Academic literature on the topic 'Phage tail-like bacteriocins'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Phage tail-like bacteriocins.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Phage tail-like bacteriocins"

1

Scholl, Dean. "Phage Tail–Like Bacteriocins." Annual Review of Virology 4, no. 1 (2017): 453–67. http://dx.doi.org/10.1146/annurev-virology-101416-041632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lee, Grace, Urmi Chakraborty, Dana Gebhart, Gregory R. Govoni, Z. Hong Zhou, and Dean Scholl. "F-Type Bacteriocins of Listeria monocytogenes: a New Class of Phage Tail-Like Structures Reveals Broad Parallel Coevolution between Tailed Bacteriophages and High-Molecular-Weight Bacteriocins." Journal of Bacteriology 198, no. 20 (2016): 2784–93. http://dx.doi.org/10.1128/jb.00489-16.

Full text
Abstract:
ABSTRACTListeria monocytogenesis a significant foodborne human pathogen that can cause severe disease in certain high-risk individuals.L. monocytogenesis known to produce high-molecular-weight, phage tail-like bacteriocins, or “monocins,” upon induction of the SOS system. In this work, we purified and characterized monocins and found them to be a new class of F-type bacteriocins. TheL. monocytogenesmonocin genetic locus was cloned and expressed inBacillus subtilis, producing specifically targeted bactericidal particles. The receptor binding protein, which determines target cell specificity, was identified and engineered to change the bactericidal spectrum. Unlike the F-type pyocins ofPseudomonas aeruginosa, which are related to lambda-like phage tails, monocins are more closely related to TP901-1-like phage tails, structures not previously known to function as bacteriocins. Monocins therefore represent a new class of phage tail-like bacteriocins. It appears that multiple classes of phage tails and their related bacteriocins have coevolved separately in parallel.IMPORTANCEPhage tail-like bacteriocins (PTLBs) are structures widespread among the members of the bacterial kingdom that are evolutionarily related to the DNA delivery organelles of phages (tails). We identified and characterized “monocins” ofListeria monocytogenesand showed that they are related to the tail structures of TP901-1-like phages, structures not previously known to function as bacteriocins. Our results show that multiple types of envelope-penetrating machines have coevolved in parallel to function either for DNA delivery (phages) or as membrane-disrupting bacteriocins. While it has commonly been assumed that these structures were coopted from phages, we cannot rule out the opposite possibility, that ancient phages coopted complex bacteriocins from the cell, which then underwent adaptations to become efficient at translocating DNA.
APA, Harvard, Vancouver, ISO, and other styles
3

Šmarda, Jan, and Oldřich Benada. "Phage Tail-Like (High-Molecular-Weight) Bacteriocins of Budvicia aquatica and Pragia fontium (Enterobacteriaceae)." Applied and Environmental Microbiology 71, no. 12 (2005): 8970–73. http://dx.doi.org/10.1128/aem.71.12.8970-8973.2005.

Full text
Abstract:
ABSTRACT Electron microscopic analysis of contractile phage tail-like bacteriocins of three Pragia fontium strains and one Budvicia aquatica strain was performed. Fonticin and aquaticin are remarkably heat sensitive but trypsin resistant. Simultaneous production of contractile and flexible phage tail-like bacteriocins in the P. fontium 64613 strain is shown for the first time.
APA, Harvard, Vancouver, ISO, and other styles
4

Dams, Dorien, Lone Brøndsted, Zuzanna Drulis-Kawa, and Yves Briers. "Engineering of receptor-binding proteins in bacteriophages and phage tail-like bacteriocins." Biochemical Society Transactions 47, no. 1 (2019): 449–60. http://dx.doi.org/10.1042/bst20180172.

Full text
Abstract:
AbstractBacteriophages and phage tail-like bacteriocins (PTLBs) rely on receptor-binding proteins (RBPs) located in tail fibers or spikes for an initial and specific interaction with susceptible bacteria. Bacteriophages kill bacteria through a lytic, replicative cycle, whereas PTLBs kill the target through membrane depolarization in a single hit mechanism. Extensive efforts in the engineering of RBPs of both phages and PTLBs have been undertaken to obtain a greater understanding of the structural organization of RBPs. In addition, a major goal of engineering RBPs of phages and PTLBs is the production of antibacterials with a customized spectrum. Swapping of the RBP of phages and PTLBs results in a shift in activity spectrum in accordance with the spectrum of the new RBP. The engineering of strictly virulent phages with new RBPs required significant technical advances in the past decades, whereas the engineering of RBPs of PTLBs relied on the traditional molecular techniques used for the manipulation of bacteria and was thus relatively straightforward. While phages and PTLBs share their potential for specificity tuning, specific features of phages such as their lytic killing mechanism, their self-replicative nature and thus different pharmacokinetics and their potential to co-evolve are clear differentiators compared with PTLBs in terms of their antibacterial use.
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Sangmi. "Bacteriocins of Listeria monocytogenes and Their Potential as a Virulence Factor." Toxins 12, no. 2 (2020): 103. http://dx.doi.org/10.3390/toxins12020103.

