To see the other types of publications on this topic, follow the link: Phage interactions.

Journal articles on the topic 'Phage interactions'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Phage interactions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Stone, Edel, Katrina Campbell, Irene Grant, and Olivia McAuliffe. "Understanding and Exploiting Phage–Host Interactions." Viruses 11, no. 6 (2019): 567. http://dx.doi.org/10.3390/v11060567.

Full text
Abstract:
Initially described a century ago by William Twort and Felix d’Herelle, bacteriophages are bacterial viruses found ubiquitously in nature, located wherever their host cells are present. Translated literally, bacteriophage (phage) means ‘bacteria eater’. Phages interact and infect specific bacteria while not affecting other bacteria or cell lines of other organisms. Due to the specificity of these phage–host interactions, the relationship between phages and their host cells has been the topic of much research. The advances in phage biology research have led to the exploitation of these phage–ho
APA, Harvard, Vancouver, ISO, and other styles
2

Sacher, Jessica C., Muhammad Afzal Javed, Clay S. Crippen, et al. "Reduced Infection Efficiency of Phage NCTC 12673 on Non-Motile Campylobacter jejuni Strains Is Related to Oxidative Stress." Viruses 13, no. 10 (2021): 1955. http://dx.doi.org/10.3390/v13101955.

Full text
Abstract:
Campylobacter jejuni is a Gram-negative foodborne pathogen that causes diarrheal disease and is associated with severe post-infectious sequelae. Bacteriophages (phages) are a possible means of reducing Campylobacter colonization in poultry to prevent downstream human infections. However, the factors influencing phage-host interactions must be better understood before this strategy can be predictably employed. Most studies have focused on Campylobacter phage binding to the host surface, with all phages classified as either capsule- or flagella-specific. Here we describe the characterization of
APA, Harvard, Vancouver, ISO, and other styles
3

Blasche, Sonja, Stefan Wuchty, Seesandra V. Rajagopala, and Peter Uetz. "The Protein Interaction Network of Bacteriophage Lambda with Its Host, Escherichia coli." Journal of Virology 87, no. 23 (2013): 12745–55. http://dx.doi.org/10.1128/jvi.02495-13.

Full text
Abstract:
Although most of the 73 open reading frames (ORFs) in bacteriophage λ have been investigated intensively, the function of many genes in host-phage interactions remains poorly understood. Using yeast two-hybrid screens of all lambda ORFs for interactions with its hostEscherichia coli, we determined a raw data set of 631 host-phage interactions resulting in a set of 62 high-confidence interactions after multiple rounds of retesting. These links suggest novel regulatory interactions between theE. colitranscriptional network and lambda proteins. Targeted host proteins and genes required for lambda
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Mingyue, Yanan Zhou, Xinyuan Cui, and Lifeng Zhu. "The Potential of Co-Evolution and Interactions of Gut Bacteria–Phages in Bamboo-Eating Pandas: Insights from Dietary Preference-Based Metagenomic Analysis." Microorganisms 12, no. 4 (2024): 713. http://dx.doi.org/10.3390/microorganisms12040713.

Full text
Abstract:
Bacteria and phages are two of the most abundant biological entities in the gut microbiome, and diet and host phylogeny are two of the most critical factors influencing the gut microbiome. A stable gut bacterial community plays a pivotal role in the host’s physiological development and immune health. A phage is a virus that directly infects bacteria, and phages’ close associations and interactions with bacteria are essential for maintaining the stability of the gut bacterial community and the entire microbial ecosystem. Here, we utilized 99 published metagenomic datasets from 38 mammalian spec
APA, Harvard, Vancouver, ISO, and other styles
5

Kaźmierczak, Zuzanna, Joanna Majewska, Magdalena Milczarek, Barbara Owczarek, and Krystyna Dąbrowska. "Circulation of Fluorescently Labelled Phage in a Murine Model." Viruses 13, no. 2 (2021): 297. http://dx.doi.org/10.3390/v13020297.

Full text
Abstract:
Interactions between bacteriophages and mammals strongly affect possible applications of bacteriophages. This has created a need for tools that facilitate studies of phage circulation and deposition in tissues. Here, we propose red fluorescent protein (RFP)-labelled E. coli lytic phages as a new tool for the investigation of phage interactions with cells and tissues. The interaction of RFP-labelled phages with living eukaryotic cells (macrophages) was visualized after 20 min of co-incubation. RFP-labeled phages were applied in a murine model of phage circulation in vivo. Phages administered by
APA, Harvard, Vancouver, ISO, and other styles
6

Dicks, Leon M. T., and Wian Vermeulen. "Bacteriophage–Host Interactions and the Therapeutic Potential of Bacteriophages." Viruses 16, no. 3 (2024): 478. http://dx.doi.org/10.3390/v16030478.

Full text
Abstract:
Healthcare faces a major problem with the increased emergence of antimicrobial resistance due to over-prescribing antibiotics. Bacteriophages may provide a solution to the treatment of bacterial infections given their specificity. Enzymes such as endolysins, exolysins, endopeptidases, endosialidases, and depolymerases produced by phages interact with bacterial surfaces, cell wall components, and exopolysaccharides, and may even destroy biofilms. Enzymatic cleavage of the host cell envelope components exposes specific receptors required for phage adhesion. Gram-positive bacteria are susceptible
APA, Harvard, Vancouver, ISO, and other styles
7

Dunne, Matthew, Mario Hupfeld, Jochen Klumpp, and Martin Loessner. "Molecular Basis of Bacterial Host Interactions by Gram-Positive Targeting Bacteriophages." Viruses 10, no. 8 (2018): 397. http://dx.doi.org/10.3390/v10080397.

