To see the other types of publications on this topic, follow the link: Petrophysical evaluation.

Dissertations / Theses on the topic 'Petrophysical evaluation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 19 dissertations / theses for your research on the topic 'Petrophysical evaluation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Nordahl, Kjetil. "A petrophysical Evaluation of tidal heterolithic Deposits." Doctoral thesis, Norwegian University of Science and Technology, Department of Geology and Mineral Resources Engineering, 2004. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-2071.

Full text
Abstract:
<p>The main goal of this thesis, A petrophysical evaluation of tidal heterolithic deposits: application of a near wellbore model for reconciliation of scale dependent well data, is to give a better and less uncertain estimate of porosity and permeability in a challenging reservoir type. This is accomplished through an integrated study that takes into account both sedimentological and petrophysical well data, that are reconciled in a near wellbore model on which critical factors as sedimentological heterogeneity, biased sampling and scale transitions are evaluated.</p><p>A 25 m interval of the lower part of the Tilje Formation in Heidrun Field, Halten Terrace offshore mid Norway is parameterized with focus on factors affecting the petrophysical properties in the near wellbore volume. In tidal deposits, the amount and spatial distribution of low-permeable mud is a critical factor. A geostatistical near wellbore model is then created of this interval. The modelling approach is processoriented and mimics the depositional process by displacement of mathematical surfaces to simulate deposition and erosion. The volumes between the surfaces are populated with petrophysical properties using a correlated Gaussian field approach. This process-oriented modelling tool is critically reviewed and transformations are proposed that are used to obtain input parameters from core observations such, as the sand and mud laminaset thickness distribution. The porosity and permeability values, that have to be specified at the lamina scale, are obtained from core plugs, which represent an average of several lamina types, through an iterative procedure. The result is a realistic representation of the sedimentological components and the petrophysical distributions in the near wellbore volume on which petrophysical parameters can be calculated on various scales.</p><p>In one of the lithofacies the vertical variation in sand laminaset thickness was analysed with time series analysis methods to quantify the degree of tidal influence. Although the data set is noisy, a few periodic components are significant: namely 11-16 and 50-60 sand laminasets per cycle. Furthermore, the internal stratification of the sand laminasets, the transition to the over- and underlying mud laminasets and the mean thickness of the mud laminasets, suggest that the shortest period recorded reflects a semi-annual tidal component. Incorporating vertical, periodic variation in mud fraction is important since it influences the bulk petrophysical properties.</p><p>Published flume tank studies are used to create a wide range of ripple-laminated, realistic bedding types with different mud fractions and correlation lengths but with constant petrophysical properties. These models are evaluated as a function of sample volume. A large variation in porosity and permeability between realizations, expressed as the Coefficient of Variation (CV), is observed when the sample volume is small. This indicates that the volume of investigation is not representative. A representative elementary volume (REV) is here defined to correspond to the sample volume that gives a CV below 0.5. For permeability there is observed a relation between the size of the REV and the bedding type (i.e. the correlation lengths of the sedimentological components). This relation is different for vertical and horizontal permeability. Porosity, being an additive property only dependent on the amount and not the spatial distribution of the components, shows no such dependency. From these experimental results, flow regimes and critical thresholds are identified that highlight the uncertainty in scale transition issues in these deposits. The results show that core plugs in general are inadequate to describe the effective permeability at the bedding scale and that this will affect the integration of core and log data.</p><p>The model set used to study the dependency with sample volume is expanded and evaluated with different porosity and permeability contrasts between the lithological components at a representative scale. The critical threshold for onset of vertical and horizontal flow is enhanced. The relation between the mud fraction and the effective vertical and horizontal permeability is expressed with different function types that are used to estimate a representative permeability value from a mud fraction estimate. Incorporating physical parameters that can be evaluated independently makes the relationship more generally applicable. The results can be used to guide the focus in data collection in these deposits by quantifying the influence of contrast between sand laminae or between the sand and the mud component in the different flow regimes.</p><p>The results form a basis for giving a better estimate of porosity and permeability in the selected interval. One method uses the near wellbore model, based on the detailed study of the interval, and forward models the porosity and permeability anisotropy at various scales. With this method individual lithofacies are studied and biased sampling is evaluated. A continuous estimate along the model is compared with existing estimates of horizontal permeability and porosity. A second method, being more general, uses the equations describing the relation between mud fraction and permeability. Using a wireline-based estimator of mud fraction, a continuous estimate of permeability anisotropy is obtained that differs from the traditional core-log method since the effective properties are calculated at a representative scale.</p><p>In summary, this study gives, as well as a contribution to scale transition issues in a difficult tidal heterolithic reservoir type, a formalised basis for analysis of petrophysical properties in a multi-scaled heterogeneous geological system.</p>
APA, Harvard, Vancouver, ISO, and other styles
2

Ondela, Mvunyiswa. "Petrophysical evaluation of fracture sytems in coal bed methane (CBM) bearing coal seams in relation to geological setting,3 exploration blocks, Botswana." Thesis, University of the Western Cape, 2014. http://hdl.handle.net/11394/4136.

Full text
Abstract:
Masters of Science<br>This study is focused on the Coal Bed Methane resources of Botswana with specific reference to the Central Kalahari basin where prospect license blocks forming the focus of this study are located. The aim of this study is to evaluate the fracture network in the coal seams and the fracture systems in the surrounding coal bearing sedimentary sequences and their contribution to dynamic flow. Coal bed methane sources are dual-porosity media documented on the natural fracture network, seen as micropores (matrix/natural fractures) and macropores (cleat). The coals of this region belong to the Ecca Group’s Morupule Fm (Permian) (70 m), focus of this study and have been preserved in the extensive Karoo basin within the Southern Africa region. Fractures can easily be identified in Acoustic Televiewer logs (ATV) and their orientation and structural character interpreted by rose plots, tadpoles and stick dip plots. In-situ stress fields have been determined from breakout structural evaluation and maintains a general E-W dip direction and N-S strike, thus most fractures are orientated optimally with inferred in-situ stress and enhancing flow potential in pore systems. A qualitative (MID plots & M-N cross-plots) and quantitative description of the fracture system is fundamental to the petrophysical evaluation, and involves the estimation of fracture parameters (fracture porosity, resistivity fracture index and both horizontal and vertical fracture indices).
APA, Harvard, Vancouver, ISO, and other styles
3

Kamgang, Thierry T. "Petro physical evaluation of four wells within Cretaceous gas-bearing sandstone reservoirs, In block 4 and 5 orange basin, South Africa." University of the Western Cape, 2013. http://hdl.handle.net/11394/4259.

Full text
Abstract:
Masters of Science<br>Petrophysical evaluation of four wells within Cretaceous gas-bearing sandstone reservoirs in blocks 4 and 5 Orange Basin, South Africa. Thierry Kamgang The present research work evaluates the petrophysical characteristics of the Cretaceous gasbearing sandstone units within Blocks 4 and 5 offshore South Africa. Data used to carry out this study include: wireline logs (LAS format), base maps, well completion reports, petrography reports, conventional core analysis report and tabulated interpretative age reports from four wells (O-A1, A-N1, P-A1 and P-F1). The zones of interest range between 1410.0m-4100.3m depending on the position of the wells. The research work is carried out in two phases: The first phase corresponds to the interpretation of reservoir lithologies based on wireline logs. This consists of evaluating the type of rocks (clean or tight sandstones) forming the reservoir intervals and their distribution in order to quantify gross zones, by relating the behavior of wireline logs signature based on horizontal routine. Extensively, a vertical routine is used to estimate their distribution by correlating the gamma-ray logs of the corresponding wells, but also to identify their depositional environments (shallow to deep marine).Sedlog software is used to digitize the results. The second phase is conducted with the help of Interactive Petrophysics (version 4) software, and results to the evaluation of eight petrophysical parameters range as follow: effective porosity (4.3% - 25.4%), bulk volume of water (2.7% – 31.8%), irreducible water saturation (0.2%-8.8%), hydrocarbon saturation (9.9% - 43.9%), predicted permeability (0.09mD – 1.60mD), volume of shale (8.4% - 33.6%), porosity (5.5% - 26.2%) and water saturation (56.1% - ii 90.1%). Three predefined petrophysical properties (volume of shale, porosity and water saturation)are used for reservoir characterization. The volume of shale is estimated in all the wells using corrected Steiber method. The porosity is determined from the density logs using the appropriate equations in wells O-A1 and P-A1, while sonic model is applied in well A-N1 and neutron-density relationship in well P-F1. Formation water resistivity (Rw) is determined through the following equation: Rw = (Rmf × Rt) / Rxo, and water saturation is calculated based on Simandoux relation. Furthermore, a predicted permeability function is obtained from the crossplot of core porosity against core permeability, and it results match best with the core permeability of well O-A1. This equation is used to predict the permeability in the other wells. The results obtained reveal that average volumes of shale decrease from the west of the field towards the east; while average porosities and water saturations increase from the south-west through the east despite the decreasing average water saturation in well P-A1. A corroboration of reference physical properties selected for reservoir characterization, with predefined cut-off values result to no net pay zones identified within the reservoir intervals studied. Consequently, it is suggested that further exploration prospects should be done between well O-A1 and A-N1.
APA, Harvard, Vancouver, ISO, and other styles
4

Parker, Irfaan. "Petrophysical evaluation of sandstone reservoirs of the Central Bredasdorp Basin, Block 9, offshore South Africa." Thesis, University of the Western Cape, 2014. http://hdl.handle.net/11394/4661.

Full text
Abstract:
>Magister Scientiae - MSc<br>This contribution engages in the evaluation of offshore sandstone reservoirs of the Central Bredasdorp basin, Block 9, South Africa using primarily petrophysical procedures. Four wells were selected for the basis of this study (F-AH1, F-AH2, F-AH4, and F-AR2) and were drilled in two known gas fields namely F-AH and F-AR. The primary objective of this thesis was to evaluate the potential of identified Cretaceous sandstone reservoirs through the use and comparison of conventional core, special core analysis, wire-line log and production data. A total of 30 sandstone reservoirs were identified using primarily gamma-ray log baselines coupled with neutron-density crossovers. Eleven lithofacies were recognised from core samples. The pore reduction factor was calculated, and corrected for overburden conditions. Observing core porosity distribution for all wells, well F-AH4 displayed the highest recorded porosity, whereas well F-AH1 measured the lowest recorded porosity. Low porosity values have been attributed to mud and silt lamination influence as well as calcite overgrowths. The core permeability distribution over all the studied wells ranged between 0.001 mD and 2767 mD. Oil, water, and gas, were recorded within cored sections of the wells. Average oil saturations of 3 %, 1.1 %, and 0.2 % were discovered in wells F-AH1, F-AH2, and F-AH4. Wells F-AH1 to F-AR2 each had average gas saturations of 61 %, 57 %, 27 %, and 56 % respectively; average core water saturations of 36 %, 42 %, 27 %, and 44 % were recorded per well.
APA, Harvard, Vancouver, ISO, and other styles
5

Olajide, Oluseyi. "The petrophysical analysis and evaluation of hydrocarbon potential of sandstone units in the Bredasdorp Central Basin." Thesis, University of the Western Cape, 2005. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_9559_1181561577.

Full text
Abstract:
<p>This research was aimed at employing the broad use of petrophysical analysis and reservoir modelling techniques to explore the petroleum resources in the sandstone units of deep marine play in the Bredasdorp Basin.</p>
APA, Harvard, Vancouver, ISO, and other styles
6

Hussien, Tarig M. Hamad. "Formation evaluation of deep-water reservoirs in the 13A and 14A sequences of the Central Bredasdorp Basin, offshore South Africa." University of the Western Cape, 2014. http://hdl.handle.net/11394/4876.

Full text
Abstract:
>Magister Scientiae - MSc<br>The goal of this study is to enhance the evaluation of subsurface reservoirs by improving the prediction of petrophysical parameters through the integration of wireline logs and core measurements. Formation evaluations of 13A and 14A sequences in the Bredasdorp Basin, offshore South Africa have been performed. Five wells in the central area of the basin have been selected for this study. Four different lithofacies (A, B, C, D) were identified, in the two cored wells, and used to predict the lithofacies from wireline logs in uncored intervals and wells. A method based on artificial neural network was used for this prediction. Facies A and B were recognized as reservoir rocks and 13 reservoir zones were identified and successfully evaluated in a detailed petrophysical model. The final shale volume was considered to be the minimum among five different methods applied in this study at any point along the well log. The porosity model was taken from the density model. A value of 2.66 g/cm3 was obtained from core measurements as the field average grain density, whereas the value of the fluid density of 0.79 g/cm3 was obtained from core porosity and bulk density cross-plot. In a water saturation model; an average water resistivity of 0.135 Ohm-m was estimated from SP method. The calculated water saturation models were calibrated with core measurements, and the Indonesia model best matched with the water saturation from conventional core analysis. Six hydraulic flow units were recognized in the studied reservoirs, and were used for permeability predictions. The permeability predicted from hydraulic flow units were found more reliable than the permeability calculated from porosity-permeability relationship. The net pay was identified for each reservoir by applying cut-offs on permeability 0.1 mD, porosity 7%, shale volume 0.35, and water saturation 0.60. The gross thickness of the reservoirs ranges from 4.83m to 41.07m and net pay intervals from 1.21m to 29.59m.
APA, Harvard, Vancouver, ISO, and other styles
7

Magoba, Moses. "Petrophysical evaluation of sandstone reservoir of well E-AH1, E-BW1 and E-L1 Central Bredasdorp Basin, offshore South Africa." University of the Western Cape, 2014. http://hdl.handle.net/11394/4462.

Full text
Abstract:
Magister Scientiae - MSc<br>The Bredasdorp basin is a sub-basin of the greater Outeniqua basin. It is located off the south coast, Southeast of Cape Town, South Africa. This basin is one of the largest hydrocarbon (mainly gas) producing basins within Southern Africa. The petrophysical characteristic of the E-block sandstone units within the Bredasdorp basin has been studied to evaluate their hydrocarbon potential. The data sets used in this research were wireline logs (Las format), core data, and geological well completion reports. The three studied wells are E-AH1, E- BW1 and E-L1. The evaluated interval ranges from 2000.33m to 3303.96m in depth with reference to Kelly bushing within the wells. The sandstone reservoirs of the Bredarsdorp basin are characterized by a range of stacked and amalgamated channels. They originated from materials eroded from pre-existing high stand shelf sandstone and transported into the central Bredarsdorp basin by turbidity current. These sandstones are generally in both synrift and drift section. The basin is thought to have developed from fan deltas and stream overwhelmed to water dominated delta. River dominated deltaic system progresses southward over the Northern edge of the central Bredasdorp basin. The Interactive Petrophysics (IP) software has been used extensively throughout the evaluation and development of interpretation model. The lithofacies of the rock units were grouped according to textural and structural features and grain sizes of well (E-AH1, E-BW1 and E-L1). Four different facies (A, B, C and D) were identified from the cored intervals of each well. Facies A was classified as a reservoir and facies B, C and D as a non-reservoir. Detailed petrophysical analyses were carried out on the selected sandstone interval of the studied wells. The cut-off parameters were applied on the seven studied sandstone interval to distinguish between pay and non-pay sand and all intervals were proved to be producing hydrocarbon. Volume of clay, porosity, water saturation and permeability were calculated within the pay sand interval. The average volume of clay ranged from 23.4% to 25.4%. The estimated average effective porosity ranged from 9.47% to 14.3%. The average water saturation ranged from 44.4% to 55.6%. Permeability ranged from 0.14mD to 79mD. The storage and flow capacity ranged from 183.2scf to 3852scf and 2.758mD-ft to 3081mD-ft respectively. The geological well completion reports classify these wells as a gas producing wells. E-L1 is estimated to have a potential recoverable gas volume of 549.06 cubic feet, E-BW1 is estimated to have 912.49 cubic feet and E-AH1 is estimated to have 279.69 cubic feet.
APA, Harvard, Vancouver, ISO, and other styles
8

Javid, Sanaz. "Petrography and petrophysical well log interpretation for evaluation of sandstone reservoir quality in the Skalle well (Barents Sea)." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for geologi og bergteknikk, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-23137.

Full text
Abstract:
39 thin sections and petrophysical log data from the Skalle well in the Hammerfest Basin, in the southwestern part of the Barents Sea, have been studied to interpret lithology, and diagenesis and their effect on the reservoir quality, and to compare reservoir properties of the different reservoir units. Petrophysical log data have been calibrated for reservoir description in cases where core material is not available. The studied formations are comprised by the St&#248;, Fuglen, Hekkingen, Knurr, Kolje and the Lower Kolmule Formations. The Knurr and Kolje Formations have been identified and interpreted only by wire line logs, as core material was not available for those intervals.The Lower Kolmule Formation of sandstones of lithic greywacke composition, and the St&#248; Formation with sandstones of subarkosic arenite composition are considered as possible reservoir rocks. All the formations are water filled which is reflected by the low resistivity logs responses. The mature sandstones of the St&#248; Formation show high reservoir quality (high porosity and permeability) compared to the Lower Kolmule Formation. The Hekkingen Formation is a potential source rock for the Lower Kolmule Formation, as well as a seal (cap rock) for the St&#248; Formation. Cementation, dissolution, compaction, clay mineral authigenesis and stylolitization are the most significant diagenetic processes affecting the reservoir quality. Some other type of processes such as glauconitization and bioturbation are also common in the studied well.
APA, Harvard, Vancouver, ISO, and other styles
9

Khaksar, Abbas. "Techniques for improving the petrophysical evaluation of the Patchawarra formation in the Toolachee Field, Cooper Basin, South Australia /." Title page, abstract and contents only, 1994. http://web4.library.adelaide.edu.au/theses/09SM/09smk62.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Opuwari, Mimonitu. "Petrophysical evaluation of the albian age gas bearing sandstone reservoirs of the o-m field, orange basin, South Africa." Thesis, University of the Western Cape, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_7221_1380806808.

Full text
Abstract:
<p>Petrophysical evaluation of the Albian age gas bearing sandstone reservoirs of the O-M field, Offshore South Africa has been performed. The main goal of the thesis is to evaluate the reservoir potentials of the field through the integration and comparison of results from core analysis, production data and petrography studies for the evaluation and correction of key petrophysical parameters from wireline logs which could be used to generate an effective reservoir model. A total of ten wells were evaluated and twenty eight sandstone reservoirs were encountered of which twenty four are gas bearing and four are wet within the Albian age depth interval of 2800m to 3500m. Six lithofacies (A1, A2, A3, A4, A5 and A6) were grouped<br /> according to textural and structural features and grain size from the key wells (OP1, OP2 and OP3). Facies A6 was identified as non reservoir rock in terms of reservoir rock quality and facies A1 and A2 were regarded as the best reservoir rock quality. This study identifies the different<br /> rock types that comprise reservoir and non reservoirs. Porosity and permeability are the key parameters for identifying the rock types and reservoir characterization. Pore throat radius was estimated from conventional core porosity and permeability with application of the Winland&rsquo<br>s method for assessment of reservoir rock quality on the bases of pore throat radius. Results from the Winland&rsquo<br>s method present five Petrofacies (Mega porous, Macro porous, Meso porous, Micro porous and Nanno porous). The best Petrofacies was mega porous rock type which corresponds to lithofacies A1 and A2. The nano porous rock type corresponds to lithofacies A6 and was subsequently classified as non reservoir rock. The volume of clay model from log was taken from the gamma-ray model corrected by Steiber equations which was based on the level of agreement between log data and the x-ray diffraction (XRD) clay data. The average volume of clay determined ranged from 1 &ndash<br>28 %. The field average grain density of 2.67 g/cc was determined from core data which is representative of the well formation, hence 2.67 g/cc was used to estimate porosity from the density log. Reservoir rock properties are generally good with reservoir average porosities between 10 &ndash<br>22 %, an average permeability of approximately 60mD. The laterolog resistivity values have been invasion corrected to yield estimates of the true formation resistivity. In general, resistivities of above 4.0 Ohm-m are productive reservoirs, an average water resistivity of 0.1 Ohm-m was estimated. Log calculated water saturation models were calibrated with capillary pressure and conventional core determined water saturations, and the Simandoux shaly sand model best agree with capillary and conventional core water saturations and was used to determine field water saturations. The reservoir average water saturations range between 23 &ndash<br>69 %. The study also revealed quartz as being the dominant mineral in addition to abundant chlorite as the major clay mineral. The fine textured and dispersed pore lining chlorite mineral affects the reservoir quality and may be the possible cause of the low resistivity recorded in the area. The reservoirs evaluated in the field are characterized as normally pressured with an average reservoir pressure of 4800 psi and temperature of 220 &ordm<br>F. An interpreted field aquifer gradient of 0.44 psi/ft (1.01 g/cc) and gas gradient of 0.09 psi/ft (0.2 g/cc) were obtained from repeat formation test measurements. A total of eight gas water contacts were identified in six wells. For an interval to be regarded as having net pay potential, cut-off values were used to distinguish between pay and non-pay intervals. For an interval to be regarded as pay, it must have a porosity value of at least 10 %, volume of clay of less than 40 %, and water saturation of not more than 65 %. A total of twenty four reservoir intervals meet the cut-off criteria and was regarded as net pay intervals. The gross thickness of the reservoirs range from 2.4m to 31.7m and net pay interval from 1.03m to 25.15m respectively. In summary, this study contributes to scale transition issues in a complex gas bearing sandstone reservoirs and serves as a basis for analysis of petrophysical properties in a multi-scale system.</p>
APA, Harvard, Vancouver, ISO, and other styles
11

Maseko, Phindile Pearl. "Petrophysical evaluation and characterization of sandstone reservoirs of the western Bredasdorp Basin, South Africa for well D-D1 and E-AP1." Thesis, University of the Western Cape, 2016. http://hdl.handle.net/11394/5181.

Full text
Abstract:
>Magister Scientiae - MSc<br>The Bredasdorp Basin was formed consequent to extensional episodes during the initial stages of rifting in the Jurassic age. The basin acted as a local depocentre and was primarily infilled with late Jurassic and early Cretaceous shallow-marine and continental sediments. Two wells namely; D-D1 and E-AP1 were studied in order to evaluate the petrophysics and characterize sandstone reservoirs of the western Bredasdorp basin. This could be achieved by generating and comparing results from core analysis and wireline in order to determine if the two wells are comprised of good quality sandstone reservoirs and if the identified reservoirs produce hydrocarbons. A number of methods were employed in order to characterise and evaluate sandstone reservoir, these included; editing and normalization of raw wireline log data ,classification of lithofacies on the basis of lithology, sedimentary structures, facies distribution, grain size variation, sorting of grains, fossils and bioturbation; calibration of log and core data to determine parameters for petrophysical interpretation; volume of clay; determination of porosity, permeability and fluid saturation, cut-off determination to distinguish between pay and non-pay sands. Borehole D-D1 is located in the western part of the Bredasdorp Basin. Only two reservoirs in well D-D1 indicated to have pay parameters with an average porosity ranging from 11.3% to 16%, average saturation from 0.6% to 21.5% and an volume of clay from 26.5% to 31.5%. This well was abandoned due to poor oil shows according to the geological well completion report. On the contrary well E-AP1 situated in the northwestern section of the basin showed good quality reservoir sandstones occurring in the 19082m to 26963m intervals though predominantly water saturated. Pay parameters for all five reservoirs in this well showed zero or no average porosity, saturation and volume of clay.
APA, Harvard, Vancouver, ISO, and other styles
12

Ring, Jeremy Daniel. "Petrophysical evaluation of lithology and mineral distribution with an emphasis on feldspars and clays, middle and upper Williams Fork Formation, Grand Valley Field, Piceance Basin, Colorado." Thesis, University of Colorado at Boulder, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1565317.

Full text
Abstract:
<p> <b>Petrophysical evaluation of lithology and mineral distribution with an emphasis on feldspars and clays, middle and upper Williams Fork Formations, Piceance Basin, Colorado.</b> Understanding accessory mineralogy occurrence and distribution is critical to evaluating the reservoir quality and economic success of tight&ndash;gas reservoirs, since the occurrence of iron&ndash;rich chlorites can decrease resistivity measurements and the occurrence of potassium feldspar increases gamma&ndash;ray measurements, resulting in inaccurate water saturation and net&ndash;to&ndash;gross calculations, respectively. This study was undertaken to understand the occurrence and distribution of chlorite and potassium feldspar in the middle and upper Williams Fork Formations of the Piceance Basin at Grand Valley Field. </p><p> Eight lithofacies are identified in core based on grain&ndash;size, internal geometry, and sedimentary structures. Four architectural elements (channel fill, crevasse splay, floodplain, and coal) were determined from lithofacies relationships, and then associated with well&ndash;log responses. Logs and models were used to determine the occurrence and distribution of lithology, architectural elements, chlorite and potassium feldspar, as well as the relationships between minerals and lithology and architectural elements. Net&ndash;to&ndash;gross ratios vary stratigraphically, from 8% to 88%, with a higher average in the middle Williams Fork Formation (58.3%) than in the upper Williams Fork Formation (48.5%). Volumetric proportions vary stratigraphically for both channel fills (18&ndash; 75%) and crevasse splays (1&ndash;7%). </p><p> The average volume percent of chlorite and potassium feldspars are both &lt;1%, with P <sub>50 </sub> values of 1.3% and 7%, respectively. Chlorite is pervasive at the base of the middle Williams Fork Formation: almost 90% of the sandstones in sand&ndash;rich intervals contain chlorite. The distribution of chlorite did not vary between reservoir architectural elements, with 70% of both crevasse splays and channel fills containing chlorite. The results of this study show that, for the middle and upper Williams Fork Formations at Grand Valley Field, 1) there are eight lithofacies and four architectural&ndash;element types identified from core; 2) the occurrence and distribution of accessory minerals (&lt;10%) of chlorite and potassium feldspar can be accurately estimated from limited core and well&ndash;log data; 3) chlorite occurrence does not vary significantly between reservoir architectural elements; 4) the abundance of chlorite near completion intervals and the occurrence of potassium feldspar in calculated mudstone lithologies indicate a need to re&ndash;evaluate the utilization of saturation models and lithology calculations in reservoir&ndash;quality evaluations.</p>
APA, Harvard, Vancouver, ISO, and other styles
13

Woodhouse, Richard. "Petrophysical Evaluations from Borehole Log and Core Measurements." Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Florez, Jhonatan Jair Arismendi. "Construction and evaluation of synthetic carbonate plugs." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3134/tde-22032019-111757/.

Full text
Abstract:
Many of Brazil\'s pre-salt basins are located in ultra-deep waters, and the high heterogeneities of its offshore carbonate reservoirs make the extraction of representative rock samples difficult, risky and expensive. Synthetic plugs are required to understand oilfield properties and the behavior of oil in reservoirs where natural plugs cannot be extracted. Specifically, in cases where it is necessary to reproduce representative mineralogical and petrophysical characteristics from carbonates reservoir, it is evident that there are a lack of publications focusing on synthetic plug construction. In this work, the construction of synthetic plugs is studied, using a combination of published methodologies to achieve an alternative construction of synthetic carbonate plugs for laboratory scale studies. The obtained plugs used a procedure based on disintegrated rock matrices with known particle sizes and particle size ratio, uniaxial compaction with controlled load force and velocity, CaCO3 solubility control by changing temperature and pH and bonding material. Consolidation, wettability and petrophysical properties of the synthetic plugs were evaluated to characterize them. Generally, it was observed that the porosity and permeability features of the synthetic plugs were within the range of carbonate reservoirs. However, without reproducing a heterogeneous pore structure normally present in natural samples. On the other hand, wettability properties of the resulted synthetic plugs were similar to the natural carbonate plugs. Further studies are necessary to obtain more similar chemical and petrophysical properties to the natural samples.<br>A localização em águas ultra profundas das reservas petrolíferas do pré-sal brasileiro e a alta heterogeneidade dos seus reservatórios carbonáticos dificultam a aquisição de uma amostra de rocha representativa, além de ser uma operação de risco e de alto dispêndio. Plugues sintéticos são utilizados para compreensão das propriedades dos campos petrolíferos e para avaliação do comportamento dos hidrocarbonetos em reservatórios onde plugues reais não podem ser adquiridos. Especificamente, nos casos onde são necessários reproduzir características representativas mineralógicas e petrofísicas dos reservatórios carbonáticos, sendo notório a falta de publicações voltada para construção de plugues sintéticos. No presente trabalho, estudou-se a construção de plugues sintéticos empregando metodologias já difundidas, visando a construção de plugues carbonáticos sintéticos para utilização em escala laboratorial. Os plugues obtidos foram construídos utilizando matrizes de rochas desintegradas com tamanhos e proporções de partículas conhecidos, compactação uniaxial com força e velocidades controladas e controle de solubilidade de CaCO3, variando apenas temperatura, pH e proporções de material cimentante. Foram avaliadas as propriedades petrofísicas, a molhabilidade e a consolidação dos plugues sintéticos para posterior caracterização dos mesmos. Comumente, observou-se que os valores de porosidade e permeabilidade dos plugues sintéticos se encontravam dentro do intervalo de valores obtidos em reservatórios carbonáticos reais. No entanto, não reproduziram a estrutura heterogênea dos poros, normalmente presente em amostras de rochas naturais. Em contrapartida, as propriedades de molhabilidade dos plugues sintéticos se apresentaram análogas aos plugues de rochas carbonáticas naturais. Estudos complementares são necessários para obtenção de propriedades químicas e petrofísicas mais próximas das amostras reais.
APA, Harvard, Vancouver, ISO, and other styles
15

Manivannan, Sivaprasath. "Measuring permeability vs depth in the unlined section of a wellbore using the descent of a fluid column made of two distinct fluids : inversion workflow, laboratory & in-situ tests." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX086/document.

Full text
Abstract:
Dans les puits de production d’eau, de pétrole, de gaz et de chaleur géothermique, ou dans les puits d’accès à un stockage d’hydrocarbures, il est précieux de connaître la perméabilité de la formation ou de sa couverture en fonction de la profondeur, soit pour améliorer le modèle de réservoir, soit pour choisir les zones dans lesquelles procéder à des opérations spéciales.On propose une technique qui consiste à balayer la hauteur du découvert par une interface entre deux liquides de viscosités très contrastées. Le débit total qui pénètre la formation à chaque instant est ainsi une fonction de la position de l’interface et de l’historique des pressions dans le puits. On doit alors résoudre un problème inverse : rechercher la perméabilité fonction de la profondeur à partir de l’historique des débits dans le temps. Dans la pratique, le puits est équipé d’un tube central. Le balayage est effectué par injection d’un liquide à pression d’entrée constante dans le tube central et soutirage d’un autre liquide par l’espace annulaire. On mesure les débits d’injection et de soutirage dont la différence est le débit qui entre dans la formation.Pour valider et améliorer cette technique, on a d’abord utilisé une maquette simulant un découvert multi-couches disponible au LMS. On a exploité aussi des essais en place réalisés dans la couverture peu perméable d’un stockage souterrain de gaz. Dans ces essais, un liquide visqueux placé dans le découvert était déplacé par un liquide moins visqueux (méthode dite « opening »). Les couches plus perméables étaient correctement identifiées (Manivannan et al. 2017), mais une estimation quantitative était un défi en raison des phénomènes transitoires qui affectent le voisinage immédiat des puits. De plus, le rayon investigué dans le massif était petit.La thèse a relevé ces défis en proposant un essai légèrement différent et une nouvelle technique d’interprétation. Les essais avec une maquette modifiée ont montré la supériorité d’une méthode « closing » dans laquelle le puits est d’abord rempli du liquide le moins visqueux. On ménage une période de stabilisation avant l’injection du liquide visqueux pour réduire les effets transitoires ; elle permet aussi d’estimer la perméabilité moyenne et l’influence de la zone endommagée à la paroi (le « skin »).Puis on conduit l’essai proprement dit. L’historique des débits mesurés en tête de puits constitue le profil d’injection dont on déduit le profil de perméabilité.. Cette estimation suppose un écoulement monophasique dans chaque couche et la même « skin » pour toute la formation. Les incertitudes principales portent sur les pressions de formation et les variations possibles du « skin ». Elles sont estimées au moyen d’un calcul analytique. On a vérifié sur la maquette que les profils de perméabilité estimés présentent une bonne concordance avec les perméabilités mesurées avant les essais.On a réalisé un essai sur un sondage de 1750 m de long atteignant une couche de sel dont on a correctement estimé la perméabilité moyenne pendant la période de stabilisation. Toutefois elle était si faible (4.0E-21 m²) que l’utilisation de deux fluides n’a pas permis de faire une différence entre les diverses parties du puits<br>In wells producing water, oil, gas or geothermal energy, or in access wells to hydrocarbon storage, it is critical to evaluate the permeability of the formation as a function of depth, to improve the reservoir model, and also to identify the zones where additional investigation or special completions are especially useful.A new technique is proposed, consisting of scanning the open hole (uncased section of the wellbore) with an interface between two fluids with a large viscosity contrast. The injection rate into the formation depends on interface location and well pressure history. An inverse problem should be solved: estimate permeability as a function of depth from the evolution of flow rates with time. The wells are usually equipped with a central tube. The scanning is done by injecting a liquid in the central tube at constant wellhead pressure. Injection and withdrawal rates are measured at the wellhead; the difference between these two rates is the formation injection rate.To validate and improve this technique, we used a laboratory model mimicking a multi-layer formation, already available at LMS. We also made use of in-situ tests performed on an ultra-low permeable cap rock above an underground gas storage reservoir. In these tests, a viscous fluid contained in the open hole was displaced by a less-viscous fluid (a method called opening WTLog). The more permeable layers were correctly identified (Manivannan et al. 2017), but a quantitative estimation was challenging due to transient phenomena in the vicinity of the wellbore (near-wellbore zone). In addition, the investigation radius was small.These challenges are addressed by proposing a slightly modified test procedure and a new interpretation workflow. Laboratory tests with a modified test setup showed the advantages of the ‘closing’ method in which the well is filled with a less-viscous fluid at the start of the test. We also added a stabilization period before the injection of viscous fluid to minimize the transient effects; this period is also used to estimate the average permeability of the open hole and the effect of near-wellbore damage (skin).Then the test proper is performed (closing WTLog). The injection profile of the less-viscous fluid is computed from the wellhead flow rate history. A permeability profile is estimated from the injection profile. The permeability estimation considers a monophasic flow in each layer and the same skin value for all the formation layers. Major uncertainties in the permeability estimates are caused by formation pressures and heterogeneities in skin values; they are estimated using an analytical formula. We have verified on the laboratory setup that the estimated permeability profiles are well correlated to the permeabilities measured before the tests.An attempt was made to perform a WTLog in a 1750-m long wellbore opening in a salt formation. The first phase was successful and the average permeability was correctly assessed. However, this permeability was so small (4.0E-21 m² or 4 nD) that the gauges and the flowmeters were not accurate enough to allow a clear distinction between the permeabilities of the various parts of the open hole
APA, Harvard, Vancouver, ISO, and other styles
16

Blackford, Mack Andrew. "Electrostratigraphy, thickness, and petrophysical evaluation of the Woodford shale, Arkoma basin, Oklahoma." 2007. http://digital.library.okstate.edu/etd/umi-okstate-2525.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bansal, Abhishek. "Improved petrophysical evaluation of consolidated calcareous turbidite sequences with multi-component induction, NMR, resistivity images, and core measurements." 2012. http://hdl.handle.net/2152/20035.

Full text
Abstract:
We introduce a new quantitative approach to improve the petrophysical evaluation of thinly bedded sand-shale sequences that have undergone extensive diagenesis. Formations under analysis consist of carbonate-rich clastic sediments, with pore system heavily reworked by calcite and authigenic clay cementation, giving rise to rocks with high spatial heterogeneity, low porosity, and low permeability. Porosity varies from 2 to 20% and permeability varies from less than 0.001 mD to 200 mD. Diagenesis and thin laminations originate complex magnetic resonance (NMR) T2 distributions exhibiting multimodal distributions. Furthermore, reservoir units produce highly viscous oil, which imposes additional challenges to formation evaluation. Petrophysical evaluation of thinly bedded formations requires accurate estimation of laminar and dispersed shale concentration. We combined Thomas-Stieber’s method, OBMI, and Rt-Scanner measurements to calculate laminar shale concentration. Results indicate that hydrocarbon reserves can be overestimated in the presence of high-resistivity streaks and graded beds, which give rise to electrical anisotropy. To account for electrical anisotropy effects on petrophysical estimations, we classified reservoir rocks based on the cause of electrical anisotropy. Thereafter different interpretation methods were implemented to estimate petrophysical properties for each rock class. We also appraised the advantages and limitations of the high-resolution method for evaluating thinly bedded formations with respect to other petrophysical interpretation methods. Numerical simulations were performed on populated earth-model properties after detecting bed boundaries from resistivity or core images. Earth-model properties were iteratively refined until field and numerically simulated logs reached an acceptable agreement. Results from the high-resolution method remained petrophysically consistent when beds were thicker than 0.25 ft. Numerical simulations of NMR T2 distributions were also performed to reproduce averaging effects of NMR responses in thinly bedded formations, which enabled us to improve the assessment of pore-size distributions, in-situ fluid type, and saturation. Permeability of sand units was estimated via Timur-Coates’ equation by removing the effect of laminar shale on porosity and bulk irreducible volume water. Shoulder-bed corrected logs were input to the calculations. Petrophysical properties obtained with the developed interpretation method honor all the available measurements including conventional well logs, NMR, resistivity images, multi-component induction, and core measurements. The developed interpretation method was successfully tested across four hydrocarbon-saturated intervals selected from multiple wells penetrating a deep turbidite system. Permeability values obtained with the new interpretation method improved the correlation with core measurements by 16% as compared to permeability calculations performed with conventional methods. In addition, on average the method yielded a 62% increase in hydrocarbon pore-thickness when compared to conventional petrophysical analysis.<br>text
APA, Harvard, Vancouver, ISO, and other styles
18

Dou, Qifeng. "Rock Physics-Based Carbonate Reservoir Pore Type Evaluation by Combining Geological, Petrophysical and Seismic Data." Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-05-9502.

Full text
Abstract:
Pore type variations account for complex velocity-porosity relationship and intensive permeability heterogeneity and consequently low oil and gas recovery in carbonate reservoir. However, it is a challenge for geologist and geophysicist to quantitatively estimate the influences of pore type complexity on velocity variation at a given porosity and porosity-permeability relationship. A new rock physics-based integrated approach in this study was proposed to quantitatively characterize the diversity of pore types and its influences on wave propagation in carbonate reservoir. Based on above knowledge, permeability prediction accuracy from petrophysical data can be improved compared to conventional approach. Two carbonate reservoirs with different reservoir features, one is a shallow carbonate reservoir with average high porosity (>10%) and another one is a supper-deep carbonate reservoir with average low porosity (<5%), are used to test the proposed approach. Paleokarst is a major event to complicate carbonate reservoir pore structure. Because of limited data and lack of appropriate study methods, it is a difficulty to characterize subsurface paleokarst 3D distribution and estimate its influences on reservoir heterogeneity. A method by integrated seismic characterization is applied to delineate a complex subsurface paleokarst system in the Upper San Andres Formation, Permian basin, West Texas. Meanwhile, the complex paleokarst system is explained by using a carbonate platform hydrological model, similar to modern marine hydrological environments within carbonate islands. How to evaluate carbonate reservoir permeability heterogeneity from 3D seismic data has been a dream for reservoir geoscientists, which is a key factor to optimize reservoir development strategy and enhance reservoir recovery. A two-step seismic inversions approach by integrating angle-stack seismic data and rock physics model is proposed to characterize pore-types complexity and further to identify the relative high permeability gas-bearing zones in low porosity reservoir (< 5%) using ChangXing super-deep carbonate reservoir as an example. Compared to the conventional permeability calculation method by best-fit function between porosity and permeability, the results in this study demonstrate that gas zones and non-gas zones in low porosity reservoir can be differentiated by using above integrated permeability characterization method.
APA, Harvard, Vancouver, ISO, and other styles
19

Mimonitu, Opuwari. "Petrophysical evaluation of the Albian Age gas bearing sandstone reservoirs of the O-M field, Orange Basin, South Africa." Thesis, 2010. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_7288_1318574708.

Full text
Abstract:
Petrophysical evaluation of the Albian age gas bearing sandstone reservoirs of the O-M field, Offshore South Africa has been performed. The main goal of the thesis is to evaluate the reservoir potentials of the field through the integration and comparison of results from core analysis, production data and petrography studies for the evaluation and correction of key petrophysical parameters from wireline logs which could be used to generate an effective reservoir model. A total of ten wells were evaluated and twenty eight sandstone reservoirs were encountered of which twenty four are gas bearing and four are wet within the Albian age depth interval of 2800m to 3500m. Six lithofacies (A1, A2, A3, A4, A5 and A6) were grouped according to textural and structural features and grain size from the key wells (OP1, OP2 and OP3). Facies A6 was identified as non reservoir rock in terms of reservoir rock quality and facies A1 and A2 were regarded as the best reservoir rock quality. This study identifies the different rock types that comprise reservoir and non reservoirs. Porosity and permeability are the key parameters for identifying the rock types and reservoir characterization.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!