Academic literature on the topic 'Pharmaceutical aerosol'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pharmaceutical aerosol.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Pharmaceutical aerosol"

1

Martí-Bonmatí, Ezequiel, Gustavo Juan, Luis Martí-Bonmatí, and Mercedes Ramon. "Effect of Low Temperatures on Drug-Delivery Efficacy of Aerosols." Journal of Pharmacy Technology 12, no. 5 (September 1996): 220–22. http://dx.doi.org/10.1177/875512259601200508.

Full text
Abstract:
Objective: To determine how low temperatures affect the pharmaceutical properties of oral inhalation aerosols pressurized with chlorofluorocarbons (CFCs). Design: Inhalation aerosols of the beta-adrenergic receptor agonist terbutaline sulfate were exposed at three different environmental temperatures [22, 0, and −10 °C; (±2)]. Three groups of 10 canisters each, at different drug loads (100%, 50%, and 20%), were studied at these temperatures. Canisters with mouthpieces were weighed before and after 40 actuations in order to study the mass propelled in each experimental condition. Photographs were also taken of the aerosol mist at each temperature. Results: A statistically significant decrease in the average mass of the aerosol discharged was evidenced at low temperatures. The temperature and aerosol output were linearly correlated. The weight loss at–10 °C was 35.4%. At this temperature the emitted doses were discharged as liquefied droplets. This effect was quickly manifested and proved reversible. Conclusions: Low temperatures modify the pharmaceutical properties of oral inhalation aerosols pressurized with CFCs. This technical information should be included as a note of caution in the prescribing information.
APA, Harvard, Vancouver, ISO, and other styles
2

McGrath, James A., Andrew O’Sullivan, Gavin Bennett, Ciarraí O’Toole, Mary Joyce, Miriam A. Byrne, and Ronan MacLoughlin. "Investigation of the Quantity of Exhaled Aerosols Released into the Environment during Nebulisation." Pharmaceutics 11, no. 2 (February 12, 2019): 75. http://dx.doi.org/10.3390/pharmaceutics11020075.

Full text
Abstract:
Background: Secondary inhalation of medical aerosols is a significant occupational hazard in both clinical and homecare settings. Exposure to fugitive emissions generated during aerosol therapy increases the risk of the unnecessary inhalation of medication, as well as toxic side effects. Methods: This study examines fugitively-emitted aerosol emissions when nebulising albuterol sulphate, as a tracer aerosol, using two commercially available nebulisers in combination with an open or valved facemask or using a mouthpiece with and without a filter on the exhalation port. Each combination was connected to a breathing simulator during simulated adult breathing. The inhaled dose and residual mass were quantified using UV spectrophotometry. Time-varying fugitively-emitted aerosol concentrations and size distributions during nebulisation were recorded using aerodynamic particle sizers at two distances relative to the simulated patient. Different aerosol concentrations and size distributions were observed depending on the interface. Results: Within each nebuliser, the facemask combination had the highest time-averaged fugitively-emitted aerosol concentration, and values up to 0.072 ± 0.001 mg m−3 were recorded. The placement of a filter on the exhalation port of the mouthpiece yielded the lowest recorded concentrations. The mass median aerodynamic diameter of the fugitively-emitted aerosol was recorded as 0.890 ± 0.044 µm, lower the initially generated medical aerosol in the range of 2–5 µm. Conclusions: The results highlight the potential secondary inhalation of exhaled aerosols from commercially available nebuliser facemask/mouthpiece combinations. The results will aid in developing approaches to inform policy and best practices for risk mitigation from fugitive emissions.
APA, Harvard, Vancouver, ISO, and other styles
3

Y.K. Chew, Nora, and Hak-Kim Chan. "Pharmaceutical Dry Powder Aerosol Delivery." KONA Powder and Particle Journal 19 (2001): 46–56. http://dx.doi.org/10.14356/kona.2001010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mishra, Raghav, and Radhika Agarwal. "A Concise Overview on Recent Advances in Pharmaceutical Aerosols and their Commercial Applications." Current Materials Science 15, no. 2 (July 2022): 125–41. http://dx.doi.org/10.2174/2666145414666211111102425.

Full text
Abstract:
Background: Localized drug delivery to the respiratory system has become an increasingly successful and essential treatment strategy for several pulmonary diseases, including asthma, chronic abstractive disease, pneumonia, bronchitis, and cystic fibrosis. The rising incidence of respiratory diseases is a significant factor driving the worldwide market for respiratory inhaler devices. Objective: The objective of this article is to present various aspects of pharmaceutical aerosols, including their types, components, fundamentals, in-process and finished product quality control tests based on pharmacopeial standards and specifications, and commercial utility considering the pharmaceutical aerosol dosage forms that have been patented from 2000 to 2020, along with a list of marketed pharmaceutical products. Method: Aerosol, collectively referred to as a pressurized device, operates by triggering an appropriate valve system with a continuous or metered dosage of tiny mist spray. It is used not only in the treatment of asthma and chronic obstructive pulmonary disease but also in the treatment of cancer, diabetes, migraine, angina pectoris, acute lung injury, bone disorders, tuberculosis, and many more. A multitude of different variables, including types and properties of propellants, active substances, containers, valves, actuators, spray patterns, valve crimping efficiency, and particle size of the aerosols, influence the therapeutic effectiveness of pharmaceutical aerosols. Conclusion: Based on the current findings, distinct characteristics such as the elimination of firstpass metabolism, quick drug absorption, ease of therapy termination, as well as a larger surface area have attributed to the success of pharmaceutical aerosols.
APA, Harvard, Vancouver, ISO, and other styles
5

Pasteka, Richard, Lara Alina Schöllbauer, Joao Pedro Santos da Costa, Radim Kolar, and Mathias Forjan. "Experimental Evaluation of Dry Powder Inhalers during Inhalation and Exhalation Using a Model of the Human Respiratory System (xPULM™)." Pharmaceutics 14, no. 3 (February 24, 2022): 500. http://dx.doi.org/10.3390/pharmaceutics14030500.