Full text
Abstract:
The inherent ability of bacteriophages (phages) to infect specific bacterial hosts makes them ideal candidates to develop into antimicrobial agents for pathogen-specific remediation in food processing, biotechnology, and medicine (e.g., phage therapy). Conversely, phage contaminations of fermentation processes are a major concern to dairy and bioprocessing industries. The first stage of any successful phage infection is adsorption to a bacterial host cell, mediated by receptor-binding proteins (RBPs). As the first point of contact, the binding specificity of phage RBPs is the primary determina
APA, Harvard, Vancouver, ISO, and other styles
8

Tan, Demeng, Lone Gram, and Mathias Middelboe. "Vibriophages and Their Interactions with the Fish Pathogen Vibrio anguillarum." Applied and Environmental Microbiology 80, no. 10 (2014): 3128–40. http://dx.doi.org/10.1128/aem.03544-13.

Full text
Abstract:
ABSTRACTVibrio anguillarumis an important pathogen in aquaculture, responsible for the disease vibriosis in many fish and invertebrate species. Disease control by antibiotics is a concern due to potential development and spread of antibiotic resistance. The use of bacteriophages to control the pathogen may offer a non-antibiotic-based approach to reduce vibriosis. A detailed understanding of the phage-host interaction is needed to evaluate the potential of phages to control the pathogen. In this study, we examined the diversity and interactions of 11 vibriophages, 24V. anguillarumstrains, and
APA, Harvard, Vancouver, ISO, and other styles
9

Mulla, Yuval, Janina Müller, Denny Trimcev, and Tobias Bollenbach. "Extreme diversity of phage amplification rates and phage–antibiotic interactions revealed by PHORCE." PLOS Biology 23, no. 4 (2025): e3003065. https://doi.org/10.1371/journal.pbio.3003065.

Full text
Abstract:
Growth rate plays a fundamental role in microbiology and serves as an important proxy for fitness in evolution. While high-throughput measurements of bacterial growth rates are easily performed in any microbiology laboratory, similar methods are lacking for bacteriophages. This gap hinders systematic comparisons of important phage phenotypes, such as their amplification rate in bacterial populations and their bactericidal effect, across different phages and environmental conditions. Here, we show that the amplification rate of lytic phages can be quantified by analyzing bacterial population gr
APA, Harvard, Vancouver, ISO, and other styles
10

Deveau, Hélène, Marie-Rose Van Calsteren, and Sylvain Moineau. "Effect of Exopolysaccharides on Phage-Host Interactions in Lactococcus lactis." Applied and Environmental Microbiology 68, no. 9 (2002): 4364–69. http://dx.doi.org/10.1128/aem.68.9.4364-4369.2002.

Full text
Abstract:
ABSTRACT In this study, we report that Lactococcus lactis strains producing exopolysaccharides (EPS) are sensitive to virulent phages. Eight distinct lytic phages (Q61 to Q68) specifically infecting Eps+ strains were isolated in 47 buttermilk samples obtained from 13 North American factories. The eight phages were classified within the 936 species by the multiplex PCR method, indicating that these phages are not fundamentally distinct from those infecting Eps− L. lactis strains. The host range of these phages was determined with 19 Lactococcus strains, including 7 Eps+ and 12 Eps− cultures. Th
APA, Harvard, Vancouver, ISO, and other styles
11

Loessner, Holger, Insea Schlattmeier, Marie Anders-Maurer, et al. "Kinetic Fingerprinting Links Bacteria-Phage Interactions with Emergent Dynamics: Rapid Depletion of Klebsiella pneumoniae Indicates Phage Synergy." Antibiotics 9, no. 7 (2020): 408. http://dx.doi.org/10.3390/antibiotics9070408.

Full text
Abstract:
The specific temporal evolution of bacterial and phage population sizes, in particular bacterial depletion and the emergence of a resistant bacterial population, can be seen as a kinetic fingerprint that depends on the manifold interactions of the specific phage–host pair during the course of infection. We have elaborated such a kinetic fingerprint for a human urinary tract Klebsiella pneumoniae isolate and its phage vB_KpnP_Lessing by a modeling approach based on data from in vitro co-culture. We found a faster depletion of the initially sensitive bacterial population than expected from simpl
APA, Harvard, Vancouver, ISO, and other styles
12

WANG, WENDI. "DYNAMICS OF BACTERIA-PHAGE INTERACTIONS WITH IMMUNE RESPONSE IN A CHEMOSTAT." Journal of Biological Systems 25, no. 04 (2017): 697–713. http://dx.doi.org/10.1142/s0218339017400010.

Full text
Abstract:
A mathematical model of bacteria-phage interaction in the chemostat is formulated, which incorporates the host immune response with an aim to mimic phage therapy in vivo. It is shown that the host immune response induces the backward bifurcation. Thus, there exists the bistability of phage-free equilibrium with the phage-infection equilibrium. More importantly, it is found that the model exhibits the coexistence of a stable phage-infection equilibrium with a stable periodic solution. The crucial implication of these phenomena is that phage infection fails both from the smaller dose of initial
APA, Harvard, Vancouver, ISO, and other styles
13

Kraus, Samuel, Megan L. Fletcher, Urszula Łapińska, et al. "Phage-induced efflux down-regulation boosts antibiotic efficacy." PLOS Pathogens 20, no. 6 (2024): e1012361. http://dx.doi.org/10.1371/journal.ppat.1012361.

Full text
Abstract:
The interactions between a virus and its host vary in space and time and are affected by the presence of molecules that alter the physiology of either the host or the virus. Determining the molecular mechanisms at the basis of these interactions is paramount for predicting the fate of bacterial and phage populations and for designing rational phage-antibiotic therapies. We study the interactions between stationary phase Burkholderia thailandensis and the phage ΦBp-AMP1. Although heterogeneous genetic resistance to phage rapidly emerges in B. thailandensis, the presence of phage enhances the ef
APA, Harvard, Vancouver, ISO, and other styles
14

Romero, Dennis A., Damian Magill, Anne Millen, Philippe Horvath, and Christophe Fremaux. "Dairy lactococcal and streptococcal phage–host interactions: an industrial perspective in an evolving phage landscape." FEMS Microbiology Reviews 44, no. 6 (2020): 909–32. http://dx.doi.org/10.1093/femsre/fuaa048.

Full text
Abstract:
ABSTRACT Almost a century has elapsed since the discovery of bacteriophages (phages), and 85 years have passed since the emergence of evidence that phages can infect starter cultures, thereby impacting dairy fermentations. Soon afterward, research efforts were undertaken to investigate phage interactions regarding starter strains. Investigations into phage biology and morphology and phage–host relationships have been aimed at mitigating the negative impact phages have on the fermented dairy industry. From the viewpoint of a supplier of dairy starter cultures, this review examines the compositi
APA, Harvard, Vancouver, ISO, and other styles
15

Duplessis, Martin, Céline M. Lévesque, and Sylvain Moineau. "Characterization of Streptococcus thermophilus Host Range Phage Mutants." Applied and Environmental Microbiology 72, no. 4 (2006): 3036–41. http://dx.doi.org/10.1128/aem.72.4.3036-3041.2006.

Full text
Abstract:
ABSTRACT To investigate phage-host interactions in Streptococcus thermophilus, a phage-resistant derivative (SMQ-301R) was obtained by challenging a Tn917 library of phage-sensitive strain S. thermophilus SMQ-301 with virulent phage DT1. Mutants of phages DT1 and MD2 capable of infecting SMQ-301 and SMQ-301R were isolated at a frequency of 10−6. Four host range phage mutants were analyzed further and compared to the two wild-type phages. Altogether, three genes (orf15, orf17, and orf18) contained point mutations leading to amino acid substitutions and were responsible for the expanded host ran
APA, Harvard, Vancouver, ISO, and other styles
16

Stachurska, Xymena, Krzysztof Cendrowski, Kamila Pachnowska, Agnieszka Piegat, Ewa Mijowska, and Paweł Nawrotek. "Nanoparticles Influence Lytic Phage T4-like Performance In Vitro." International Journal of Molecular Sciences 23, no. 13 (2022): 7179. http://dx.doi.org/10.3390/ijms23137179.

Full text
Abstract:
Little is known about interactions of non-filamentous, complex-structured lytic phages and free, non-ordered nanoparticles. Emerging questions about their possible bio-sanitization co-applications or predictions of possible contact effects in the environment require testing. Therefore, we revealed the influence of various nanoparticles (NPs; SiO2, TiO2-SiO2, TiO2, Fe3O4, Fe3O4-SiO2 and SiO2-Fe3O4-TiO2) on a T4-like phage. In great detail, we investigated phage plaque-forming ability, phage lytic performance, phage progeny burst times and titers by the eclipse phase determinations. Additionally
APA, Harvard, Vancouver, ISO, and other styles
17

Tan, Demeng, Amalie Dahl, and Mathias Middelboe. "Vibriophages Differentially Influence Biofilm Formation by Vibrio anguillarum Strains." Applied and Environmental Microbiology 81, no. 13 (2015): 4489–97. http://dx.doi.org/10.1128/aem.00518-15.

Full text
Abstract:
ABSTRACTVibrio anguillarumis an important pathogen in marine aquaculture, responsible for vibriosis. Bacteriophages can potentially be used to control bacterial pathogens; however, successful application of phages requires a detailed understanding of phage-host interactions under both free-living and surface-associated growth conditions. In this study, we exploredin vitrophage-host interactions in two different strains ofV. anguillarum(BA35 and PF430-3) during growth in microcolonies, biofilms, and free-living cells. Two vibriophages, ΦH20 (Siphoviridae) and KVP40 (Myoviridae), had completely
APA, Harvard, Vancouver, ISO, and other styles
18

Tan, Demeng, Yiyuan Zhang, Mengjun Cheng, et al. "Characterization of Klebsiella pneumoniae ST11 Isolates and Their Interactions with Lytic Phages." Viruses 11, no. 11 (2019): 1080. http://dx.doi.org/10.3390/v11111080.