Full text
Abstract:
Intestinal microbiota exerts protective effects against the infection of various bacterial pathogens, including Listeria monocytogenes, a major foodborne pathogen whose infection can lead to a disease (listeriosis) with a high fatality rate. As a strategy to mitigate the action of the intestinal microbiota, pathogens often produce antimicrobial proteinaceous compounds such as bacteriocins. In this review, we summarize the information currently available for the well-characterized L. monocytogenes bacteriocin listeriolysin S, with the emphasis on its intriguing mode of action as a virulence factor, which promotes the infection of L. monocytogenes by changing the composition of the intestinal microbiota. We then discuss another intriguing L. monocytogenes bacteriocin Lmo2776 that specifically inhibits the inflammogenic species, Prevotella copri, in the intestinal microbiota, reducing superfluous inflammation while weakening virulence. In addition, we describe relatively less studied phage tail-like Listeria bacteriocins (monocins) and elaborate on the possibility that these monocins could be involved in enhancing pathogenicity. In spite of the burgeoning interest in the roles played by the intestinal microbiota against the L. monocytogenes infection, our understanding on the virulence factors affecting the intestinal microbiota is still lacking, calling for further studies on bacteriocins that could function as novel virulence factors.
APA, Harvard, Vancouver, ISO, and other styles
6

Babar, Tauseef K., Travis R. Glare, John G. Hampton, Mark R. H. Hurst, and Josefina O. Narciso. "Isolation, Purification, and Characterisation of a Phage Tail-Like Bacteriocin from the Insect Pathogenic Bacterium Brevibacillus laterosporus." Biomolecules 12, no. 8 (2022): 1154. http://dx.doi.org/10.3390/biom12081154.

Full text
Abstract:
The Gram-positive and spore-forming bacterium Brevibacillus laterosporus (Bl) belongs to the Brevibacillus brevis phylogenetic cluster. Isolates of the species have demonstrated pesticidal potency against a wide range of invertebrate pests and plant diseases. Two New Zealand isolates, Bl 1821L and Bl 1951, are under development as biopesticides for control of diamondback moth and other pests. However, due to the often-restricted growth of these endemic isolates, production can be an issue. Based on the previous work, it was hypothesised that the putative phages might be involved. During investigations of the cause of the disrupted growth, electron micrographs of crude lysate of Bl 1821L showed the presence of phages’ tail-like structures. A soft agar overlay method with PEG 8000 precipitation was used to differentiate between the antagonistic activity of the putative phage and phage tail-like structures (bacteriocins). Assay tests authenticated the absence of putative phage activity. Using the same method, broad-spectrum antibacterial activity of Bl 1821L lysate against several Gram-positive bacteria was found. SDS-PAGE of sucrose density gradient purified and 10 kD MWCO concentrated lysate showed a prominent protein band of ~48 kD, and transmission electron microscopy revealed the presence of polysheath-like structures. N-terminal sequencing of the ~48 kD protein mapped to a gene with weak predicted amino acid homology to a Bacillus PBSX phage-like element xkdK, the translated product of which shared >90% amino acid similarity to the phage tail-sheath protein of another Bl published genome, LMG15441. Bioinformatic analysis also identified an xkdK homolog in the Bl 1951 genome. However, genome comparison of the region around the xkdK gene between Bl 1821L and Bl 1951 found differences including two glycine rich protein encoding genes which contain imperfect repeats (1700 bp) in Bl 1951, while a putative phage region resides in the analogous Bl 1821L region. Although comparative analysis of the genomic organisation of Bl 1821L and Bl 1951 PBSX-like region with the defective phages PBSX, PBSZ, and PBP 180 of Bacillus subtilis isolates 168 and W23, and Bacillus phage PBP180 revealed low amino acids similarity, the genes encode similar functional proteins in similar arrangements, including phage tail-sheath (XkdK), tail (XkdO), holin (XhlB), and N-acetylmuramoyl-l-alanine (XlyA). AMPA analysis identified a bactericidal stretch of 13 amino acids in the ~48 kD sequenced protein of Bl 1821L. Antagonistic activity of the purified ~48 kD phage tail-like protein in the assays differed remarkably from the crude lysate by causing a decrease of 34.2% in the number of viable cells of Bl 1951, 18 h after treatment as compared to the control. Overall, the identified inducible phage tail-like particle is likely to have implications for the in vitro growth of the insect pathogenic isolate Bl 1821L.
APA, Harvard, Vancouver, ISO, and other styles
7

Bhattacharjee, Rahul, Aditya Nandi, Adrija Sinha, et al. "Phage-tail-like bacteriocins as a biomedical platform to counter anti-microbial resistant pathogens." Biomedicine & Pharmacotherapy 155 (November 2022): 113720. http://dx.doi.org/10.1016/j.biopha.2022.113720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ibarguren, Clara, Inés Bleriot, Lucia Blasco, et al. "The world of phage tail-like bacteriocins: State of the art and biotechnological perspectives." Microbiological Research 295 (June 2025): 128121. https://doi.org/10.1016/j.micres.2025.128121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Frank K. N., Kathleen C. Dudas, Julie A. Hanson, M. Bud Nelson, Philip T. LoVerde, and Michael A. Apicella. "The R-Type Pyocin of Pseudomonas aeruginosa C Is a Bacteriophage Tail-Like Particle That Contains Single-Stranded DNA." Infection and Immunity 67, no. 2 (1999): 717–25. http://dx.doi.org/10.1128/iai.67.2.717-725.1999.

Full text
Abstract:
ABSTRACT Pseudomonas aeruginosa R-type pyocin particles have been described as bacteriocins that resemble bacteriophage tail-like structures. Because of their unusual structure, we reexamined whether they contained nucleic acids. Our data indicated that pyocin particles isolated from P. aeruginosa C (pyocin C) contain DNA. Probes generated from this DNA by the random-primer extension method hybridized to distinct bands in restriction endonuclease-digestedP. aeruginosa C genomic DNA. These probes also hybridized to genomic DNA from 6 of 18 P. aeruginosa strains that produced R-type pyocins. Asymmetric PCR, complementary oligonucleotide hybridization, and electron microscopy indicated that pyocin C particles contained closed circular single-stranded DNA, approximately 4.0 kb in length. Examination of total intracellular DNA from mitomycin C-induced cultures revealed the presence of two extrachromosomal DNA molecules, a double-stranded molecule and a single-stranded molecule, which hybridized to pyocin DNA. Sequence analysis of 7,480 nucleotides of P. aeruginosa C chromosomal DNA containing the pyocin DNA indicated the presence of pyocin open reading frames with similarities to open reading frames from filamentous phages and cryptic phage elements. We did not observe any similarities to known phage structural proteins or previously characterized pseudomonalprt genes expressing R-type pyocin structural proteins. These studies demonstrate that pyocin particles from P. aeruginosa C are defective phages that contain a novel closed circular single-stranded DNA and that this DNA was derived from the chromosome of P. aeruginosa C.
APA, Harvard, Vancouver, ISO, and other styles
10

Wen, Tong-Yue, Xing-Li Xie, Wei-Liang Kong, and Xiao-Qin Wu. "Expression and Antagonistic Activity Against Plant Pathogens of the Phage Tail-like Protein from Burkholderia multivorans WS-FJ9." Microorganisms 13, no. 4 (2025): 853. https://doi.org/10.3390/microorganisms13040853.

Full text
Abstract:
Microorganisms exert antagonistic effects on pathogens through different mechanisms, thereby achieving biological control of plant diseases. Many Burkholderia strains can produce complex secondary metabolites and substances that have toxic effects on host cells. The phage tail-like bacteriocins (tailocins) is a compound with antibacterial activity. However, its function in B. multivorans has not yet been reported. This article explores the ability of B. multivorans WS-FJ9 to antagonise plant pathogenic fungi and oomycetes, screening the potential tailocins in the strain WS-FJ9 and verifying their function, to reveal its novel antimicrobial mechanisms. We found that WS-FJ9 had strong antagonistic effects on the plant pathogenic fungi Phomopsis macrospore and Sphaeropsis sapinea, and the pathogenic oomycete Phytophthora cinnamomi. The phage tail-like protein Bm_67459 was predicted from the WS-FJ9 strain genome. The Bm_67459 cDNA encoded 111 amino acid sequence, and the relative molecular weight was approximately 11.69 kDa, the theoretical isoelectric point (pI) was 5.49, and it was a hydrophilic protein. Bm_67459 had no transmembrane helix region or signal peptide, and it belonged to the Phage_TAC_7 super family. qRT-PCR results showed that Bm_67459 gene expression was significantly upregulated during contact between WS-FJ9 and P. cinnamomi. The purified Bm_67459 protein significantly inhibited P. cinnamomi mycelial growth at 10 μg·mL−1. In summary, the WS-FJ9 strain had broad-spectrum anti-phytopathogenic activity, and the tailocin Bm_67459 was an important effector against the plant pathogen P. cinnamomi, which helps to reveal the antagonistic mechanism of this strain at the molecular level and provides excellent strain resources for the biological control of plant diseases.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography