Dissertations / Theses on the topic 'Petrov-Galerkin'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Petrov-Galerkin.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Dogan, Abdulkadir. "Petrov-Galerkin finite element methods." Thesis, Bangor University, 1997. https://research.bangor.ac.uk/portal/en/theses/petrovgalerkin-finite-element-methods(4d767fc7-4ad1-402a-9e6e-fd440b722406).html.
Full textHellwig, Friederike. "Adaptive Discontinuous Petrov-Galerkin Finite-Element-Methods." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20034.
Full textThe thesis "Adaptive Discontinuous Petrov-Galerkin Finite-Element-Methods" proves optimal convergence rates for four lowest-order discontinuous Petrov-Galerkin methods for the Poisson model problem for a sufficiently small initial mesh-size in two different ways by equivalences to two other non-standard classes of finite element methods, the reduced mixed and the weighted Least-Squares method. The first is a mixed system of equations with first-order conforming Courant and nonconforming Crouzeix-Raviart functions. The second is a generalized Least-Squares formulation with a midpoint quadrature rule and weight functions. The thesis generalizes a result on the primal discontinuous Petrov-Galerkin method from [Carstensen, Bringmann, Hellwig, Wriggers 2018] and characterizes all four discontinuous Petrov-Galerkin methods simultaneously as particular instances of these methods. It establishes alternative reliable and efficient error estimators for both methods. A main accomplishment of this thesis is the proof of optimal convergence rates of the adaptive schemes in the axiomatic framework [Carstensen, Feischl, Page, Praetorius 2014]. The optimal convergence rates of the four discontinuous Petrov-Galerkin methods then follow as special cases from this rate-optimality. Numerical experiments verify the optimal convergence rates of both types of methods for different choices of parameters. Moreover, they complement the theory by a thorough comparison of both methods among each other and with their equivalent discontinuous Petrov-Galerkin schemes.
Herron, Madonna Geradine. "A novel approach to image derivative approximation using finite element methods." Thesis, University of Ulster, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364539.
Full textBonhaus, Daryl Lawrence. "A Higher Order Accurate Finite Element Method for Viscous Compressible Flows." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/29458.
Full textPh. D.
Wu, Wei. "Petrov-Galerkin methods for parabolic convection-diffusion problems." Thesis, University of Oxford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670384.
Full textSampaio, Paulo Angusto Berquo de. "Petrov-Galerkin finite element formulations for incompressible viscous flows." Thesis, Swansea University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.638759.
Full textScotney, Bryan. "An analysis of the Petrov-Galerkin finite element method." Thesis, University of Reading, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.354097.
Full textMoro-Ludeña, David. "A Hybridized Discontinuous Petrov-Galerkin scheme for compressible flows." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67189.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 113-117).
The Hybridized Discontinuous Petrov-Galerkin scheme (HDPG) for compressible flows is presented. The HDPG method stems from a combination of the Hybridized Discontinuous Galerkin (HDG) method and the theory of the optimal test functions, suitably modified to enforce the conservativity at the element level. The new scheme maintains the same number of globally coupled degrees of freedom as the HDG method while increasing the stability in the presence of discontinuities or under-resolved features. The new scheme has been successfully tested in several problems involving shocks such as Burgers equation and the Navier-Stokes equations and delivers solutions with reduced oscillation at the shock. When combined with artificial viscosity, the oscillation can be completely eliminated using one order of magnitude less viscosity than that required by other Finite Element methods. Also, convergence studies in the sequence of meshes proposed by Peterson [49] show that, unlike other DG methods, the HDPG method is capable of breaking the suboptimal k+1/2 rate of convergence for the convective problem and thus achieve optimal k+1 convergence.
by David Moro-Ludeña.
S.M.
Sampaio, Paulo Augusto Berquó de, and Instituto de Engenharia Nuclear. "Petrov - galerkin finite element formulations for incompressible viscous flows." Instituto de Engenharia Nuclear, 1991. http://carpedien.ien.gov.br:8080/handle/ien/1954.
