Academic literature on the topic 'Petroleum refineries'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Petroleum refineries.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Petroleum refineries"
Prasad, B. J., and D. N. Rao. "Phytomonitoring of Air Pollution in the Vicinity of a Petroleum Refinery." Environmental Conservation 12, no. 4 (1985): 351–54. http://dx.doi.org/10.1017/s0376892900034470.
Full textHodgson, J. E., and L. C. Bendiak. "Stormwater Management for Petroleum Refineries." Canadian Water Resources Journal 12, no. 3 (January 1987): 38–47. http://dx.doi.org/10.4296/cwrj1203038.
Full textValenti, Michael. "Upping the Systems." Mechanical Engineering 121, no. 10 (October 1, 1999): 56–59. http://dx.doi.org/10.1115/1.1999-oct-1.
Full textSeo, Hyeokjun, and Dong-Yeun Koh. "Refining petroleum with membranes." Science 376, no. 6597 (June 3, 2022): 1053–54. http://dx.doi.org/10.1126/science.abq3186.
Full textWinters, Jeffrey. "A Case of the Vapors." Mechanical Engineering 126, no. 12 (December 1, 2004): 28–31. http://dx.doi.org/10.1115/1.2004-dec-1.
Full textItsekor, Lucky. "A Need for Investment in Nigerian Crude Oil Refining and Infrastructures: A Panacea to Refined Petroleum Shortages and Economic Growth." Archives of Business Research 8, no. 4 (April 12, 2020): 31–46. http://dx.doi.org/10.14738/abr.84.7951.
Full textCarpenter, Chris. "Modular Refineries Offer Advantages for Product Availability in Nigeria." Journal of Petroleum Technology 75, no. 12 (December 1, 2023): 66–68. http://dx.doi.org/10.2118/1223-0066-jpt.
Full textPinto, J. M., and L. F. L. Moro. "A planning model for petroleum refineries." Brazilian Journal of Chemical Engineering 17, no. 4-7 (December 2000): 575–86. http://dx.doi.org/10.1590/s0104-66322000000400022.
Full textTAKANO, Akinobu. "Industrial waste treatment at petroleum refineries." Journal of the Fuel Society of Japan 69, no. 11 (1990): 1001–7. http://dx.doi.org/10.3775/jie.69.11_1001.
Full textAlshammari, Jadea S., Fatma K. Gad, Ahmed A. M. Elgibaly, and Abdul Rehman Khan. "Solid Waste Management in Petroleum Refineries." American Journal of Environmental Sciences 4, no. 4 (April 1, 2008): 353–61. http://dx.doi.org/10.3844/ajessp.2008.353.361.
Full textDissertations / Theses on the topic "Petroleum refineries"
Lucy, Richard F. "Controlling refinery risk management." Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-03172010-020343/.
Full textRodriguez, David. "The impact of a pre-shutdown work conditioning program at a petrochemical refinery efficacy as a proactive approach for decreasing injury potential and improving worker functional performance /." Online version, 2004. http://www.uwstout.edu/lib/thesis/2004/2004rodriguezd.pdf.
Full textMithamo, Peter Ng'ang'a. "Use of high efficient motors for DSM in South Africa's petroleum refineries." Thesis, Cape Peninsula University of Technology, 2012. http://hdl.handle.net/20.500.11838/2212.
