaracoccus, Brevundimonas e Brachymonas não foram encontradas na abordagem independente de cultivo, sugerindo que mais clones devam ser seqüenciados para cobrir toda a diversidade presente na amostra. Nossa hipótese de que poderia haver algum agente antimicrobiano inibindo o crescimento de bactérias degradadoras de hidrocarbonetos no poço não-biodegradado não foi confirmada. No entanto, durante os testes realizados, uma bactéria, Bacillus pumilus, isolada em estudos anteriores de reservatórios da Bacia de Campos, apresentou resultados positivos de inibição para todas as linhagens testadas como indicadoras, e os testes de caracterização do composto revelaram ser este um diterpeno da classe das Ciatinas.
Abstract: Recent studies from oil fields have shown that microbial diversity is represented by bacteria and archaea of wide distribution, and that many of these organisms have potential to metabolize organic and inorganic compounds. The potential of biodeterioration, biodegradation and biocorrosion by microorganisms in oil industry is of great relevance, since these organisms may be related with the loss of petroleum quality and further exploration steps. The aim of the present study was to compare the microbial communities present in two samples from terrestrial oil fields from Potiguar basin (RN - Brazil), identified as GMR75 (biodegraded oil) and PTS1 (non-biodegraded oil). Microbial communities were investigated using cultivation (microbial enrichments and isolation) and molecular approaches (16S rRNA gene clone libraries). The cultivated microorganisms recovered from both oil-fields were affiliated with the phyla Actinobacteria, Firmicutes and Proteobacteria. The 16S rRNA gene clone libraries were constructed from metagenomic DNA obtained from crudeoil. Both bacterial libraries revealed a great diversity, encompassing representatives of 8 different phyla for GMR75, Actinobacteria, Bacteroidetes, Deferribacteres, Spirochaetes, Firmicutes, Proteobacteria, Thermotogae and Synergistetes, and of 5 different phyla, Actinobacteria, Chloroflexi, Firmicutes, Proteobacteria and Thermotoga, for PTS1. The archaeal 16S rRNA clone library was obtained only for GMR75 oil and all phylotypes were affiliated with order Methanobacteriales. Diversity resuts suggest that methanogenesis is the dominant terminal process in GMR75 reservoir, driven by anaerobic biodegradation. The cross-evaluation of culture-dependent and independent techniques indicates that some bacterial genera, such as Janibacter, Georgenia, Saccharopolyspora, Tessaracoccus, Brevundimonas and Brachymonas, were not found using the the 16S rRNA clone library approach, suggesting that additional clones should be sequenced in order to cover diversity present in the sample. Our hypothesis that biodegrading bacterial populations could be inhibited by antimicrobialproducing microorganisms in the non biodegraded oil field (PTS1) was not confirmed. However, one Bacillus pumilus strain, previously isolated from Campos Basin reservoirs, showed positive results in inhibitory tests for all indicator strains. Chemical analyses allowed us to identify the compound as a diterpen from the Cyathin class.
Mestrado
Genetica de Microorganismos
Mestre em Genética e Biologia Molecular
Kropp, Kevin Glen. "Aerobic microbial metabolism of condensed thiophenes found in petroleum." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq23009.pdf.
Full textZhang, Zhengming. "Microbial oxidation of inorganic sulfide in sour water /." Access abstract and link to full text, 1989. http://0-wwwlib.umi.com.library.utulsa.edu/dissertations/fullcit/9013729.
Full textMaila, M. P. "Microbial ecology and bio-monitoring of total petroleum contaminated soil environments." Pretoria : [s.n.], 2004. http://upetd.up.ac.za/thesis/available/etd-02092006-100257.
Full textWei, Ren, and Wolfgang Zimmermann. "Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?" Universität Leipzig, 2017. https://ul.qucosa.de/id/qucosa%3A21103.
Full textGrassia, Gino Sebastian, and n/a. "The isolation, growth and survival of thermophilic bacteria from high temperature petroleum reservoirs." University of Canberra. Applied Science, 1995. http://erl.canberra.edu.au./public/adt-AUC20060712.131412.
Full textSingh, Gargi. "Influence of Petroleum Deposit Geometry on Local Gradient of Electron Acceptors and Microbial Catabolic Potential." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/31431.
Full textMaster of Science
Books on the topic "Petroleum - Microbial"
Braddock, Joan F. Petroleum hydrocarbon-degrading microbial communities in Beaufort-Chukchi Sea sediments. Fairbanks, AK: Coastal Marine Institute, School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 2004.
Find full textBraddock, Joan F. Petroleum hydrocarbon-degrading microbial communities in Beaufort-Chukchi Sea sediments. Fairbanks, AK: Coastal Marine Institute, School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 2004.
Find full textSong, Hong-Gyu. Petroleum hydrocarbons in soil: Biodegradation and effects on the microbial community. Ann Arbor, Mich: U.M.I. Dissertation Information Service, 1990.
Find full textSpain, Jim C. Biodegradation of jet fuel by aquatic microbial communities. Gulf Breeze, Fla: Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, 1985.
Find full textCorinne, Whitby, and Skovhus Torben Lund, eds. Applied microbiology and molecular biology in oilfield systems: Proceedings from the International Symposium on Applied Microbiology and Molecular Biology in Oil Systems (ISMOS-2), 2009. Dordrecht: Springer Science+Business Media, 2011.
Find full text1978-, Wei Li, ed. You tian liu suan yan huan yuan jun fen zi sheng tai xue ji qi huo xing sheng tai tiao kong yan jiu: Research on molecular ecology and activities regulation of oilfield sulfate reducing bacteria. Beijing: Ke xue chu ban she, 2009.
Find full textThorpe, J. W. Microbial degradation of hydrocarbon mixtures in a marine sediment under different temperature regimes. Ottawa: Published under auspices of Environmental Studies Research Funds [by] Nova Scotia Research Foundation Corporation, 1987.
Find full textIsmail, Wael A., Jonathan D. Van Hamme, John J. Kilbane, and Ji-Dong Gu, eds. Petroleum Microbial Biotechnology: Challenges and Prospects. Frontiers Media SA, 2017. http://dx.doi.org/10.3389/978-2-88945-256-9.
Full textPremuzic, Eugene T. Microbial Enhancement of Oil Recovery - Recent Advances: Proceedings of the 1992 International Conference on Microbial Enhanced Oil Recovery (Developments in Petroleum Science). Elsevier Publishing Company, 1993.
Find full textBritain), Energy Institute (Great, ed. Guidelines for the investigation of the microbial content of petroleum fuels and for the implementation of avoidance and remedial strategies. 2nd ed. London: Energy Institute, 2008.
Find full textBook chapters on the topic "Petroleum - Microbial"
Katz, Barry Jay. "Microbial Gas." In Encyclopedia of Petroleum Geoscience, 1–2. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-02330-4_91-1.
Full textRon, Eliora Z. "Microbial Life on Petroleum." In Journey to Diverse Microbial Worlds, 303–15. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4269-4_21.
Full textMagot, Michel. "Indigenous Microbial Communities in Oil Fields." In Petroleum Microbiology, 21–33. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555817589.ch2.
Full textDellagnezze, Bruna Martins, Milene Barbosa Gomes, and Valéria Maia de Oliveira. "Microbes and Petroleum Bioremediation." In Microbial Action on Hydrocarbons, 97–123. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1840-5_5.
Full textMahmoud, Ghada Abd-Elmonsef, and Magdy Mohmed Khalil Bagy. "Microbial Degradation of Petroleum Hydrocarbons." In Microbial Action on Hydrocarbons, 299–320. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1840-5_12.
Full textAlegbeleye, Oluwadara Oluwaseun. "Petroleum Microbiology Under Extreme Conditions." In Microbial Action on Hydrocarbons, 441–84. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1840-5_18.
Full textEffendi, Agus Jatnika, Edwan Kardena, and Qomarudin Helmy. "Biosurfactant-Enhanced Petroleum Oil Bioremediation." In Microbial Action on Hydrocarbons, 143–79. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1840-5_7.
Full textMorgan, Philip, and Robert J. Watkinson. "Biodegradation of components of petroleum." In Biochemistry of microbial degradation, 1–31. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1687-9_1.
Full textJayasena, Sharmila, and Madushika Perera. "Microbial Bioremediation of Petroleum Hydrocarbons." In Microbial Rejuvenation of Polluted Environment, 263–91. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7447-4_11.
Full textSunde, Egil, and Terje Torsvik. "Microbial Control of Hydrogen Sulfide Production in Oil Reservoirs." In Petroleum Microbiology, 199–213. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555817589.ch10.
Full textConference papers on the topic "Petroleum - Microbial"
Philippovich, N., and J. Winter. "Microbial Clarification for Treating Reinjected Oilfield Brine." In European Petroleum Conference. Society of Petroleum Engineers, 1998. http://dx.doi.org/10.2118/50622-ms.
Full textZekri, Abdulrazag Y., and A. Al-Khanbashi. "Microbial Phase Behavior Laboratory Studies." In Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers, 2000. http://dx.doi.org/10.2118/87294-ms.
Full textHoxha, Gazmend, Clara Di Iorio, and Francesca De Ferra. "Microbial Corrosion. New Investigation Techniques." In Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers, 2014. http://dx.doi.org/10.2118/171805-ms.
Full textGhadimi, Mohammad Reza, and Mehdy Ardjmand. "Simulation of Microbial Enhanced Oil Recovery." In Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers, 2006. http://dx.doi.org/10.2118/101767-ms.
Full textMunnecke, D. M., and W. P. Weaver. "Microbial Surface Geochemical Exploration Technology." In Technical Meeting / Petroleum Conference of The South Saskatchewan Section. Petroleum Society of Canada, 1999. http://dx.doi.org/10.2118/99-100.
Full textKowalewski, Espen, Ingun Rueslatten, Tony Boassen, Egil Sunde, Jan Age Stensen, Bente-Lise Polden Lillebo, Gunhild Bodtker, and Terje Torsvik. "Analyzing Microbial Improved Oil Recovery Processes From Core Floods." In International Petroleum Technology Conference. International Petroleum Technology Conference, 2005. http://dx.doi.org/10.2523/10924-ms.
Full textKowalewski, Espen, Ingun Rueslatten, Tony Boassen, Egil Sunde, Jan Age Stensen, Bente-Lise Polden Lillebo, Gunhild Bodtker, and Terje Torsvik. "Analyzing Microbial Improved Oil Recovery Processes From Core Floods." In International Petroleum Technology Conference. International Petroleum Technology Conference, 2005. http://dx.doi.org/10.2523/iptc-10924-ms.
Full textYao, Chuanjin, Guanglun Lei, Jiye Ma, Chuan Wu, and Wenzhong Li. "Experiment and Simulation of Indigenous Microbial Enhanced Oil Recovery (IMEOR)." In International Petroleum Technology Conference. International Petroleum Technology Conference, 2011. http://dx.doi.org/10.2523/iptc-14268-ms.
Full textHubert, C., M. Nemati, G. Voordouw, and G. E. Jenneman. "Biogenic Sulfide Production in Continuous Systems: Containment Strategies Targeting Microbial Metabolism." In Canadian International Petroleum Conference. Petroleum Society of Canada, 2002. http://dx.doi.org/10.2118/2002-114-ea.
Full textMa, Wencui, Xue-yi You, Xinxin Wang, and Yu Chen. "The Evaluation of Plant-Microbial Remediation of Petroleum Contaminated Soil." In First International Conference on Information Sciences, Machinery, Materials and Energy. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icismme-15.2015.93.
Full text