Full textMade available in DSpace on 2017-10-04T17:13:38Z (GMT). No. of bitstreams: 1 PAULO AUGUSTO BERQUÓ DE SAMPAIO D.pdf: 6576641 bytes, checksum: 71355f6eedcf668b2236d4c10f1a2551 (MD5) Previous issue date: 1991-09
The basic difficulties associated with the numerical solution of the incompressible Navier-Stokes equations in primitive variables are identified and analysed. These difficulties, namely the lack of self-adjointness of the flow equations and the requirement of choosing compatible interpolations for velocity and pressure, are addressed with the development of consistent Petrov-Galerkin formulations. In particular, the solution of incompressible viscous flow problems using simple equal order interpolation for all variables becomes possible .
Gerber, George. "Unsteady pipe-flow using the Petrov-Galerkin finite element method." Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/50214.
Full textENGLISH ABSTRACT: Presented here is an Eulerian scheme for solving the unsteady pipe-flow equations. It is called the Characteristic Dissipative Petrov-Galerkin finite element algorithm. It is based on Hicks and Steffler's open-channel finite element algorithm [5]. The algorithm features a highly selective dissipative interface, which damps out spurious oscillations in the pressure field while leaving the rest of the field almost unaffected. The dissipative interface is obtained through upwinding of the test shape functions, which is controlled by the characteristic directions of the flow field at a node. The algorithm can be applied to variable grids, since the dissipative interface is locally controlled. The algorithm was applied to waterhammer problems, which included reservoir, deadend, valve and pump boundary conditions. Satisfactory results were obtained using a simple one-dimensional element with linear shape functions.
AFRIKAANSE OPSOMMING: 'n Euleriese skema word hier beskryf om die onbestendige pypvloei differensiaal vergelykings op te los. Dit word die Karakteristieke Dissiperende Petrov-Galerkin eindige element algoritme genoem. Die algoritme is gebaseer op Hicks en Steffler se oop-kanaal eindige element algoritme [5]. In hierdie algoritme word onrealistiese ossilasies in die drukveld selektief gedissipeer, sonder om die res van die veld te beinvloed. Die dissiperende koppelvlak word verkry deur stroomop weegfunksies, wat beheer word deur die karakteristieke rigtings in die vloeiveld, by 'n node. Die algoritme kan dus gebruik word op veranderbare roosters, omdat die dissiperende koppelvlak lokaal beheer word. Die algoritme was toegepas op waterslag probleme waarvan die grenskondisies reservoirs, entpunte, kleppe en pompe ingesluit het. Bevredigende resultate was verkry vir hierdie probleme, al was die geimplementeerde element een-dimensioneel met lineere vormfunksies.
Hwang, Eduardo. "Simulação numérica de escoamentos: uma implementação com o método Petrov-Galerkin." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/3/3150/tde-11092008-113640/.
Full textThe \"Streamline Upwind Petrov-Galerkin\" method (SUPG) is analyzed with regard to its capability to stabilize numerical oscillations caused by convective-diffusive flows, and to maintain consistency in the results. To this aim, a computational program is elaborated as an algorithmic implementation of the method, and simulated the flow around a fixed cylinder at different Reynolds numbers. At the end, a revelation is made on the method\'s robustness. Keywords: flow, numerical simulation, Petrov-Galerkin method.
YU, CHUNG-CHYI. "FINITE-ELEMENT ANALYSIS OF TIME-DEPENDENT CONVECTION DIFFUSION EQUATIONS (PETROV-GALERKIN)." Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/183930.
Full textStorn, Johannes. "Topics in Least-Squares and Discontinuous Petrov-Galerkin Finite Element Analysis." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20141.
Full textThe analysis of partial differential equations is a core area in mathematics due to the fundamental role of partial differential equations in the description of phenomena in applied sciences. Computers can approximate the solutions to these equations for many problems. They use numerical schemes which should provide good approximations and verify the accuracy. The least-squares finite element method (LSFEM) and the discontinuous Petrov-Galerkin (DPG) method satisfy these requirements. This thesis investigates these two schemes. The first part of this thesis explores the accuracy of solutions to the LSFEM. It combines properties of the underlying partial differential equation with properties of the LSFEM and so proves the asymptotic equality of the error and a computable residual. Moreover, this thesis introduces an novel scheme for the computation of guaranteed upper error bounds. While the established error estimator leads to a significant overestimation of the error, numerical experiments indicate a tiny overestimation with the novel bound. The investigation of error bounds for the Stokes problem visualizes a relation of the LSFEM and the Ladyzhenskaya-Babuška-Brezzi (LBB) constant. This constant is a key in the existence and stability of solution to problems in fluid dynamics. The second part of this thesis utilizes this relation to design a competitive numerical scheme for the computation of the LBB constant. The third part of this thesis investigates the DPG method. It analyses an abstract framework which compiles existing applications of the DPG method. The analysis relates the DPG method with a slightly perturbed LSFEM. Hence, the results from the first part of this thesis extend to the DPG method. This enables a precise investigation of existing and the design of novel DPG schemes.
Moosavi, Mohammad-Reza. "Méthode combinée volumes finis et meshless local Petrov Galerkin appliquée au calcul de structures." Thesis, Nancy 1, 2008. http://www.theses.fr/2008NAN10080/document.
Full textThis work concerns the development of a new numerical method entitled “Meshless Local Petrov- Galerkin (MLPG) combined with the Finite Volumes Method (FVM)” applied to the structural analysis. It is based on the resolution of the weak form of the partial differential equations by a method of Petrov Galerkin as in finite elements, but the approximation of the field of displacement introduced into the weak form does not require grid. The displacements and strains are given with the various nodes by local interpolation by using moving least squares (MLS). The values of the nodal strains are expressed in terms of interpolated nodal values independently of displacements, by simply imposing the strain displacement relationship directly by collocation at the nodal points. The procedure of calculation for this method is implemented in a computer code developed in MATLAB. The developed code was validated on a certain number of test cases by comparison with analytical solutions and finite elements results like ABAQUS. The whole of these tests showed a good behaviour of the method (about 0.0001% of errors in compared to the exact solution). The approach is also extended for the study of the thin beams and the dynamic analysis and stability
Rajaraman, Prathish Kumar. "Simulation of nanoparticle transport in airways using Petrov-Galerkin finite element methods." Thesis, Montana State University, 2012. http://etd.lib.montana.edu/etd/2012/rajaraman/RajaramanP0512.pdf.
Full textZengeya, Miles. "Journal bearing optimization and analysis using streamline upwind Petrov-Galerkin finite element method." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/8039.
Full textSouissi, Abderrazak. "Numerical simulation of one-dimensional and two-dimensional mass transport in groundwater, using Galerkin, Petrov-Galerkin and localized adjoint methods." Diss., The University of Arizona, 1991. http://hdl.handle.net/10150/185695.
Full textAhmed, Naveed, and Gunar Matthies. "Higher order continuous Galerkin−Petrov time stepping schemes for transient convection-diffusion-reaction equations." Cambridge University Press, 2015. https://tud.qucosa.de/id/qucosa%3A39044.
Full textMoosavi, Mohammad-Reza Khelil Abdelouahab. "Méthode combinée volumes finis et meshless local Petrov Galerkin appliquée au calcul de structures." S. l. : Nancy 1, 2008. http://www.scd.uhp-nancy.fr/docnum/SCD_T_2008_0080_MOOSAVI.pdf.
Full textQuezada, Celedon Julian Hermogenes. "Uma formulação de Petrov-Galerkin para problemas de dispersão pelo método dos elementos finitos." Universidade Federal do Rio de Janeiro, 1988. http://hdl.handle.net/11422/3876.
Full textMade available in DSpace on 2018-04-24T14:26:35Z (GMT). No. of bitstreams: 1 166210.pdf: 1314488 bytes, checksum: d45b383716733f61e45164204d63bc1c (MD5) Previous issue date: 1988-04
Esta tese consiste na discussão de uma formulação de elementos finitos para a equação de difusão-convecção, utilizando um esquema de Petrov-Galerkin com funções de ponderação descontínuas. O esquema, conhecido como SUPG, introduz o conceito de "upwind" de maneira consistente, e pode ser facilmente aplicado a problemas transientes e/ou multidimensionais. Apresentam-se testes numéricos, uni e bidimensionais, para ilustrar as principais características do método de correção. As respostas obtidas são comparadas com resultados de outras formulações. Pode-se concluir, a partir dos casos analisados, que a correção adotada apresenta vantagens que justificam sua utilização em estudos práticos de dispersão.
This thesis consists in the discussion of a finite element formulation for the difusion-convection equation, using a Petrov-Galerkin scheme with discontinuous weighting functions. This scheme, known as SUPG, introduces the concept of a consistent upwind, that can be easily applied to transient and/or multidimensional problems. Numerical one and two-dirnensional tests are presented to illustrate the main characteristics of the correction method. Results are compared to the solutions obtained by other formulations. It can be concluded, based in the test results, that the proposed correction possesses several advantages which justify its utilization in practical dispersion studies.
Bucur, Constantin 1967. "Finite element computations of transonic viscous flows with the streamline upwind Petrov-Galerkin (SUPG) formulation." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=98947.
Full textMOREUX, VINCENT. "Approximation par elements finis de type petrov-galerkin de systemes hyperboliques de lois de conservation." Toulouse 3, 1991. http://www.theses.fr/1991TOU30061.
Full textChing, Hsu-Kuang. "Solution of Linear Elastostatic and Elastodynamic Plane Problems by the Meshless Local Petrov-Galerkin Method." Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/28885.
Full textPh. D.
Hellwig, Friederike [Verfasser], Carsten [Gutachter] Carstensen, Rob [Gutachter] Stevenson, and Norbert [Gutachter] Heuer. "Adaptive Discontinuous Petrov-Galerkin Finite-Element-Methods / Friederike Hellwig ; Gutachter: Carsten Carstensen, Rob Stevenson, Norbert Heuer." Berlin : Humboldt-Universität zu Berlin, 2019. http://d-nb.info/1189213397/34.
Full textEyogo-Beyeme, Jean-Bernard. "Simulation numérique d'écoulements laminaires et turbulents à l'aide d'une formulation éléments finis de type Petrov-Galerkin." Lille 1, 2000. http://www.theses.fr/2000LIL10190.
Full textBrunken, Julia [Verfasser], and Mario [Akademischer Betreuer] Ohlberger. "Stable and efficient Petrov-Galerkin methods for certain (kinetic) transport equations / Julia Brunken ; Betreuer: Mario Ohlberger." Münster : Universitäts- und Landesbibliothek Münster, 2021. http://d-nb.info/1235674886/34.
Full textZhou, Yan. "Meshless Local Petrov-Galerkin method with Rankine source solution for two-dimensional two-phase flow modelling." Thesis, City University London, 2015. http://openaccess.city.ac.uk/14576/.
Full textAhuja, Kapil. "Recycling Bi-Lanczos Algorithms: BiCG, CGS, and BiCGSTAB." Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/34765.
Full textMaster of Science
D'Angelo, Stefano. "Adjoint-based error estimation for adaptive Petrov-Galerkin finite element methods: Application to the Euler equations for inviscid compressible flows." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/228297.
Full textDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Perella, Andrew James. "A class of Petrov-Galerkin finite element methods for the numerical solution of the stationary convection-diffusion equation." Thesis, Durham University, 1996. http://etheses.dur.ac.uk/5381/.
Full textPereira, Dimitrius Caloghero. "Aproximação de Petrov-Galerkin para o escoamento de sangue em anastomoses sistêmico-pulmonares do tipo Blalock-Taussig modificada." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2001. http://hdl.handle.net/10183/3792.
Full textStorn, Johannes [Verfasser], Carsten [Gutachter] Carstensen, Gerhard [Gutachter] Starke, and Dietmar [Gutachter] Gallistl. "Topics in Least-Squares and Discontinuous Petrov-Galerkin Finite Element Analysis / Johannes Storn ; Gutachter: Carsten Carstensen, Gerhard Starke, Dietmar Gallistl." Berlin : Humboldt-Universität zu Berlin, 2019. http://d-nb.info/1192302907/34.
Full textGUIMARÃES, Paulo Mohallem. "Análise da transferência de calor por convecção mista utilizando o método de elementos finitos com a técnica de Petrov-Galerkin." reponame:Repositório Institucional da UNIFEI, 2007. http://repositorio.unifei.edu.br/xmlui/handle/123456789/1713.
Full textMade available in DSpace on 2018-09-26T17:52:51Z (GMT). No. of bitstreams: 1 tese_0031977.pdf: 19347520 bytes, checksum: e4c2e818c209d4f59edc16cc4fd0d45f (MD5) Previous issue date: 2007-03
Neste trabalho é apresentado um estudo numérico do escoamento laminar para convecção mista, empregando-se o Método de Elementos Finitos (MEF) utilizando elementos quadrilaterais com quatro nós, com as perturbações de Petrov−Galerkin nos termos convectivos, o método da penalidade nos termos de pressão e o esquema semi-implícito de Euler para avanço no tempo. Consideram-se escoamentos incompressíveis, bidimensionais e não-permanentes, sendo que os resultados são mostrados para o regime permanente em grande parte do trabalho. A formulação que governa os fenômenos físicos dos problemas baseia-se nas equações de conservação de massa, quantidade de movimento e energia. Foram realizadas comparações para a validação do código computacional e também um estudo do refinamento de malha. Quatro validações experimentais e numéricas são realizadas. Estudou se a independência da malha e verificação da convergência dos resultados para todos os casos. Finalmente, para os campos de velocidades, temperaturas e números de Nusselt local e médio, são apresentados resultados para canal com degrau na entrada, canal curvo, canal inclinado com fontes discretas de calor e cavidade com um ou dois cilindros internos rotativos. Verifica-se que a transferência de calor é fortemente influenciada por: i) no caso de canal com degrau e canal curvo, pelas células de recirculação, separação e recolamento; ii) para o canal com fontes discretas, pelo número de fontes, distância entre as fontes e a inclinação do canal; iii) para cavidade com cilindro interno rotativo pelo sentido e velocidade de rotação.
Silva, Hugo Marcial Checo. "Elementos finitos em fluidos dominados pelo fenômeno de advecção: um método semi-Lagrangeano." Universidade do Estado do Rio de Janeiro, 2011. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=8640.
Full textOs escoamentos altamente convectivos representam um desafio na simulação pelo método de elementos finitos. Com a solução de elementos finitos de Galerkin para escoamentos incompressíveis, a matriz associada ao termo convectivo é não simétrica, e portanto, a propiedade de aproximação ótima é perdida. Na prática as soluções apresentam oscilações espúrias. Muitos métodos foram desenvolvidos com o fim de resolver esse problema. Neste trabalho apresentamos um método semi- Lagrangeano, o qual é implicitamente um método do tipo upwind, que portanto resolve o problema anterior, e comparamos o desempenho do método na solução das equações de convecção-difusão e Navier-Stokes incompressível com o Streamline Upwind Petrov Galerkin (SUPG), um método estabilizador de reconhecido desempenho. No SUPG, as funções de forma e de teste são tomadas em espaços diferentes, criando um efeito tal que as oscilações espúrias são drasticamente atenuadas. O método semi-Lagrangeano é um método de fator de integração, no qual o fator é um operador de convecção que se desloca para um sistema de coordenadas móveis no fluido, mas restabelece o sistema de coordenadas Lagrangeanas depois de cada passo de tempo. Isto prevê estabilidade e a possibilidade de utilizar passos de tempo maiores.Existem muitos trabalhos na literatura analisando métodos estabilizadores, mas não assim com o método semi-Lagrangeano, o que representa a contribuição principal deste trabalho: reconhecer as virtudes e as fraquezas do método semi-Lagrangeano em escoamentos dominados pelo fenômeno de convecção.
Convection dominated flows represent a challenge for finite element method simulation. Many methods have been developed to address this problem. In this work we compare the performance of two methods in the solution of the convectiondiffusion and Navier-Stokes equations on environmental flow problems: the Streamline Upwind Petrov Galerkin (SUPG) and the semi-Lagrangian method. In Galerkin finite element methods for fluid flows, the matrix associated with the convective term is non-symmetric, and as a result, the best approximation property is lost. In practice, solutions are often corrupted by espurious oscillations. In this work, we present a semi- Lagrangian method, which is implicitly an upwind method, therefore solving the spurious oscillations problem, and a comparison between this semi-Lagrangian method and the Streamline Upwind Petrov Galerkin (SUPG), an stabilizing method of recognized performance. The SUPG method takes the interpolation and the weighting functions in different spaces, creating an effect so that the spurious oscillations are drastically attenuated. The semi-Lagrangean method is a integration factor method, in which the factor is an operator that shifts to a coordinate system that moves with the fluid, but it resets the Lagrangian coordinate system after each time step. This provides stability and the possibility to take bigger time steps. There are many works in the literature analyzing stabilized methods, but they do not analyze the semi-Lagrangian method, which represents the main contribution of this work: to recognize the strengths and weaknesses of the semi-Lagrangian method in convection dominated flows.
Ghosh, Jayanto K. "Finite element simulation of non-Newtonian flow in the converging section of an extrusion die using a penalty function technique." Ohio : Ohio University, 1989. http://www.ohiolink.edu/etd/view.cgi?ohiou1172094913.
Full textPorfiri, Maurizio. "Analysis by Meshless Local Petrov-Galerkin Method of Material Discontinuities, Pull-in Instability in MEMS, Vibrations of Cracked Beams, and Finite Deformations of Rubberlike Materials." Diss., Virginia Tech, 2006. http://hdl.handle.net/10919/27420.
Full textPh. D.
Elfverson, Daniel. "Multiscale Methods and Uncertainty Quantification." Doctoral thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-262354.
Full textYin, Ping. "Sur une méthode numérique ondelettes / domaines fictifs lisses pour l'approximation de problèmes de Stefan." Thesis, Aix-Marseille 1, 2011. http://www.theses.fr/2011AIX10013/document.
Full textOur work is devoted to the definition, analysis and implementation of a new algorithms for numerical approximation of the solution of 2 dimensional Stefan problem. In this type of problem a parabolic partial differential equation defined on an openset Omega is coupled with another equation which controls the boundary gamma of the domain itself. The difficulties traditionally associated with this type of problems are: the particular formulation of equation on the boundary of domain, the approximation of the solution defined on general domain, the difficulties associated with the involvement of trace operation (approximation, conditioning), the difficulties associated with the regularity of domain. Addition, many situations of physical interest, for example,require approximations of high degree. Our work is based on aformulation of type level set for the equation on the domain, and aformulation of type fictitious domain (Omega) for the initialequation. The control of boundary conditions is carried out throughLagrange multipliers on boundary (Gamma), called control boundary, which is different with boundary (gamma) of the domain (omega). The approximation is done by a finite difference scheme for time derivative and the discretization by bi-dimensional wave letfor the initial equation and one-dimensional wave let for the Lagrange multipliers. The extension operators from omega to Omega are also constructed from multiresolution analysis on theinterval. We also obtain: a formulation for which the existence of solution is demonstrated, a convergent algorithm for which a global estimate error (on Omega) is established, interior error estimate on domain omega, overline omega subset estimates on the conditioning related to the trace operator, algorithms of smooth extension. Different numerical experiments in 1D or 2D are implemented. The work is organized as follows:The first chapter recalls theconstruction of multiresolution analysis, important properties of wavelet and numerical algorithms. The second chapter gives an outline of classical fictitious domain method, using Galerkin or Petrov-Galerkin method. We also describe the limitation of this method and point out the direction of our work.\par The third chapter presents a smooth fictitious domain method. It is coupled with Petrov-Galerkin wavelet method for elliptic equations. This section contains the theoretical analysis and numerical implementation to embody the advantages of this new method. The fourth chapter introduces a smooth extension technique. We apply it to elliptic problem with smooth fictitious domain method in 1D and 2D. The fifth chapter is the numerical simulation of the Stefan problem. The property of B-spline render us to exactly calculate the curvature on the moving boundary. We use two examples to test the efficiency of our new method. Then it is used to resolve the two-phase Stefan problem with Gibbs-Thomson boundary condition as an experimental case
GREFF, Isabelle. "Schemas boite : Etude theorique et numerique." Phd thesis, Université de Metz, 2003. http://tel.archives-ouvertes.fr/tel-00005922.
Full textWells, David Reese. "Stabilization of POD-ROMs." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/52960.
Full textPh. D.
Mollet, Christian [Verfasser], Ulrich [Gutachter] Trottenberg, Guido [Gutachter] Sweers, and Olaf [Gutachter] Steinbach. "Parabolic PDEs in Space-Time Formulations: Stability for Petrov-Galerkin Discretizations with B-Splines and Existence of Moments for Problems with Random Coefficients / Christian Mollet. Gutachter: Ulrich Trottenberg ; Guido Sweers ; Olaf Steinbach." Köln : Universitäts- und Stadtbibliothek Köln, 2016. http://d-nb.info/1110071027/34.
Full textONO, SHIZUCA. "Modelos aproximados para o calculo do transporte de particulas neutras em dutos." reponame:Repositório Institucional do IPEN, 2000. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10788.
Full textMade available in DSpace on 2014-10-09T14:07:20Z (GMT). No. of bitstreams: 1 06913.pdf: 2715369 bytes, checksum: 9d927e16226a25d1d362ba0ebc83502c (MD5)
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Ghadi, Fatth-Allah. "Résolution par la méthode des éléments finis des équations de Navier-Stokes en formulation (v-w)." Saint-Etienne, 1994. http://www.theses.fr/1994STET4010.
Full textBezier, Florence. "Problèmes de transport-diffusion par éléments finis." Compiègne, 1990. http://www.theses.fr/1990COMPD255.
Full textSeymen, Zahire. "Solving Optimal Control Time-dependent Diffusion-convection-reaction Equations By Space Time Discretizations." Phd thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615399/index.pdf.
Full textGhilani, Mustapha. "Simulation numérique de flammes planes stationnaires avec chimie complexe." Paris 11, 1987. http://www.theses.fr/1987PA112325.
Full textNadukandi, Prashanth. "Stabilized finite element methods for convection-diffusion-reaction, helmholtz and stokes problems." Doctoral thesis, Universitat Politècnica de Catalunya, 2011. http://hdl.handle.net/10803/109155.
Full textPresentamos tres nuevos metodos estabilizados de tipo Petrov- Galerkin basado en elementos finitos (FE) para los problemas de convecci6n-difusi6n- reacci6n (CDR), de Helmholtz y de Stokes, respectivamente. El trabajo comienza con un analisis a priori de un metodo de recuperaci6n de la consistencia de algunos metodos de estabilizaci6n que pertenecen al marco de Petrov-Galerkin. Hallamos que el uso de algunas de las practicas estandar (por ejemplo, la eoria de Matriz-M) para el diserio de metodos numericos esencialmente no oscilatorios no es apropiado cuando utilizamos los metodos de recu eraci6n de la consistencia. Por 10 tanto, con res ecto a la estabilizaci6n de conveccion, no preferimos tales metodos de recuperacion . A continuacion, presentamos el diser'io de un metodo de Petrov-Galerkin de alta-resolucion (HRPG) para el problema CDR. La estructura del metodo en 10 es identico al metodo CAU [doi: 10.1016/0045-7825(88)90108-9] excepto en la definicion de los parametros de estabilizacion. Esta estructura tambien se puede obtener a traves de la formulacion del calculo finito (FIC) [doi: 10.1 016/S0045- 7825(97)00119-9] usando una definicion adecuada de la longitud caracteristica. El prefijo de "alta-resolucion" se utiliza aqui en el sentido popularizado por Harten, es decir, tener una solucion con una precision de segundo orden en los regimenes suaves y ser esencialmente no oscilatoria en los regimenes no regulares. El diser'io en 10 se embarca en el problema de eludir el fenomeno de Gibbs observado en las proyecciones de tipo L2. A continuacion, estudiamos las condiciones de los parametros de estabilizacion para evitar las oscilaciones globales debido al ermino convectivo. Combinamos los dos resultados (una conjetura) para tratar el problema COR, cuya solucion numerica sufre de oscilaciones numericas del tipo global, Gibbs y dispersiva. Tambien presentamos una extension multidimensional del metodo HRPG utilizando los elementos finitos multi-lineales. fa. continuacion, proponemos un esquema compacto de orden superior (que incluye dos parametros) en mallas estructuradas para la ecuacion de Helmholtz. Haciendo igual ambos parametros, se recupera la interpolacion lineal del metodo de elementos finitos (FEM) de tipo Galerkin y el clasico metodo de diferencias finitas centradas. En 10 este esquema es identico al metodo AIM [doi: 10.1 016/0771 -050X(82)90002-X] y en 20 eligiendo el valor de 0,5 para ambos parametros, se recupera el esquema compacto de cuarto orden de Pade generalizada en [doi: 10.1 006/jcph.1 995.1134, doi: 10.1 016/S0045-7825(98)00023-1] (con el parametro V = 2). Seguimos [doi: 10.1 016/0045-7825(95)00890-X] para el analisis de este esquema y comparamos su rendimiento en las mallas uniformes con el de "FEM cuasi-estabilizado" (QSFEM) [doi: 10.1016/0045-7825 (95) 00890-X]. Presentamos expresiones genericas de los para metros que garantiza una precision dispersiva de sexto orden si ambos parametros son distintos y de cuarto orden en caso de ser iguales. En este ultimo caso, presentamos la expresion del parametro que minimiza el error maxima de fase relativa en 20. Tambien proponemos una formulacion de tipo Petrov-Galerkin ~ue recupera los esquemas antes mencionados en mallas estructuradas. Presentamos estudios de convergencia del error en la norma de tipo L2, la semi-norma de tipo H1 y la norma Euclidiana tipo I~ y mostramos que la perdida de estabilidad del operador de Helmholtz ("pollution effect") es incluso pequer'ia para grandes numeros de onda. Por ultimo, presentamos una coleccion de metodos FE estabilizado para el problema de Stokes desarrollados a raves del metodo FIC de primer orden y de segundo orden. Mostramos que varios metodos FE de estabilizacion existentes y conocidos como el metodo de penalizacion, el metodo de Galerkin de minimos cuadrados (GLS) [doi: 10.1016/0045-7825(86)90025-3], el metodo PGP (estabilizado a traves de la proyeccion del gradiente de presion) [doi: 10.1 016/S0045-7825(96)01154-1] Y el metodo OSS (estabilizado a traves de las sub-escalas ortogonales) [doi: 10.1016/S0045-7825(00)00254-1] se recuperan del marco general de FIC. Oesarrollamos una nueva familia de metodos FE, en adelante denominado como PLS (estabilizado a traves del Laplaciano de presion) con las formas no lineales y consistentes de los parametros de estabilizacion. Una caracteristica distintiva de la familia de los metodos PLS es que son no lineales y basados en el residuo, es decir, los terminos de estabilizacion dependera de los residuos discretos del momento y/o las ecuaciones de incompresibilidad. Oiscutimos las ventajas y desventajas de estas tecnicas de estabilizaci6n y presentamos varios ejemplos de aplicacion
Wakrim, Mohamed. "Analyse numérique des équations de Navier-Stokes incompressibles et simulations dans des domaines axisymétriques." Saint-Etienne, 1993. http://www.theses.fr/1993STET4015.
Full textSlemp, Wesley Campbell Hop. "Integrated Sinc Method for Composite and Hybrid Structures." Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/77111.
Full textPh. D.
Bertic, Yves. "Modélisation et caractérisation de capteurs mécano-optiques en optique intégrée à base d'INP." Saint-Etienne, 1997. http://www.theses.fr/1997STET4013.
Full text