Full text
Abstract:
Dry powder inhalers are used by a large number of patients worldwide to treat respiratory diseases. The objective of this work is to experimentally investigate changes in aerosol particle diameter and particle number concentration of pharmaceutical aerosols generated by four dry powder inhalers under realistic inhalation and exhalation conditions. To simulate patients undergoing inhalation therapy, the active respiratory system model (xPULM™) was used. A mechanical upper airway model was developed, manufactured, and introduced as a part of the xPULM™ to represent the human upper respiratory tract with high fidelity. Integration of optical aerosol spectrometry technique into the setup allowed for evaluation of pharmaceutical aerosols. The results show that there is a significant difference (p < 0.05) in mean particle diameter between inhaled and exhaled particles with the majority of the particles depositing in the lung, while particles with the size of (>0.5 μm) are least influenced by deposition mechanisms. The fraction of exhaled particles ranges from 2.13% (HandiHaler®) over 2.94% (BreezHaler®), and 6.22% (Turbohaler®) to 10.24% (Ellipta®). These values are comparable to previously published studies. Furthermore, the mechanical upper airway model increases the resistance of the overall system and acts as a filter for larger particles (>3 μm). In conclusion, the xPULM™ active respiratory system model is a viable option for studying interactions of pharmaceutical aerosols and the respiratory tract regarding applicable deposition mechanisms. The model strives to support the reduction of animal experimentation in aerosol research and provides an alternative to experiments with human subjects.
APA, Harvard, Vancouver, ISO, and other styles
6

Angel, A., J. Robson, T. L. Muchnick, R. C. Moretz, and R. B. Patel. "SEM evaluation of pharmaceutical inhalation aerosols deposited in an andersen cascade impactor." Proceedings, annual meeting, Electron Microscopy Society of America 50, no. 2 (August 1992): 1328–29. http://dx.doi.org/10.1017/s0424820100131279.

Full text
Abstract:
Particle size characterization is a critical parameter used for inhalation aerosol formulation development, batch control and product performance evaluation. Both the United States Pharmacopeia optical microscopy method and multistage cascade impaction methods are used for particle size evaluation and control of inhalation aerosols. Particle size determination based on aerodynamic properties is considered more relevant than other techniques for assessing product performance during patient-use. The cascade impaction technique for evaluation of inhalation aerosols is typically used with a suitable inlet to facilitate introduction of the aerosol spray into the impactor. The drug particles deposited on the impaction stages are extracted and analyzed by an appropriate method to relate drug mass to the aerodynamic cut-off size and thereby determine respirable fractions (particles of < 5.8 μm aerodynamic size). This approach does not provide information relating to the physical character of the formulation (aggregates, agglomerates, particle shapes and morphology) or its deposition characteristics both within and between stages.
APA, Harvard, Vancouver, ISO, and other styles
7

Almeling, Stefan, David Ilko, and Ulrike Holzgrabe. "Charged aerosol detection in pharmaceutical analysis." Journal of Pharmaceutical and Biomedical Analysis 69 (October 2012): 50–63. http://dx.doi.org/10.1016/j.jpba.2012.03.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kuhn, Robert J. "Pharmaceutical Considerations in Aerosol Drug Delivery." Pharmacotherapy 22, no. 3 Part 2 (March 2002): 80S—85S. http://dx.doi.org/10.1592/phco.22.6.80s.33907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Golshahi, Laleh, P. Worth Longest, Landon Holbrook, Jessica Snead, and Michael Hindle. "Production of Highly Charged Pharmaceutical Aerosols Using a New Aerosol Induction Charger." Pharmaceutical Research 32, no. 9 (March 31, 2015): 3007–17. http://dx.doi.org/10.1007/s11095-015-1682-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Borojeni, Azadeh A. T., Wanjun Gu, Bahman Asgharian, Owen Price, Andrew P. Kuprat, Rajesh K. Singh, Sean Colby, Richard A. Corley, and Chantal Darquenne. "In Silico Quantification of Intersubject Variability on Aerosol Deposition in the Oral Airway." Pharmaceutics 15, no. 1 (January 3, 2023): 160. http://dx.doi.org/10.3390/pharmaceutics15010160.