Full textElectric motors consume over 60% of the world's generated electricity. In South Africa approximately 65% of the energy generated is consumed by electric motors (Niekerk, 2009). About 95% of motors in use in South Africa are Standard-Efficient Motors (SE-motors) that operate at an average efficiency of 84% to 90%, depending on the size of the motor and the load driven by them. High-Efficient motors (HE-motor) run at an efficiency of 2% to 8% higher than that of SE-motors. In recent years, a drive to replace SE-motors with HE-motors has been promoted for the purpose of Demand Side Management (DSM). The rationale of using HE-motors as a tool of DSM is to harness a small difference in operating efficiency per motor, which can result in a huge reduction in electricity consumption, depending on the number of HE-motors that will replace SE-motors. Reducing the demand for electricity is the key driving factor for DSM in South Africa, so as to relieve the already stressed power generation capacity. Other consequential factors of DSM are to reduce the amount of pollutant gases emitted into the atmosphere. To the electricity users DSM will be a great incentive, as reduced consumption of electricity will decrease the amount of money spent on electricity. Much has been written on the ability of HE-motors to reduce electricity consumption, cost of electricity and global pollution. ESKOM has even demonstrated the faith they have in these motors by giving rebates to motor users who are willing to exchange their existing SE-motors with new HE-motors. The rebates are paid by ESKOM through a newly established DSM program. However, it must be mentioned that savings through HE-motors is not a perfect guarantee. HE-motors have inherent design limitations that may inhibit the saving of energy. To achieve higher efficiency, HE-motors are designed to operate on a smaller slip that consequently increases their speed compared to that of SE-motors (Cheek et al., 1995). Higher rotor speed impacts energy saving abilities of HE-motors when they are used to drive fans, pumps and compressors, normally referred to as centrifugal loads. An increase in speed results in a proportional increase in flow. Power consumed by a motor goes up as a cube of the speed, and the flow rate increases linearly with speed. Motor loads in the petrochemical industry are generally centrifugal, and that is why this thesis focuses on refineries.
Mangano, Clifford Anthony. "Exchange rates, refinery flexibility, and international petroleum flows." Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184945.
Full textVu, Xuan Hoan, Sura Nguyen, Thanh Tung Dang, Udo Armbruster, and Andreas Martin. "Production of renewable biofuels and chemicals by processing bio-feedstock in conventional petroleum refineries." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-190806.
Full textBài báo trình bày kết quả nghiên cứu khả năng tích hợp sản xuất nhiên liệu sinh học và hóa phẩm từ nguồn nguyên liệu tái tạo sinh khối giầu triglyceride bằng công nghệ cracking xúc tác tấng sôi (FCC) trong nhà máy lọc dầu. Kết quả nghiên cứu cho thấy xúc tác có ảnh hưởng mạnh đến hiệu quả chuyển hóa triglyceride thành hydrocarbon. Tính acid của xúc tác càng mạnh thì độ chuyển hóa càng cao và thu được nhiều sản phẩm nhẹ hơn như xăng và các olefin nhẹ. Xúc tác vi mao quản trung bình như H-ZSM-5 có độ chọn lọc cao với hợp chất vòng thơm thuộc phân đoạn xăng và olefin nhẹ như propylen và ethylen. Với kích thước vi mao quản lớn, xúc tác công nghiệp FCC dựa trên zeolite Y ưu tiên hình thành C4 olefins và các olefin trong phân đoạn xăng. Ở điều kiện phản ứng của quá trình FCC, triglyceride chuyển hóa hiệu quả thành hydrocarbon mà có thể sử dụng làm xăng sinh học cho động cơ và olefin nhẹ làm nguyên liệu cho tổng hợp hóa dầu
Vu, Xuan Hoan, Sura Nguyen, Thanh Tung Dang, Udo Armbruster, and Andreas Martin. "Production of renewable biofuels and chemicals by processing bio-feedstock in conventional petroleum refineries." Technische Universität Dresden, 2014. https://tud.qucosa.de/id/qucosa%3A29110.
Full textBài báo trình bày kết quả nghiên cứu khả năng tích hợp sản xuất nhiên liệu sinh học và hóa phẩm từ nguồn nguyên liệu tái tạo sinh khối giầu triglyceride bằng công nghệ cracking xúc tác tấng sôi (FCC) trong nhà máy lọc dầu. Kết quả nghiên cứu cho thấy xúc tác có ảnh hưởng mạnh đến hiệu quả chuyển hóa triglyceride thành hydrocarbon. Tính acid của xúc tác càng mạnh thì độ chuyển hóa càng cao và thu được nhiều sản phẩm nhẹ hơn như xăng và các olefin nhẹ. Xúc tác vi mao quản trung bình như H-ZSM-5 có độ chọn lọc cao với hợp chất vòng thơm thuộc phân đoạn xăng và olefin nhẹ như propylen và ethylen. Với kích thước vi mao quản lớn, xúc tác công nghiệp FCC dựa trên zeolite Y ưu tiên hình thành C4 olefins và các olefin trong phân đoạn xăng. Ở điều kiện phản ứng của quá trình FCC, triglyceride chuyển hóa hiệu quả thành hydrocarbon mà có thể sử dụng làm xăng sinh học cho động cơ và olefin nhẹ làm nguyên liệu cho tổng hợp hóa dầu.
Misiti, Teresa Marie. "Fate and effect of naphthenic acids in biological systems." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45796.
Full textMobus, Janet Luft. "Environmental Accounting: The Relationship Between Pollution Performance and Economic Performance in Oil and Gas Refineries." Thesis, University of North Texas, 1997. https://digital.library.unt.edu/ark:/67531/metadc279042/.
Full textTONIETTO, GISELE BIRMAN. "STUDY OF THE CHEMICAL SPECIATION OF ARSENIC AND SELENIUM IN WATER CURRENTS AND LIQUID EFFLUENTS OF PETROLEUM REFINERIES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2005. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=7980@1.
Full textAs concentrações de arsênio em óleo cru podem variar de 10 a 30 mg kg-1. O selênio é encontrado em efluentes da indústria petrolífera, devido a sua presença no óleo cru, entre 0.03 - 1.4 mg.L-1 dependendo de sua origem geoquímica. Devido a semelhanças em suas propriedades químicas, o arsênio apresenta uma grande afinidade pelo enxofre, e comporta-se de modo similar ao selênio, seguindo o enxofre por toda a rota de refino do petróleo, localizando-se, principalmente, nos strippers de água ácida, local onde ocorre a separação/absorção do enxofre. Nesta fase do processo de refino, onde pode ocorrer a mais severa corrosão, estes ametais permanecem, provavelmente, imobilizados no fundo das torres podendo ser carreados à Unidade de Tratamento de Águas. Antes de serem lançadas ao meio ambiente, estas águas devem ser tratadas visando sua adequação a Legislação Brasileira (CONAMA, Res. 357/05). A eficiência de eliminação depende do processo empregado e está diretamente relacionada às espécies presentes nestas águas. A Cromatografia de Íons (CI) acoplada ao ICP-MS foi a escolha para o desenvolvimento deste trabalho - a especiação de arsênio e selênio em correntes aquosas do processo de refino. Foi alcançada uma boa resolução cromatográfica utilizando-se coluna de troca iônica e NaOH (0,1mol.L-1) como fase móvel e célula supressora para a minimização do sinal de fundo e de uma possível deposição de sais. Os Limites de Detecção alcançados para as espécies de arsênio foram de 0,15 e 0,18 (mi)g.L-1 para As (III) e As (V), respectivamente. Os Limites de Detecção para as espécies de selênio foram de 0,04, 0,05 e 0,05 (mi)g.L-1 para Se (IV), Se (VI) e SeCN, respectivamente, estes resultados estabelecidos empregando- se uma alça de amostragem de 100 (mi)L. O conteúdo total dos elementos estudados foi determinado por duas técnicas analíticas, ICPMS e GFAAS e a recuperação cromatográfica calculada por ambos os resultados. O método desenvolvido foi testado em três materiais de referência certificados, BCR 713, 714 e 715, tendo sido obtida uma concordância com os valores certificados. Ao final, a metodologia foi empregada em amostras de águas oriundas de diferentes etapas do processo de duas refinarias de petróleo. Todas amostras provenientes da saída das Estações de Esgoto Industrial (ETDI), apresentavam concentração de selênio e arsênio totais abaixo do limite estabelecido pela Legislação Brasileira. A metodologia proposta mostrou-se adequada para realização de análise de especiação de arsênio e selênio em matrizes complexas, como as existentes nas etapas de Craqueamento Catalítico e Unidades de Tratamento de Águas Residuais, assim como em amostra de interesse ambiental, como as da Estação de Tratamento de Efluentes Industriais. O método proposto mostrou-se adequado para a avaliação, monitoramento e melhor entendimento das transformações em unidades do processo de refino, assim como pode contribuir para uma adequação no tratamento de efluente.
The concentrations of arsenic in oil can vary of 10 the 30 mgkg-1. The selenium is found in effluent of the petroliferous industry, had its presence in the oil, between 0.03 -1,4 mg.L-1 depending on its geochemistry origin. For chemical reasons, arsenic shows a high affinity to sulfur, similar as selenium, thus following this element through the whole petroleum refining process, reaching the sour water strippers, where separation of sulfur from other inorganic species takes place. In this phase of the refining process, when it can occur the most severe corrosions, these ametais remain, probably, immobilized in the deep one of the towers being able to be carry out the Water Unit Treatment. Before launched to the environment, these waters must be treated aiming at its adequacy Brazilian Legislation (CONAMA, Res. 357/05). The elimination efficiency depends on the employed process and directly is related to the species gifts in these waters. The Ions Chromatography (CI) coupled to the ICP-MS was the choice for the development of this work - speciation of arsenic and selenium in stream watery of refining process. A good chromatographic resolution was reached using column of ionic exchange and NaOH (0,1mol.L- 1) as mobile phase and cell suppressor for the minimizes the signal from the background and a possible deposition lens and coins in ICPMS. The reached Limits of Detention for the species of arsenic had been 0,15 and 0,18 (mi)g.L-1 for As (III) and As (V), respectively. The Limits of Detention for the species of selenium had been of 0,04, 0,05 and 0,05 (mi)g.L-1 Se (IV), Se (VI) and SeCN, respectively, these established results using a loop of 100 (mi)L. The total content of the studied elements determined by two analytical techniques, ICPMS and GFAAS and the chromatographic recovery calculated by both results. The developed method was tested in three certified reference materials, BCR 713, 714 and 715, having been gotten an agreement with the certified values. Finally, the methodology was applied in the samples of different stages of the process of two oil refineries. All samples proceeding from effluent were below oft he limit established for the Brazilian Legislation. The methodology proposal revealed adequate for accomplishment, monitoring an speciation for arsenic and selenium in complex matrices, as existing in the stages of Fluid Catalytic Cracking and the Units of Treatment of Residual Water, as well as in an environmental samples.
Alanezi, Salwa. "Emission inventories from Kuwait petroleum refineries and respective ground level concentration of pollutants in the neighboring residential area." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/12544.
Full textBooks on the topic "Petroleum refineries"
Rudin, Mikhail Grigorʹevich. Russian petroleum refinery handbook. New York: Begell House, 1998.
Find full textRudin, Mikhail Grigorʹevich. Russian petroleum refinery handbook. New York: Begell House, 1998.
Find full textAbrosimov, A. A. Ėkologicheskie aspekty proizvodstva i primenenii͡a︡ nefteproduktov / Abrosimov A.A. Moskva: Izd-vo Bars, 1999.
Find full textF, Ropital, European Federation of Corrosion, and Institute of Materials, Minerals, and Mining., eds. Amine unit corrosion in refineries. Cambridge: Published for the European Federation of Corrosion by Woodhead Publishing and Maney Publishing on behalf of the Institute of Materials, Minerals & Mining, 2007.
Find full textUnited States. Environmental Protection Agency. Office of Air Quality Planning and Standards. Air Quality Strategies and Standards Division., ed. Economic impact analysis for the petroleum refineries NESHAP. Research Triangle Park, NC: Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, 1995.
Find full textBranch, Alberta Water Quality. Waste water effluent guidelines for Alberta petroleum refineries. [Edmonton, Alberta]: Alberta Environment, 1985.
Find full textKiko, Nihon Bōeki Shinkō, Sekiyu Shigen Kaihatsu Kabushiki Kaisha., and Nikki Kabushiki Kaisha, eds. "Īsuto Bagudaddo genʼyu no kēshitsuka ni okeru chōsa" hōkokusho. [Tokyo]: Keizai Sangyōshō, 2007.
Find full textKiko, Nihon Bōeki Shinkō, Sekiyu Shigen Kaihatsu Kabushiki Kaisha., and Nikki Kabushiki Kaisha, eds. "Īsuto Bagudaddo genʼyu no kēshitsuka ni okeru chōsa" hōkokusho. [Tokyo]: Keizai Sangyōshō, 2007.
Find full textKikō, Nihon Bōeki Shinkō, and Nikki Kabushiki Kaisha, eds. Irakukoku Nashiriya seiyujo shinsetsu chōsa hōkokusho: Heisei 19-nendo sekiyu shigen kaihatsu tō shien chōsa. [Tokyo]: Keizai Sangyōshō, 2008.
Find full textUnited States. Environmental Protection Agency. Office of Compliance., ed. EPA Office of Compliance Sector Notebook Project. Washington, DC: Office of Compliance, Office of Enforcement and Compliance Assurance, U.S. Environmental Protection Agency, 1995.
Find full textBook chapters on the topic "Petroleum refineries"
Ghosh, Dhananjoy. "Key Issues in Troubleshooting." In Petroleum Refineries, 9–55. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003180401-4.
Full textGhosh, Dhananjoy. "Traceability of Relevant Troubleshooting Experience." In Petroleum Refineries, 5–6. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003180401-2.
Full textGhosh, Dhananjoy. "Troubleshooting Case Studies in Equipment/Facility Operation." In Petroleum Refineries, 57–181. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003180401-5.
Full textGhosh, Dhananjoy. "Methodologies in Troubleshooting." In Petroleum Refineries, 7–8. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003180401-3.
Full textGhosh, Dhananjoy. "Troubleshooting Case Studies in Technologies Operation." In Petroleum Refineries, 183–243. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003180401-6.
Full textGhosh, Dhananjoy. "Introduction." In Petroleum Refineries, 1–3. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003180401-1.
Full textHsu, Chang Samuel, and Paul R. Robinson. "Petroleum Processing and Refineries." In Petroleum Science and Technology, 129–57. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16275-7_8.
Full textJones, David S. J., and Steven A. Treese. "Non-energy Refineries in Petroleum Processing." In Handbook of Petroleum Processing, 843–82. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14529-7_9.
Full textJones, David S. J., and Steven A. Treese. "Non-energy Refineries in Petroleum Processing." In Handbook of Petroleum Processing, 1–33. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05545-9_9-1.
Full textGupta, Anuja, Tanvi Sahni, and Sachin Kumar. "Biorefineries: An Analogue to Petroleum Refineries." In Clean Energy Production Technologies, 1–29. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8224-0_1.
Full textConference papers on the topic "Petroleum refineries"
Venkoparao, Vijendran G., Rudra N. Hota, Venkatagiri S. Rao, and Mahesh Kumar Gellaboina. "Flare monitoring for petroleum refineries." In 2009 4th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2009. http://dx.doi.org/10.1109/iciea.2009.5138703.
Full textMohamed, Mohamed A., Radwa Soelem, Fares Attar, and Nesrin Ozalp. "Hydrogen Production and Utilization in Petroleum Refineries: A Study of the U.S. Oil and Gas Industry." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54752.
Full textAvinash, B., and Sougata Ray. "An Analysis of Energy Efficiency of Petroleum Refineries: A Case from India." In 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). IEEE, 2017. http://dx.doi.org/10.1109/iccic.2017.8524508.
Full textAbbood, Baraa L., Khalid A. Sukkar, and Jenan A. Al-Najar. "Prepared acrylic nanofiber by electrospinning technique for air purification in petroleum refineries." In THIRD VIRTUAL INTERNATIONAL CONFERENCE ON MATERIALS, MANUFACTURING AND NANOTECHNOLOGY. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0091991.
Full textFlores, Luis Ivan Ruiz, Edmundo Perich, Sergio Panetta, G. Francisco C. Poujol, and C. B. Guzman. "The grounding generation sources in refineries Mexico: Experiences and recommendations." In 2015 IEEE Petroleum and Chemical Industry Committee Conference (PCIC). IEEE, 2015. http://dx.doi.org/10.1109/pcicon.2015.7435116.
Full textParekh, Harsukh, and Vipin Chandra Sati. "Pipelines Industry in India: Recent Developments and Future Requirements." In 2002 4th International Pipeline Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ipc2002-27019.
Full textEkeinde, Evelyn Bose, Adewale Dosunmu, Diepiriye Chenaboso Okujagu, and Josephine Omolola Ugherughe. "Imperatives of Modular Refineries and their Impact on Product Availability in Nigeria." In SPE Nigeria Annual International Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/211932-ms.
Full textMilyardi, Indra, Bayu Azmi, Megy Stefanus, and Kevin Bagus Wijaya Putra. "Stabilizer column trays presence investigation using gamma scanning technique in petroleum refineries plant." In INTERNATIONAL CONFERENCE ON NUCLEAR SCIENCE, TECHNOLOGY, AND APPLICATIONS – ICONSTA 2022. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0194428.
Full textShargay, Cathleen, Kuntak Daru, and Jigneshkumar J. Desai. "Hot Tapping in Oil Refineries: Corrosion and Material Concerns." In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65422.
Full textAfdhol, Muhammad Khairul, Yuliusman, and Muhammad Yudatama Hasibuan. "Adsorption of methane and carbon monoxide from petroleum refineries using activated carbon from oil palm shells." In THE 2ND NATIONAL CONFERENCE ON MATHEMATICS EDUCATION (NACOME) 2021: Mathematical Proof as a Tool for Learning Mathematics. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0114182.
Full textReports on the topic "Petroleum refineries"
Schmalzer, D., L. Gaines, C. Herzenberg, and M. Snider. Biocrude suitability for petroleum refineries. Office of Scientific and Technical Information (OSTI), June 1988. http://dx.doi.org/10.2172/5507370.
Full textnone,. Energy Efficiency Roadmap for Petroleum Refineries in California. Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/1218663.
Full textPalou-Rivera, I., and M. Q. Wang. Updated estimation of energy efficiencies of U.S. petroleum refineries. Office of Scientific and Technical Information (OSTI), December 2010. http://dx.doi.org/10.2172/1009352.
Full textBrown, Robert C., Ryan Smith, Mark Wright, Douglas Elliott, Daniel Resasco, and Steven Crossley. Stabilization of Bio-Oil Fractions for Insertion into Petroleum Refineries. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1157587.
Full textLee, Uisung, Zifeng Lu, Pingping Sun, Michael Wang, Vincent DiVita, and Dave Collings. Carbon Intensities of Refining Products in Petroleum Refineries with Co-Processed Biofeedstocks. Office of Scientific and Technical Information (OSTI), February 2022. http://dx.doi.org/10.2172/1846005.
Full textAmeri, Samuel, and Patrick Szary. PB2006105744 Needs for Oil and Gas Pipeline Safety and Security. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 2005. http://dx.doi.org/10.55274/r0012127.
Full textBayliss, G. S., and R. R. Schwarzer. Hydrocarbon source-rock evaluation of Refiners Petroleum No. 1 White Ridge well, sec. 17, T6N, R3W, Valencia County, New Mexico. New Mexico Bureau of Geology and Mineral Resources, 1987. http://dx.doi.org/10.58799/ofr-295.
Full textBiofacts: Fueling a stronger economy. Renewable fuel solutions for petroleum refineries. Office of Scientific and Technical Information (OSTI), July 1995. http://dx.doi.org/10.2172/179200.
Full text