Full text
Abstract:
The bacterial pathogen Klebsiella pneumoniae causes urinary tract infections in immunocompromised patients. Generally, the overuse of antibiotics contributes to the potential development and the spread of antibiotic resistance. In fact, certain strains of K. pneumoniae are becoming increasingly resistant to antibiotics, making infection by these strains more difficult to treat. The use of bacteriophages to control pathogens may offer a non-antibiotic-based approach to treat multidrug-resistant (MDR) infections. However, a detailed understanding of phage–host interactions is crucial in order to
APA, Harvard, Vancouver, ISO, and other styles
19

Li, Na, Yigang Zeng, Bijie Hu, et al. "Interactions between the Prophage 919TP and Its Vibrio cholerae Host: Implications of gmd Mutation for Phage Resistance, Cell Auto-Aggregation, and Motility." Viruses 13, no. 12 (2021): 2342. http://dx.doi.org/10.3390/v13122342.

Full text
Abstract:
Prophage 919TP is widely distributed among Vibrio cholera and is induced to produce free φ919TP phage particles. However, the interactions between prophage φ919TP, the induced phage particle, and its host remain unknown. In particular, phage resistance mechanisms and potential fitness trade-offs, resulting from phage resistance, are unresolved. In this study, we examined a prophage 919TP-deleted variant of V. cholerae and its interaction with a modified lytic variant of the induced prophage (φ919TP cI-). Specifically, the phage-resistant mutant was isolated by challenging a prophage-deleted va
APA, Harvard, Vancouver, ISO, and other styles
20

Zhang, Bingyan, Jiayi Xu, Xiaoqi He, Yigang Tong, and Huiying Ren. "Interactions between Jumbo Phage SA1 and Staphylococcus: A Global Transcriptomic Analysis." Microorganisms 10, no. 8 (2022): 1590. http://dx.doi.org/10.3390/microorganisms10081590.

Full text
Abstract:
Staphylococcus aureus (S. aureus) is an important zoonotic pathogen that poses a serious health concern to humans and cattle worldwide. Although it has been proven that lytic phages may successfully kill S. aureus, the interaction between the host and the phage has yet to be thoroughly investigated, which will likely limit the clinical application of phage. Here, RNA sequencing (RNA-seq) was used to examine the transcriptomics of jumbo phage SA1 and Staphylococcus JTB1-3 during a high multiplicity of infection (MOI) and RT-qPCR was used to confirm the results. The RNA-seq analysis revealed tha
APA, Harvard, Vancouver, ISO, and other styles
21

Jdeed, Ghadeer, Bogdana Kravchuk, and Nina V. Tikunova. "Factors Affecting Phage–Bacteria Coevolution Dynamics." Viruses 17, no. 2 (2025): 235. https://doi.org/10.3390/v17020235.

Full text
Abstract:
Bacteriophages (phages) have coevolved with their bacterial hosts for billions of years. With the rise of antibiotic resistance, the significance of using phages in therapy is increasing. Investigating the dynamics of phage evolution can provide valuable insights for pre-adapting phages to more challenging clones of their hosts that may arise during treatment. Two primary models describe interactions in phage–bacteria systems: arms race dynamics and fluctuating selection dynamics. Numerous factors influence which dynamics dominate the interactions between a phage and its host. These dynamics,
APA, Harvard, Vancouver, ISO, and other styles
22

Marsh, P., and E. M. H. Wellington. "Phage-host interactions in soil." FEMS Microbiology Ecology 15, no. 1-2 (1994): 99–107. http://dx.doi.org/10.1111/j.1574-6941.1994.tb00234.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Cenens, William, Angella Makumi, Mehari Tesfazgi Mebrhatu, Rob Lavigne, and Abram Aertsen. "Phage–host interactions during pseudolysogeny." Bacteriophage 3, no. 1 (2013): e25029. http://dx.doi.org/10.4161/bact.25029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Supina, Brittany S. I., and Jonathan J. Dennis. "The Current Landscape of Phage–Antibiotic Synergistic (PAS) Interactions." Antibiotics 14, no. 6 (2025): 545. https://doi.org/10.3390/antibiotics14060545.

Full text
Abstract:
Background: In response to the urgent need for new antibiotics targeting high-priority MDR pathogens, bacteriophages (phages) have emerged as promising non-traditional antimicrobial agents. Phages are viruses that infect bacteria and induce cell lysis through mechanisms distinct from those of antibiotics, making them largely unaffected by most antibiotic resistance mechanisms. Importantly, phages have been shown to work cooperatively with an array of clinically useful antibiotics, and phage–antibiotic synergy (PAS) represents a sophisticated strategy that may improve treatment outcomes. Howeve
APA, Harvard, Vancouver, ISO, and other styles
25

Mi, Yanze, Yile He, Jinhui Mi, et al. "Genetic and Phenotypic Analysis of Phage-Resistant Mutant Fitness Triggered by Phage–Host Interactions." International Journal of Molecular Sciences 24, no. 21 (2023): 15594. http://dx.doi.org/10.3390/ijms242115594.

Full text
Abstract:
The emergence of phage-resistant bacterial strains is one of the biggest challenges for phage therapy. However, the emerging phage-resistant bacteria are often accompanied by adaptive trade-offs, which supports a therapeutic strategy called “phage steering”. The key to phage steering is to guide the bacterial population toward an evolutionary direction that is favorable for treatment. Thus, it is important to systematically investigate the impacts of phages targeting different bacterial receptors on the fitness of the bacterial population. Herein, we employed 20 different phages to impose stro
APA, Harvard, Vancouver, ISO, and other styles
26

Attai, Hedieh, and Pamela J. B. Brown. "Isolation and Characterization T4- and T7-Like Phages that Infect the Bacterial Plant Pathogen Agrobacterium tumefaciens." Viruses 11, no. 6 (2019): 528. http://dx.doi.org/10.3390/v11060528.

Full text
Abstract:
In the rhizosphere, bacteria–phage interactions are likely to have important impacts on the ecology of microbial communities and microbe–plant interactions. To better understand the dynamics of Agrobacteria–phage interactions, we have isolated diverse bacteriophages which infect the bacterial plant pathogen, Agrobacterium tumefaciens. Here, we complete the genomic characterization of Agrobacterium tumefaciens phages Atu_ph04 and Atu_ph08. Atu_ph04—a T4-like phage belonging to the Myoviridae family—was isolated from waste water and has a 143,349 bp genome that encodes 223 predicted open reading
APA, Harvard, Vancouver, ISO, and other styles
27

Esteves, Nathaniel C., Danielle N. Bigham, and Birgit E. Scharf. "Phages on filaments: A genetic screen elucidates the complex interactions between Salmonella enterica flagellin and bacteriophage Chi." PLOS Pathogens 19, no. 8 (2023): e1011537. http://dx.doi.org/10.1371/journal.ppat.1011537.

Full text
Abstract:
The bacterial flagellum is a rotary motor organelle and important virulence factor that propels motile pathogenic bacteria, such as Salmonella enterica, through their surroundings. Bacteriophages, or phages, are viruses that solely infect bacteria. As such, phages have myriad applications in the healthcare field, including phage therapy against antibiotic-resistant bacterial pathogens. Bacteriophage χ (Chi) is a flagellum-dependent (flagellotropic) bacteriophage, which begins its infection cycle by attaching its long tail fiber to the S. enterica flagellar filament as its primary receptor. The
APA, Harvard, Vancouver, ISO, and other styles
28

Maffei, Enea, Aisylu Shaidullina, Marco Burkolter, et al. "Systematic exploration of Escherichia coli phage–host interactions with the BASEL phage collection." PLOS Biology 19, no. 11 (2021): e3001424. http://dx.doi.org/10.1371/journal.pbio.3001424.

Full text
Abstract:
Bacteriophages, the viruses infecting bacteria, hold great potential for the treatment of multidrug-resistant bacterial infections and other applications due to their unparalleled diversity and recent breakthroughs in their genetic engineering. However, fundamental knowledge of the molecular mechanisms underlying phage–host interactions is mostly confined to a few traditional model systems and did not keep pace with the recent massive expansion of the field. The true potential of molecular biology encoded by these viruses has therefore remained largely untapped, and phages for therapy or other
APA, Harvard, Vancouver, ISO, and other styles
29

Schiettekatte, Olivier, Elsa Beurrier, Luisa De Sordi, and Anne Chevallereau. "“French Phage Network” Annual Conference—Seventh Meeting Report." Viruses 15, no. 2 (2023): 495. http://dx.doi.org/10.3390/v15020495.

Full text
Abstract:
The French Phage Network (Phages.fr) has continuously grown since its foundation, eight years ago. The annual conference, held at the Institut Pasteur in Paris, attracted 164 participants from the 11th to the 13th of October 2022. Researchers from academic laboratories, hospitals and private companies shared their ongoing projects and breakthroughs in the very institute where Felix d’Hérelle developed phage therapy over a century ago. The conference was divided into four thematic sessions, each opened by a keynote lecture: “Interaction between phages, mobile genetic elements and bacterial immu
APA, Harvard, Vancouver, ISO, and other styles
30

Clokie, Martha, and Thomas Sicheritz-Ponte´n. "Lungs, Liposomes, Libraries, and Likely Interactions Between Phages and Eukaryotic Cells." PHAGE 4, no. 1 (2023): 1–2. http://dx.doi.org/10.1089/phage.2023.29041.editorial.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Karlsson, Fredrik, Carl A. K. Borrebaeck, Nina Nilsson, and Ann-Christin Malmborg-Hager. "The Mechanism of Bacterial Infection by Filamentous Phages Involves Molecular Interactions between TolA and Phage Protein 3 Domains." Journal of Bacteriology 185, no. 8 (2003): 2628–34. http://dx.doi.org/10.1128/jb.185.8.2628-2634.2003.

Full text
Abstract:
ABSTRACT The early events in filamentous bacteriophage infection of gram-negative bacteria are mediated by the gene 3 protein (g3p) of the virus. This protein has a sophisticated domain organization consisting of two N-terminal domains and one C-terminal domain, separated by flexible linkers. The molecular interactions between these domains and the known bacterial coreceptor protein (TolA) were studied using a biosensor technique, and we report here on interactions of the viral coat protein with TolA, as well as on interactions between the TolA molecules. We detected an interaction between the
APA, Harvard, Vancouver, ISO, and other styles
32

Taslem Mourosi, Jarin, Ayobami Awe, Wenzheng Guo, et al. "Understanding Bacteriophage Tail Fiber Interaction with Host Surface Receptor: The Key “Blueprint” for Reprogramming Phage Host Range." International Journal of Molecular Sciences 23, no. 20 (2022): 12146. http://dx.doi.org/10.3390/ijms232012146.

Full text
Abstract:
Bacteriophages (phages), as natural antibacterial agents, are being rediscovered because of the growing threat of multi- and pan-drug-resistant bacterial pathogens globally. However, with an estimated 1031 phages on the planet, finding the right phage to recognize a specific bacterial host is like looking for a needle in a trillion haystacks. The host range of a phage is primarily determined by phage tail fibers (or spikes), which initially mediate reversible and specific recognition and adsorption by susceptible bacteria. Recent significant advances at single-molecule and atomic levels have b
APA, Harvard, Vancouver, ISO, and other styles
33

Mäntynen, Sari, Elina Laanto, Hanna M. Oksanen, Minna M. Poranen, and Samuel L. Díaz-Muñoz. "Black box of phage–bacterium interactions: exploring alternative phage infection strategies." Open Biology 11, no. 9 (2021): 210188. http://dx.doi.org/10.1098/rsob.210188.

Full text
Abstract:
The canonical lytic–lysogenic binary has been challenged in recent years, as more evidence has emerged on alternative bacteriophage infection strategies. These infection modes are little studied, and yet they appear to be more abundant and ubiquitous in nature than previously recognized, and can play a significant role in the ecology and evolution of their bacterial hosts. In this review, we discuss the extent, causes and consequences of alternative phage lifestyles, and clarify conceptual and terminological confusion to facilitate research progress. We propose distinct definitions for the ter
APA, Harvard, Vancouver, ISO, and other styles
34

Cairns, Johannes, Sebastián Coloma, Kaarina Sivonen, and Teppo Hiltunen. "Evolving interactions between diazotrophic cyanobacterium and phage mediate nitrogen release and host competitive ability." Royal Society Open Science 3, no. 12 (2016): 160839. http://dx.doi.org/10.1098/rsos.160839.

Full text
Abstract:
Interactions between nitrogen-fixing (i.e. diazotrophic) cyanobacteria and their viruses, cyanophages, can have large-scale ecosystem effects. These effects are mediated by temporal alterations in nutrient availability in aquatic systems owing to the release of nitrogen and carbon sources from cells lysed by phages, as well as by ecologically important changes in the diversity and fitness of cyanobacterial populations that evolve in the presence of phages. However, ecological and evolutionary feedbacks between phages and nitrogen-fixing cyanobacteria are still relative poorly understood. Here,
APA, Harvard, Vancouver, ISO, and other styles
35

Mohammed, Manal, and Beata Orzechowska. "Characterisation of Phage Susceptibility Variation in Salmonellaenterica Serovar Typhimurium DT104 and DT104b." Microorganisms 9, no. 4 (2021): 865. http://dx.doi.org/10.3390/microorganisms9040865.

Full text
Abstract:
The surge in mortality and morbidity rates caused by multidrug-resistant (MDR) bacteria prompted a renewal of interest in bacteriophages (phages) as clinical therapeutics and natural biocontrol agents. Nevertheless, bacteria and phages are continually under the pressure of the evolutionary phage–host arms race for survival, which is mediated by co-evolving resistance mechanisms. In Anderson phage typing scheme of Salmonella Typhimurium, the epidemiologically related definitive phage types, DT104 and DT104b, display significantly different phage susceptibility profiles. This study aimed to char
APA, Harvard, Vancouver, ISO, and other styles
36

Nilsson, Emelie, Oliver W. Bayfield, Daniel Lundin, Alfred A. Antson, and Karin Holmfeldt. "Diversity and Host Interactions among Virulent and Temperate Baltic Sea Flavobacterium Phages." Viruses 12, no. 2 (2020): 158. http://dx.doi.org/10.3390/v12020158.

Full text
Abstract:
Viruses in aquatic environments play a key role in microbial population dynamics and nutrient cycling. In particular, bacteria of the phylum Bacteriodetes are known to participate in recycling algal blooms. Studies of phage–host interactions involving this phylum are hence important to understand the processes shaping bacterial and viral communities in the ocean as well as nutrient cycling. In this study, we isolated and sequenced three strains of flavobacteria—LMO6, LMO9, LMO8—and 38 virulent phages infecting them. These phages represent 15 species, occupying three novel genera. Additionally,
APA, Harvard, Vancouver, ISO, and other styles
37

Carroll-Portillo, Amanda, and Henry C. Lin. "Exploring Mucin as Adjunct to Phage Therapy." Microorganisms 9, no. 3 (2021): 509. http://dx.doi.org/10.3390/microorganisms9030509.

Full text
Abstract:
Conventional phage therapy using bacteriophages (phages) for specific targeting of pathogenic bacteria is not always useful as a therapeutic for gastrointestinal (GI) dysfunction. Complex dysbiotic GI disorders such as small intestinal bowel overgrowth (SIBO), ulcerative colitis (UC), or Crohn’s disease (CD) are even more difficult to treat as these conditions have shifts in multiple populations of bacteria within the microbiome. Such community-level structural changes in the gut microbiota may require an alternative to conventional phage therapy such as fecal virome transfer or a phage cockta
APA, Harvard, Vancouver, ISO, and other styles
38

Beggs, Grace A., and Bonnie L. Bassler. "Phage small proteins play large roles in phage–bacterial interactions." Current Opinion in Microbiology 80 (August 2024): 102519. http://dx.doi.org/10.1016/j.mib.2024.102519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Koonjan, Shazeeda, Carlos Cardoso Palacios, and Anders S. Nilsson. "Population Dynamics of a Two Phages–One Host Infection System Using Escherichia coli Strain ECOR57 and Phages vB_EcoP_SU10 and vB_EcoD_SU57." Pharmaceuticals 15, no. 3 (2022): 268. http://dx.doi.org/10.3390/ph15030268.

Full text
Abstract:
In this study, we looked at the population dynamics of a two phages-one host system using phages vB_EcoP_SU10 (SU10) and vB_EcoD_SU57 (SU57) and the bacteria Escherichia coli, strain ECOR57. Phage-specific growth curves were observed where infections by SU10 resulted in a moderate production of phages and infections by SU57 resulted in a fast and extensive production of phage progeny. Sequentially adding SU10 followed by SU57 did not produce a significant change in growth rates, whereas adding SU57 followed by SU10 resulted in a decrease in SU10 titer The efficiency of the plating assays showe
APA, Harvard, Vancouver, ISO, and other styles
40

Molina, Felipe, Manuel Menor-Flores, Lucía Fernández, Miguel A. Vega-Rodríguez, and Pilar García. "Systematic analysis of putative phage-phage interactions on minimum-sized phage cocktails." Scientific Reports 12, no. 1 (2022). http://dx.doi.org/10.1038/s41598-022-06422-1.

Full text
Abstract:
AbstractThe application of bacteriophages as antibacterial agents has many benefits in the “post-antibiotic age”. To increase the number of successfully targeted bacterial strains, phage cocktails, instead of a single phage, are commonly formulated. Nevertheless, there is currently no consensus pipeline for phage cocktail development. Thus, although large cocktails increase the spectrum of activity, they could produce side effects such as the mobilization of virulence or antibiotic resistance genes. On the other hand, coinfection (simultaneous infection of one host cell by several phages) migh
APA, Harvard, Vancouver, ISO, and other styles
41

de Jonge, Patrick A., Dieuwke J. C. Smit Sibinga, Oliver A. Boright, et al. "Development of Styrene Maleic Acid Lipid Particles as a Tool for Studies of Phage-Host Interactions." Journal of Virology 94, no. 23 (2020). http://dx.doi.org/10.1128/jvi.01559-20.

Full text
Abstract:
ABSTRACT The infection of a bacterium by a phage starts with attachment to a receptor molecule on the host cell surface by the phage. Since receptor-phage interactions are crucial to successful infections, they are major determinants of phage host range and, by extension, of the broader effects that phages have on bacterial communities. Many receptor molecules, particularly membrane proteins, are difficult to isolate because their stability is supported by their native membrane environments. Styrene maleic acid lipid particles (SMALPs), a recent advance in membrane protein studies, are the res
APA, Harvard, Vancouver, ISO, and other styles
42

Lucia-Sanz, Adriana, Shengyun Peng, Joey Leung, Animesh Gupta, Justin R. Meyer, and Joshua S. Weitz. "Inferring strain-level mutational drivers of phage-bacteria interaction phenotypes arising during coevolutionary dynamics." Virus Evolution, November 29, 2024. http://dx.doi.org/10.1093/ve/veae104.

Full text
Abstract:
Abstract The enormous diversity of bacteriophages and their bacterial hosts presents a significant challenge to predict which phages infect a focal set of bacteria. Infection is largely determined by complementary—and largely uncharacterized—genetics of adsorption, injection, cell take-over and lysis. Here we present a machine learning approach to predict phage-bacteria interactions trained on genome sequences of and phenotypic interactions amongst 51 Escherichia coli strains and 45 phage λ strains that coevolved in laboratory conditions for 37 days. Leveraging multiple inference strategies an
APA, Harvard, Vancouver, ISO, and other styles
43

Guliy, Olga I., and Stella S. Evstigneeva. "Bacteria- and Phage-Derived Proteins in Phage Infection." Frontiers in Bioscience-Landmark 30, no. 2 (2025). https://doi.org/10.31083/fbl24478.

Full text
Abstract:
Phages have exerted severe evolutionary pressure on prokaryotes over billions of years, resulting in major rearrangements. Without every enzyme involved in the phage–bacterium interaction being examined; bacteriophages cannot be used in practical applications. Numerous studies conducted in the past few years have uncovered a huge variety of bacterial antiphage defense systems; nevertheless, the mechanisms of most of these systems are not fully understood. Understanding the interactions between bacteriophage and bacterial proteins is important for efficient host cell infection. Phage proteins i
APA, Harvard, Vancouver, ISO, and other styles
44

Kauffman, Kathryn M., William K. Chang, Julia M. Brown, et al. "Resolving the structure of phage–bacteria interactions in the context of natural diversity." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-021-27583-z.

Full text
Abstract:
AbstractMicrobial communities are shaped by viral predators. Yet, resolving which viruses (phages) and bacteria are interacting is a major challenge in the context of natural levels of microbial diversity. Thus, fundamental features of how phage-bacteria interactions are structured and evolve in the wild remain poorly resolved. Here we use large-scale isolation of environmental marine Vibrio bacteria and their phages to obtain estimates of strain-level phage predator loads, and use all-by-all host range assays to discover how phage and host genomic diversity shape interactions. We show that ly
APA, Harvard, Vancouver, ISO, and other styles
45

Bürkle, Magdalena, Imke H. E. Korf, Anne Lippegaus, et al. "Phage-phage competition and biofilms affect interactions between two virulent bacteriophages and Pseudomonas aeruginosa." ISME Journal, April 6, 2025. https://doi.org/10.1093/ismejo/wraf065.

Full text
Abstract:
Abstract Virulent bacteriophages (or phages) are viruses that specifically infect and lyse a bacterial host. When multiple phages co-infect a bacterial host, the extent of lysis, dynamics of bacteria-phage and phage-phage interactions are expected to vary. The objective of this study is to identify the factors influencing the interaction of two virulent phages with different Pseudomonas aeruginosa growth states (planktonic, an infected epithelial cell line, and biofilm) by measuring the bacterial time-kill and individual phage replication kinetics. A single administration of phages effectively
APA, Harvard, Vancouver, ISO, and other styles
46

Chatterjee, Anushila, Julia L. E. Willett, Uyen Thy Nguyen, et al. "Parallel Genomics Uncover Novel Enterococcal-Bacteriophage Interactions." mBio 11, no. 2 (2020). http://dx.doi.org/10.1128/mbio.03120-19.

Full text
Abstract:
ABSTRACT Bacteriophages (phages) have been proposed as alternative therapeutics for the treatment of multidrug-resistant bacterial infections. However, there are major gaps in our understanding of the molecular events in bacterial cells that control how bacteria respond to phage predation. Using the model organism Enterococcus faecalis, we used two distinct genomic approaches, namely, transposon library screening and RNA sequencing, to investigate the interaction of E. faecalis with a virulent phage. We discovered that a transcription factor encoding a LytR family response regulator controls t
APA, Harvard, Vancouver, ISO, and other styles
47

Monshizadeh, Mahsa, Sara Zomorodi, Kate Mortensen, and Yuzhen Ye. "Revealing bacteria-phage interactions in human microbiome through the CRISPR-Cas immune systems." Frontiers in Cellular and Infection Microbiology 12 (September 28, 2022). http://dx.doi.org/10.3389/fcimb.2022.933516.

Full text
Abstract:
The human gut microbiome is composed of a diverse consortium of microorganisms. Relatively little is known about the diversity of the bacteriophage population and their interactions with microbial organisms in the human microbiome. Due to the persistent rivalry between microbial organisms (hosts) and phages (invaders), genetic traces of phages are found in the hosts’ CRISPR-Cas adaptive immune system. Mobile genetic elements (MGEs) found in bacteria include genetic material from phage and plasmids, often resultant from invasion events. We developed a computational pipeline (BacMGEnet), which c
APA, Harvard, Vancouver, ISO, and other styles
48

Li, Dandan, Na Li, Yu Chen, et al. "Phage-host interaction in Pseudomonas aeruginosa clinical isolates with functional and altered quorum sensing systems." Applied and Environmental Microbiology, March 4, 2025. https://doi.org/10.1128/aem.02402-24.

Full text
Abstract:
ABSTRACT Quorum sensing (QS) plays a crucial role in regulating key traits, including the upregulation of phage receptors, which leads to heightened phage susceptibility in Pseudomonas aeruginosa . As a result, higher cell densities typically increase the risk of phage invasions. This has led to speculation that bacteria may have evolved strategies to counterbalance this increased susceptibility. Additionally, non-synonymous mutations in LasR, the master regulator of QS, are common among cystic fibrosis patients, but the impact of these mutations on phage interactions remains poorly understood
APA, Harvard, Vancouver, ISO, and other styles
49

Hernández Villamizar, Santiago, Luis A. Chica Cárdenas, Laura T. Morales Mancera, and Martha J. Vives Florez. "Anaerobiosis, a neglected factor in phage-bacteria interactions." Applied and Environmental Microbiology, November 15, 2023. http://dx.doi.org/10.1128/aem.01491-23.

Full text
Abstract:
ABSTRACT Phage therapy is a promising alternative in treating bacterial infections; however, understanding how bacteria and phages interact according to the environment is crucial. Although most phage therapy applications are intended for anaerobic environments (such as intestine or wounds), research on the effects of oxygen absence on the phage infection process is scarce . Here, we studied the effect of anoxic conditions in a Salmonella sp. – phage model, given the prevalence of this bacterial pathogen in anaerobic environments, and the potential of phage therapy for its control. Our results
APA, Harvard, Vancouver, ISO, and other styles
50

Fu, Kailai, Jiaqi Cui, Yao Li та ін. "Escherichia coli phage ΦPNJ-9 adheres to mucus via a variant Hoc protein". Journal of Virology, 26 грудня 2024. https://doi.org/10.1128/jvi.01789-24.

Full text
Abstract:
ABSTRACT Phages, as antagonists of bacteria, hold significant promise for combating drug-resistant bacterial infections. Their host specificity allows phages to target pathogenic bacteria without disrupting the gut microbiota, offering distinct advantages in the prevention and control of intestinal pathogens. The interaction between the phage and the gut plays a crucial role in the efficacy of phage-mediated bacterial killing. However, the mechanisms underlying these interactions remain poorly understood. In this study, we demonstrate that the clinically isolated T4-like phage, ΦPNJ-9, effecti
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!