Full text
Abstract:
The extrathoracic oral airway is not only a major mechanical barrier for pharmaceutical aerosols to reach the lung but also a major source of variability in lung deposition. Using computational fluid dynamics, deposition of 1–30 µm particles was predicted in 11 CT-based models of the oral airways of adults. Simulations were performed for mouth breathing during both inspiration and expiration at two steady-state flow rates representative of resting/nebulizer use (18 L/min) and of dry powder inhaler (DPI) use (45 L/min). Consistent with previous in vitro studies, there was a large intersubject variability in oral deposition. For an optimal size distribution of 1–5 µm for pharmaceutical aerosols, our data suggest that >75% of the inhaled aerosol is delivered to the intrathoracic lungs in most subjects when using a nebulizer but only in about half the subjects when using a DPI. There was no significant difference in oral deposition efficiency between inspiration and expiration, unlike subregional deposition, which shows significantly different patterns between the two breathing phases. These results highlight the need for incorporating a morphological variation of the upper airway in predictive models of aerosol deposition for accurate predictions of particle dosimetry in the intrathoracic region of the lung.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Pharmaceutical aerosol"

1

Li, Xihao. "Characterization of Perphenazine and Scopolamine Aerosols Generated Using the Capillary Aerosol Generator." VCU Scholars Compass, 2006. http://scholarscompass.vcu.edu/etd/901.

Full text
Abstract:
The characterization of perphenazine and scopolamine aerosols generated using the capillary aerosol generator (CAG) was reported. Variables including steady state power, the formulation vehicle, the drug concentration and the formulation flow rate were studied for their effects on the chemical stability and particle size of these drug aerosols.Stability-indicating HPLC and LC-MS assays were developed and validated for perphenazine and scopolamine, respectively. The chemical stability of each compound was investigated under a variety of stress conditions and the structure of degradation products was proposed.Perphenazine aerosols were generated from propylene glycol (PG) formulations with concentrations of 9, 48 and 90mM at formulation flow rates of 2.5 and 5.0µL/s at a series of steady state powers. At higher aerosolization powers, the low concentration formulation (9mM) degraded with dehalogenation being the major pathway. The size of perphenazine aerosols was between 0.4 to 0.6µm. Changing the solute concentration produced only small changes (~0.2µm) in perphenazine aerosol particle size. The formulation flow rate did not significantly affect the aerosol size.Scopolamine degraded significantly when aerosolized in PG formulations. It was possible to generate chemically stable scopolamine aerosols from ethanol formulations. Significant amounts of degradation products were formed only at or above 4.6W at 5.0µL/s. Hydrolysis and dehydration appeared to be the major degradation pathways at higher powers and low formulation flow rate. The MMAD of scopolamine aerosols was between 0.5 and 2.0µm from 8, 20 and 40mM formulations at 5.0 and 10.0µL/s. The size of scopolamine aerosols increased as a function of increasing the solute concentration. Increasing the formulation flow rate increased the linear velocity of the spray, thus the Reynolds number was increased and smaller particles were generated.
APA, Harvard, Vancouver, ISO, and other styles
2

Vinchurkar, Samir C. "Numerical Analysis of Respiratory Aerosol Deposition: Effects of Exhalation, Airway Constriction and Electrostatic Charge." VCU Scholars Compass, 2008. http://hdl.handle.net/10156/2014.

Full text
Abstract:
Thesis (Ph. D.)--Virginia Commonwealth University, 2008.
Prepared for: Dept. of Mechanical Engineering. Includes bibliographical references (leaves 212-233). Also available online via the Internet.
APA, Harvard, Vancouver, ISO, and other styles
3

McIvor, Robert Andrew. "Aerosol pentamidine for prophylaxis of Pneumocystis carinii pneumonia in human immunodeficiency virus infected individuals." Thesis, Queen's University Belfast, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.261772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Walenga, Ross L. "CFD Assessment of Respiratory Drug Delivery Efficiency in Adults and Improvements Using Controlled Condensational Growth." VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3641.

Full text
Abstract:
Pharmaceutical aerosols provide a number of advantages for treating respiratory diseases that include targeting high doses directly to the lungs and reducing exposure of other organs to the medication, which improve effectiveness and minimize side effects. However, difficulties associated with aerosolized drug delivery to the lungs include drug losses in delivery devices and in the extrathoracic region of human upper airways. Intersubject variability of extrathoracic and thoracic drug deposition is a key issue as well and should be minimized. Improvements to respiratory drug delivery efficiency have been recently proposed by Dr. P. Worth Longest and Dr. Michael Hindle through the use controlled condensational growth methods, which include enhanced condensational growth (ECG) and excipient enhanced growth (EEG). These methods reduce inhaled drug loss through the introduction of an aerosol with an initial submicrometer aerodynamic diameter, which then experiences condensational growth to increase droplet size and enhance thoracic deposition. Tracheobronchial and nasal human airway computational models were developed for this study to assess drug delivery using conventional and EEG methods. Computational versions of these models are used to assess drug delivery and variability with computational fluid dynamics (CFD) simulations, which are validated with experimental data where possible. Using CFD, steady state delivery of albuterol sulfate (AS) during high flow therapy (HFT) through a nasal cannula was characterized with four nasal models developed for this study, with results indicating an increase in average delivered dose from 24.0% with a conventional method to 82.2% with the EEG technique and an initially sized 0.9 µm aerosol, with a corresponding decrease in the coefficient of variation from 15% to 3%. Transient CFD simulations of nebulized AS administration through a mask during noninvasive positive pressure ventilation (NPPV) were performed and validated with experimental data, which resulted in 40.5% delivered dose with the EEG method as compared with 19.5% for a conventional method and a common inhalation profile. Using two newly created face-nose-mouth-throat models, dry powder delivery of ciprofloxacin during NPPV was assessed for the first time with steady state CFD predictions, which showed an increase in average delivered lung dose through a new mask design of 78.2% for the EEG method as compared with 36.2% for conventional delivery, while corresponding differences in delivered dose between the two models were reduced from 45.4% to 12.8% with EEG. In conclusion, results of this study demonstrate (i) the use of highly realistic in silico and in vitro models to predict the lung delivery of inhaled pharmaceutical aerosols, (ii) indicate that the EEG approach can reduce variability in nose-to-lung aerosol delivery through a nasal cannula by a factor of five, and (iii) introduce new high efficiency methods for administering aerosols during NPPV, which represents an area of current clinical need.
APA, Harvard, Vancouver, ISO, and other styles
5

Kwok, Philip Chi Lip. "Electrostatics of aerosols for inhalation." Faculty of Pharmacy, 2007. http://hdl.handle.net/2123/1934.

Full text
Abstract:
PhD
Electrostatics of aerosols for inhalation is a relatively new research area. Charge properties of these particles are largely unknown but electrostatic forces have been proposed to potentially influence lung deposition. Investigation on the relationship between formulation and aerosol charging is required to understand the fundamental mechanisms. A modified electrical low pressure impactor was employed to measure the particles generated from metered dose inhalers and dry powder inhalers. This equipment provides detailed size and charge information of the aerosols. The particles were sized by impaction onto thirteen stages. The net charges in twelve of the size fractions were detected and recorded by sensitive electrometers. The drug deposits were quantified by chemical assay. The aerosol charge profiles of commercial metered dose inhalers were product-dependent, which was due to differences in the drug, formulation, and valve stem material. The calculated number of elementary charges per drug particle of size ≤ 6.06 μm ranged from zero to several ten thousands. The high charge levels on particles may have a potential effect on the deposition of the aerosol particles in the lung when inhaled. New plastic spacers marketed for use with metered dose inhalers were found to possess high surface charges on the internal walls, which was successfully removed by detergent-coating. Detergent-coated spacer had higher drug output than the new ones due to the reduced electrostatic particle deposition inside the spacer. Particles delivered from spacers carried lower inherent charges than those directly from metered dose inhalers. Those with higher charges might be susceptible to electrostatic forces inside the spacers and were thus retained. The electrostatic low pressure impactor was further modified to disperse two commercial Tubuhaler® products at 60 L/min. The DPIs showed drug-specific responses to particle charging at different RHs. The difference in hygroscopicity of the drugs may play a major role. A dual mechanistic charging model was proposed to explain the charging behaviours. The charge levels on drug particles delivered from these inhalers were sufficiently high to potentially affect deposition in the airways when inhaled. Drug-free metered dose inhalers containing HFA-134a and 227 produced highly variable charge profiles but on average the puffs were negatively charged, which was thought to be due to the electronegative fluorine atoms in the HFA molecules. The charges of both HFAs shifted towards neutrality or positive polarity with increasing water content. The spiked water might have increased the electrical conductivity and/or decreased the electronegativity of the bulk propellant solution. The number of elementary charges per droplet decreased with decreasing droplet size. This trend was probably due to the redistribution of charges amongst small droplets following electrostatic fission of a bigger droplet when the Raleigh limit was reached.
APA, Harvard, Vancouver, ISO, and other styles
6

Ross, Stacy Sommerfeld. "In vitro pseudomonas aeruginosa biofilms : improved confocal imaging and co-treatment with dispersion agents and antibiotics." Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/4738.

Full text
Abstract:
Pseudomonas aeruginosa bacterial biofilms are the leading cause of mortality among cystic fibrosis (CF) patients. Biofilms contain bacteria attached to a surface and encased in a protective matrix. Since bacteria within a biofilm are less susceptible to antibiotics, a new approach is to use dispersion compounds that cause the biofilms to release free-swimming bacteria. Our approach has focused on combining nutrient dispersion compounds with antibiotics to increase eradication of bacteria within biofilms. This approach takes advantage of the enhanced susceptibility of free-swimming bacteria to antibiotics, compared to bacteria within biofilms. Ultimately, this research will guide the development of an aerosol therapy containing both antibiotic and dispersion compounds to treat bacterial biofilm infections. To study the effect of antibiotic and dispersion compound treatments on biofilm eradication, a high-throughput screening assay was used to assess the effect on young Pseudomonas aeruginosa biofilms. In addition, a Lab-Tek chambered coverglass system imaged via confocal microscopy was used to assess the effect on mature Pseudomonas aeruginosa biofilms. Seven antibiotics (amikacin disulfate, tobramycin sulfate, colistin sulfate, colistin methanesulfonate (CMS), polymyxinB sulfate, erythromycin, and ciprofloxacin hydrochloride) were tested alone or in combination with four nutrient dispersion compounds (sodium citrate, succinic acid, xylitol, and glutamic acid) to assess the level of eradication of bacteria within biofilms. For young biofilms, 15 of 24 combinations significantly eliminated more live bacteria within the biofilms (measured in colony forming units per milliliter) compared to antibiotics alone. In the more mature biofilm system, only 3 out of 26 combinations resulted in a higher percentage of live biofilm bacteria being eliminated compared to antibiotics alone, showing the importance of biofilm age in the effectiveness of these potential combination therapies. To aid in confocal microscopic analysis of biofilms, an automated quantification program called STAINIFICATION was developed. This new program can be used to simultaneously investigate connected-biofilm bacteria, unconnected bacteria (dispersed bacteria), the biofilm protective matrix, and a growth surface upon which bacteria are grown in confocal images. The program contains novel algorithms for the assessment of bacterial viability and for the quantification of bacteria grown on uneven surfaces, such as tissue. The utility of the viability assessments were demonstrated with confocal images of Pseudomonas aeruginosa biofilms. The utility of the uneven surface algorithms were demonstrated with confocal images of Staphylococcus aureus biofilms grown on cultured human airway epithelial cells and Neisseria gonorrhoeae biofilms grown on transformed cervical epithelial cells. Finally, a proof-of-concept study demonstrated that dry powder aerosols containing both antibiotic and nutrient dispersion compounds could be developed with properties optimized for efficient deposition in the lungs. A design of experiments study showed that solution concentration was the most significant parameter affecting aerosol yield, particle size, and in vitro deposition profiles. Collectively this work demonstrated that bacterial dispersion from biofilms can enhance antibiotic susceptibility and can be better quantified using the new STAINIFICATION software. Formulation of dispersion compounds and antibiotics into a dry powder aerosol could enable more effective treatment of biofilm infections in the lungs.
APA, Harvard, Vancouver, ISO, and other styles
7

Delvadia, Renishkumar. "In vitro methods to predict aerosol drug deposition in normal adults." VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/314.

Full text
Abstract:
This research was aimed at the development and validation of new in vitro methods capable of predicting in vivo drug deposition from dry powder inhalers, DPIs, in lung-normal human adults. Three physical models of the mouth, throat and upper airways, MT-TB, were designed and validated using the anatomical literature. Small, medium and large versions were constructed to cover approximately 95% of the variation seen in normal adult humans of both genders. The models were housed in an artificial thorax and used for in vitro testing of drug deposition from Budelin Novolizer DPIs using a breath simulator to mimic inhalation profiles reported in clinical trials of deposition from the same inhaler. Testing in the model triplet produced results for in vitro total lung deposition (TLD) consistent with the complete range of drug deposition results reported in vivo. The effect of variables such as in vitro flow rate were also predictive of in vivo deposition. To further assess the method’s robustness, in vitro drug deposition from 5 marketed DPIs was assessed in the “medium” MT-TB model. With the exception of Relenza Diskhaler, mean values for %TLD+SD differed by only < 2% from their literature in vivo. The relationship between inhaler orientation and in vitro regional airway deposition was determined. Aerosol drug deposition was found to depend on the angle at which an inhaler is inserted into the mouth although the results for MT deposition were dependent on both the product and the formulation being delivered. In the clinic, inhalation profiles were collected from 20 healthy inhaler naïve volunteers (10M, 10F) before and after they received formal inhalation training in the use of a DPI. Statistically significant improvements in Peak Inhalation Flow Rate (PIFR) and Inhalation Volume (V) were observed following formalized training. The shapes of the average inhalation profiles recorded in the clinic were found to be comparable to the simulated profiles used in the in vitro deposition studies described above. In conclusion, novel in vitro test methods are described that accurately predict both the average and range of aerosol airway drug deposition seen from DPIs in the clinic.
APA, Harvard, Vancouver, ISO, and other styles
8

Ilko, David [Verfasser], Ulrike [Gutachter] Holzgrabe, and Petra [Gutachter] Högger. "The use of charged aerosol detection for the analysis of excipients and active pharmaceutical ingredients / David Ilko. Gutachter: Ulrike Holzgrabe ; Petra Högger." Würzburg : Universität Würzburg, 2015. http://d-nb.info/1112943218/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Islam, Mohammad Saidul. "Three-dimensional modelling of particulate deposition in the human respiratory tract." Thesis, Queensland University of Technology, 2018. https://eprints.qut.edu.au/115472/1/115472_9028200_mohammad_saidul_islam_thesis.pdf.

Full text
Abstract:
This study is the first-ever approach to simulate particulate matter transport and deposition in the terminal bronchioles of the 17-generation, whole lung model by considering a possible entire branching pattern. The anatomically explicit, digital 17-generation conduit model is generated from the high-resolution CT data. A comprehensive size- and shape-specific particle transport and deposition study is performed for different physical conditions and finds a new deposition pattern for a realistic anatomical model. The present findings would potentially help the targeted drug delivery system design and increase the efficiency of the drug delivery to the specific positions in the pulmonary airways.
APA, Harvard, Vancouver, ISO, and other styles
10

Li, Xiaojian. "MULTI-COMPONENT MICROPARTICULATE/NANOPARTICULATE DRY POWDER INHALATION AEROSOLS FOR TARGETED PULMONARY DELIVERY." UKnowledge, 2014. http://uknowledge.uky.edu/pharmacy_etds/31.

Full text
Abstract:
The aim of the work was to design, manufacture, and characterize targeted multi-component dry powder aerosols of (non-destructive) mucolytic agent (mannitol), antimicrobial drug (tobramycin or azithromycin), and lung surfactant mimic phospholipids (DPPC:DPPG=4:1 in molar ratio). The targeted dry powder for inhalation formulation for deep lung delivery with a built-in rationale of specifically interfering several disease factors of chronic infection diseases in deep lungs such as cystic fibrosis, pneumonia, chronic bronchitis, and etc. The dry powder aerosols consisting of selected chemical agents in one single formulation was generated by using spray drying from organic solution. The physicochemical properties of multi-component dry powder inhaler (DPI) formulation were characterized by a number of techniques. In addition, the in vitro aerosol dispersion performance, storage stability test, and in vitro drug release of selected spray-dried (SD) multi-component systems were conducted. The physicochemical study revealed that multi-component aerosol particles possessed essential particle properties suitable for deep lung delivery. In general, the multi-component particles (typically 0.5 to 2 µm) indicated that the designed SD aerosol particles could potentially penetrate deep lung regions (such as respiratory bronchiolar and alveolar regions) by sedimentation and diffusion, respectively. The essential particle properties including narrow size distribution, spherical particle and smooth surface morphologies, and low water content (or water vapor sorption) could potentially minimize interparticulate interactions. The study of in vitro aerosol dispersion performance showed that majority of SD multi-component aerosols exhibited low values (less than 5µm) of MMAD, high values (approximately above 30% up to 60.4%) of FPF, and high values (approximately above 90%) of ED, respectively. The storage stability study showed that azithromycin–incorporated multi-component aerosol particles stored at 11 and 40% RH with no partial crystallization were still suitable for deep lung delivery. Compared to SD pure azithromycin particles, the azithromycin-incorporated multi-component particles exhibited an enhanced initial release. The targeted microparticulate and nanoparticulate multi-component dry powder aerosol formulations with essential particle properties for deep lung pulmonary delivery were successfully produced by using spray drying from organic solution. The promising experimental data suggest the multi-component formulations could be further investigated in in vivo studies for the purpose of commercialization.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Pharmaceutical aerosol"

1

Hickey, Anthony J., and Sandro R. P. da Rocha, eds. Pharmaceutical Inhalation Aerosol Technology. Third edition. | Boca Raton, Florida : CRC Press, [2019] |: CRC Press, 2019. http://dx.doi.org/10.1201/9780429055201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

1955-, Hickey Anthony J., ed. Pharmaceutical inhalation aerosol technology. 2nd ed. New York: M. Dekker, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1955-, Hickey Anthony J., and SpringerLink (Online service), eds. Controlled Pulmonary Drug Delivery. New York, NY: Controlled Release Society, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Finlay, Warren H. Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction. Elsevier Science & Technology Books, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Finlay, Warren H. Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction. Elsevier Science & Technology Books, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Finlay, Warren H. Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction. Elsevier Science & Technology, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1955-, Hickey Anthony J., ed. Pharmaceutical inhalation aerosol technology. New York: Marcel Dekker, Inc., 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hickey, Anthony J. Pharmaceutical Inhalation Aerosol Technology. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hickey, Anthony J. Pharmaceutical Inhalation Aerosol Technology. Taylor & Francis Group, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hickey, Anthony J. Pharmaceutical Inhalation Aerosol Technology. Taylor & Francis Group, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Pharmaceutical aerosol"

1

Murnane, Darragh, Victoria Hutter, and Marie Harang. "Pharmaceutical Aerosols and Pulmonary Drug Delivery." In Aerosol Science, 221–69. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118682555.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hickey, Anthony J., and David Swift. "Measurement of Pharmaceutical and Diagnostic Inhalation Aerosols." In Aerosol Measurement, 805–20. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118001684.ch39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hickey, Anthony J., and Sandro R. P. da Rocha. "Introduction." In Pharmaceutical Inhalation Aerosol Technology, 1–2. Third edition. | Boca Raton, Florida : CRC Press, [2019] |: CRC Press, 2019. http://dx.doi.org/10.1201/9780429055201-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Strickland, Helen N., and Beth Morgan. "Quality by Control." In Pharmaceutical Inhalation Aerosol Technology, 249–70. Third edition. | Boca Raton, Florida : CRC Press, [2019] |: CRC Press, 2019. http://dx.doi.org/10.1201/9780429055201-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tan, Bernice Mei Jin, Lai Wah Chan, and Paul Wan Sia Heng. "Milling and Blending: Producing the Right Particles and Blend Characteristics for Dry Powder Inhalation." In Pharmaceutical Inhalation Aerosol Technology, 273–89. Third edition. | Boca Raton, Florida : CRC Press, [2019] |: CRC Press, 2019. http://dx.doi.org/10.1201/9780429055201-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Carrigy, Nicholas, and Reinhard Vehring. "Engineering Stable Spray-Dried Biologic Powder for Inhalation." In Pharmaceutical Inhalation Aerosol Technology, 291–326. Third edition. | Boca Raton, Florida : CRC Press, [2019] |: CRC Press, 2019. http://dx.doi.org/10.1201/9780429055201-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aguiar-Ricardo, Ana, and Eunice Costa. "Supercritical Fluid Manufacture." In Pharmaceutical Inhalation Aerosol Technology, 327–47. Third edition. | Boca Raton, Florida : CRC Press, [2019] |: CRC Press, 2019. http://dx.doi.org/10.1201/9780429055201-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lechuga-Ballesteros, David, Susan Hoe, and Benjamin W. Maynor. "Particle Engineering Technology for Inhaled Therapies." In Pharmaceutical Inhalation Aerosol Technology, 349–61. Third edition. | Boca Raton, Florida : CRC Press, [2019] |: CRC Press, 2019. http://dx.doi.org/10.1201/9780429055201-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Costabile, Gabriella, and Olivia M. Merkel. "Emerging Pulmonary Delivery Strategies in Gene Therapy: State of the Art and Future Considerations." In Pharmaceutical Inhalation Aerosol Technology, 365–87. Third edition. | Boca Raton, Florida : CRC Press, [2019] |: CRC Press, 2019. http://dx.doi.org/10.1201/9780429055201-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Ying, and Hao Yin. "Genome Editing for Genetic Lung Diseases." In Pharmaceutical Inhalation Aerosol Technology, 389–402. Third edition. | Boca Raton, Florida : CRC Press, [2019] |: CRC Press, 2019. http://dx.doi.org/10.1201/9780429055201-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Pharmaceutical aerosol"

1

Versteeg, Henk K., Graham K. Hargrave, Perry A. Genova, Robert C. Williams, Dan Deaton, and Prashant Kakade. "Design Optimisation of Novel Pharmaceutical Actuator Using Optical Diagnostics." In ASME 7th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2004. http://dx.doi.org/10.1115/esda2004-58173.

Full text
Abstract:
Pharmaceutical metered dose inhalers (MDIs) are drug delivery devices that are designed to produce self-propelled aerosols for inhalation therapies. Conventional MDI actuators use configurations based on a “two-orifice-and-sump” design. This promotes partial expansion of the propellant as a pre-atomisation stage. The final aerosol contains large numbers of respirable particles (1–5μm), but the aerosol plume velocity tends to be very high (50–100m/s). The KOS Vortex Nozzle Assembly (VNA) is an innovative actuator concept, which enables a measure of control of plume velocity. The device utilises a combination of a vortex chamber and a Bernoulli horn to reduce the plume velocity whilst increasing the respirable fraction of drug particles. The aerosol generation process in all MDIs, including the KOS VNA, inevitably leads to a certain amount of internal and external drug deposition, which represents an inefficiency of the drug delivery technology that can threaten dose uniformity. This paper reports the findings of an experimental study using optical diagnostics to investigate the primary atomization mechanism and external drug deposition in the VNA. High-speed video imaging is used to document the developing aerosol plume in the near-orifice and mouthpiece regions as well as the flow regime inside the vortex chamber using transparent versions of the VNA manufactured by means of rapid prototyping. We consider how the improved understanding of the flow processes resulting from this study supports measurements of fine-particle fractions and mouthpiece deposition. We also discuss how this type of fundamental investigation using optical diagnostics can be used to drive design improvements to identify VNA geometries with improved aerosol properties and reduced external drug deposition.
APA, Harvard, Vancouver, ISO, and other styles
2

Hyun, Sinjae, Sun Jin Moon, and Chong S. Kim. "Computational Modeling of Aerosol Deposition Characteristics in Cyclic Bifurcating Tube Flow." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19169.

Full text
Abstract:
An accurate model of the human respiratory system allows health scientists to gain insight into the interactions between particulate matter (PM) and the exposed surfaces of the lung airways. Respiratory dose simulations and modeling are frequently used for evaluating health effects of inhaled toxic substances [1–4] and for analyzing the risk potentials of inhaled toxic or harmful PM such as vehicle emissions [4,5]. Pharmaceutical companies and pulmonologists find it useful in evaluating efficacy of inhaled medicinal aerosols and devising new patient treatment regimen [6–8], especially in vulnerable population groups such as children, industrial workers, and the elderly [10]. Recently, the respiratory system has seen increased attention as a possible venue for drug delivery to fight diseases such as AIDS, diabetes, and various cancers, among others. Computational fluid dynamics modeling and simulation continues to be an important tool for understanding of delivery of pharmaceutical aerosols to the lung airways and thereby improving treatment of airway disease, particularly, asthma with bronchodilators and corticosteroids inhalers [11,12].
APA, Harvard, Vancouver, ISO, and other styles
3

Kim, Jinho, and Jim S. Chen. "Effect of Inhaling Patterns on Aerosol Drug Delivery: CFD Simulation." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66685.

Full text
Abstract:
Inhaled Pharmaceutical Aerosols (IPAs) delivery has great potential in treatment of a variety of respiratory diseases, including asthma, pulmonary diseases, and allergies. Aerosol delivery has many advantages. It delivers medication directly to where it is needed and it is effective in much lower doses than required for oral administration. Currently, there are several types of IPA delivery systems, including pressurized metered dose inhaler (pMDI), the dry powder inhaler (DPI), and the medical nebulizer. IPAs should be delivered deep into the respiratory system where the drug substance can be absorbed into blood through the capillaries via the alveoli. Researchers have proved that most aerosol particles with aerodynamic diameter of about 1–5 μm, if slowly and deeply inhaled, could be deposited in the peripheral regions that are rich in alveoli [1–3]. The purpose of this study is to investigate the effects of various inhaling rates with breath-holding pause on the aerosol deposition (Dp = 0.5–5 μm) in a human upper airway model extending from mouth to 3rd generation of trachea. The oral airway model is three dimensional and non-planar configurations. The dimensions of the model are adapted from a human cast. The air flow is assumed to be unsteady, laminar, and incompressible. The investigation is carried out by Computational Fluid Dynamics (CFD) using the software Fluent 6.2. The user-defined function (UDF) is employed to simulate the cyclic inspiratory flows for different IPA inhalation patterns. When an aerosol particle enters the mouth respiratory tract, its particles experience abrupt changes in direction. The secondary flow changes its direction as the airflow passes curvature. Intensity of the secondary flow is strong after first bend at pharynx and becomes weaker after larynx. In flow separation, a particle can be trapped and follow the eddy and deposit on the surface. Particle deposition fraction generally increases as particle size and inhaling airflow velocity increase.
APA, Harvard, Vancouver, ISO, and other styles
4

Z. B., Tong, Yang R. Y, Yu A. B, Adi S, and Chan H. -K. "Particle Scale Modelling of the Dispersion of Dry Powder in Pharmaceutical Aerosol Inhalers." In 5th Asian Particle Technology Symposium. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-2518-1_090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Metcalf, Adam, Lucy Hardaker, and Ross Hatley. "Quantitation method for colistimethate sodium in pharmaceutical aerosol samples using high performance liquid chromatography (HPLC)." In ERS International Congress 2016 abstracts. European Respiratory Society, 2016. http://dx.doi.org/10.1183/13993003.congress-2016.pa1071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gorny, Ramona Klaudia, Gerhard Schaldach, Peter Walzel, and Markus Thommes. "Spray Conditioning for the Preparation of Spray Dried Submicron Particles." In ILASS2017 - 28th European Conference on Liquid Atomization and Spray Systems. Valencia: Universitat Politècnica València, 2017. http://dx.doi.org/10.4995/ilass2017.2017.4701.

Full text
Abstract:
Particle size reduction down to the submicron range (0.1-1 µm) is an effective option to increase the bioavailabilityof low water soluble active pharmaceutical ingredients. According to the Nernst-Brunner equation, the preparation of submicron sized particles increases the specific surface area, thus increases the dissolution rate. Conventional spray drying devices for submicron particles show certain limitations. The main challenge is the preparation of small and uniform droplets during the atomisation step. In this work, fine droplets were generated combining a nozzle with a droplet separator. Therefore, the aerosol is generated with a pneumatic nozzle and is sprayed into a cyclone droplet separator. Depending on the characteristics of the cyclone, droplets larger than the cut-off-size were separated and returned into the liquid feed. The conditioned aerosol at the top of the cyclone separator can then be introduced into the drying chamber. With this concept the usable part is separated, thus no classification process after drying is necessary. The investigations show that the dependencies during atomisation of the droplets size on the liquid-to-gas mass flow ratio µm and the liquid properties (e.g. viscosity) do not apply to the separation step. The conditioned aerosol only depends on the separation characteristics of the cyclone droplet separator. However, the amount of droplets separated is determined by the atomisation step. Hence, the amount of droplets smaller than the cut-off-size can be increased by decreasing the droplet size of the primary aerosol. This is realised by secondary droplet fragmentation. An impact surface causes breakup of the droplets of theprimary aerosol before separation. The investigations show an increased amount of droplets &lt;2µm.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4701
APA, Harvard, Vancouver, ISO, and other styles
7

AUGUSTO, L. L. X., G. C. LOPES, and J. A. S. GONÇALVES. "PHARMACEUTICAL AEROSOLS DEPOSITION DURING INHALATION, BREATH HOLDING AND EXHALATION USING CFD." In XX Congresso Brasileiro de Engenharia Química. São Paulo: Editora Edgard Blücher, 2015. http://dx.doi.org/10.5151/chemeng-cobeq2014-1489-19037-152591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kugler, Sz, A. Kerekes, A. Nagy, and A. Czitrovszky. "Experimental investigation of the properties of pharmaceutical aerosols with laser-based optical measurement techniques." In 2018 International Conference Laser Optics (ICLO). IEEE, 2018. http://dx.doi.org/10.1109/lo.2018.8435865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dufour, Françoise, and Gavin Davies. "Virtual Assessment of the Performance of an Inhalation Drug Delivery Device." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176368.

Full text
Abstract:
Inhalation therapies are gaining popularity for both respiratory and non-respiratory therapies. However the challenge remains to achieve optimal drug delivery because of the complex interaction between inhaler devices, drug formulations along with patients’ coordination and physiology. In order to lower R&D costs and efforts, and understand better the mechanics of pharmaceutical aerosols, system designers are looking for comprehensive tools enabling them to reproduce virtual inhalation processes. Computational fluid dynamics (CFD) techniques represent a non-invasive way of predicting the fate of inhaled medication from oral or nasal delivery devices. The object of this work is to apply CFD methodology to model the full inhalation mechanism, from the drug dispersion inside the device and delivery to the patient, to its journey within the respiratory tract.
APA, Harvard, Vancouver, ISO, and other styles
10

Somani, Imshaan, Jonathan Whitten, Sinjae Hyun, and Chong S. Kim. "Effects of Sedimentation on Particle Deposition in the Lung Alveoli." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192934.

Full text
Abstract:
Deposition of inhaled particles in the lung is one of the key factors for assessing toxic effects of airborne pollutant particles on one hand and for evaluating efficacy of inhalant pharmaceutical aerosols on the other side. Due to the geometric complexity and time-dependency of respiratory tracks, the correct prediction of the particle transport and deposition in the lung airway has been studied with experimental and computational approaches. The human alveolar duct, which connects the alveoli to the bronchioles of the lung, is recently the subject of interest within mathematical modeling because of its implications to drug delivery and ingestion of pollutants. Series of computational approaches have been performed to model the entire lung using 1-dimensional and “trumpet” model analyses [1,2]. Although these models represent with reasonable approximation of the regional particle deposition characteristics, they do not account for the local intricacy of particle transport and deposition in the acinus region, consisting of the alveolar duct and alveoli.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography