Journal articles on the topic 'Phase change hysteresis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Phase change hysteresis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lu, Dingyu, Xiaofeng Xu, Xuelai Zhang, Wenhao Xie, and Yintao Gao. "Study on Influencing Factors of Phase Transition Hysteresis in the Phase Change Energy Storage." Materials 15, no. 8 (2022): 2775. http://dx.doi.org/10.3390/ma15082775.
Full textCaravelli, Francesco, Gia-Wei Chern, and Cristiano Nisoli. "Artificial spin ice phase-change memory resistors." New Journal of Physics 24, no. 2 (2022): 023020. http://dx.doi.org/10.1088/1367-2630/ac4c0a.
Full textMeyers, Jeremy P. "Hysteresis and Phase Change in Electrochemical Materials." ECS Transactions 16, no. 13 (2019): 167–73. http://dx.doi.org/10.1149/1.2987768.
Full textGamisch, Sebastian, and Stefan Gschwander. "Modeling of phase change hysteresis during partial phase change with the “shift”-method." Journal of Physics: Conference Series 2766, no. 1 (2024): 012231. http://dx.doi.org/10.1088/1742-6596/2766/1/012231.
Full textGoderis, Maité, Adam Buruzs, Fabrizia Giordano, Tilman Barz, Wim Beyne, and Michel De Paepe. "Numerical modelling of thermal hysteresis in melting and solidification of phase change materials." Journal of Physics: Conference Series 2766, no. 1 (2024): 012227. http://dx.doi.org/10.1088/1742-6596/2766/1/012227.
Full textAbrahams, S. C., J. Ravez, H. Ritter, and J. Ihringer. "Structure–property correlation over five phases and four transitions in Pb5Al3F19." Acta Crystallographica Section B Structural Science 59, no. 5 (2003): 557–74. http://dx.doi.org/10.1107/s0108768103011509.
Full textHu, Yue, Rui Guo, Per Kvols Heiselberg, and Hicham Johra. "Modeling PCM Phase Change Temperature and Hysteresis in Ventilation Cooling and Heating Applications." Energies 13, no. 23 (2020): 6455. http://dx.doi.org/10.3390/en13236455.
Full textZastawna-Rumin, Anna, Tomasz Kisilewicz, and Umberto Berardi. "Novel Simulation Algorithm for Modeling the Hysteresis of Phase Change Materials." Energies 13, no. 5 (2020): 1200. http://dx.doi.org/10.3390/en13051200.
Full textKhosravi, Arash, Matteo Zucchini, Adriano Mancini, and Davide Neri. "Continuous Third Phase Fruit Monitoring in Olive with Regulated Deficit Irrigation to Set a Quantitative Index of Water Stress." Horticulturae 8, no. 12 (2022): 1221. http://dx.doi.org/10.3390/horticulturae8121221.
Full textAiki, T., E. Minchev, and T. Okazaki. "Mathematical models for phase change problems with hysteresis effect." Nonlinear Analysis: Theory, Methods & Applications 63, no. 5-7 (2005): e1185-e1198. http://dx.doi.org/10.1016/j.na.2005.03.089.
Full textZastawna-Rumin, Anna, and Katarzyna Nowak. "Effects of Neglecting PCM Hysteresis While Making Simulation Calculations of a Building Located in Polish Climatic Conditions." Applied Sciences 11, no. 19 (2021): 9166. http://dx.doi.org/10.3390/app11199166.
Full textLi, Yan Shan, Shu Jun Wang, Hong Yan Liu, Wan Gang Zheng, Huan Qing Ma, and Fan Bin Meng. "Recent Advances in Form-Stable Phase Change Materials of Polyethylene Glycol." Advanced Materials Research 850-851 (December 2013): 164–68. http://dx.doi.org/10.4028/www.scientific.net/amr.850-851.164.
Full textESIPOVA, N. E., S. V. ITSKOV, and V. D. SOBOLEV. "CONTACT ANGLE HYSTERESIS ON SOLID CRYSTALLINE SURFACES." Коллоидный журнал 85, no. 2 (2023): 158–66. http://dx.doi.org/10.31857/s0023291222600602.
Full textJogineedi, Rohit, Kaushik Biswas, and Som Shrestha. "Experimental Study of the Behavior of Phase Change Materials during Interrupted Phase Change Processes." Energies 14, no. 23 (2021): 8021. http://dx.doi.org/10.3390/en14238021.
Full textKhosravi, Arash, Matteo Zucchini, Veronica Giorgi, Adriano Mancini, and Davide Neri. "Continuous Monitoring of Olive Fruit Growth by Automatic Extensimeter in Response to Vapor Pressure Deficit from Pit Hardening to Harvest." Horticulturae 7, no. 10 (2021): 349. http://dx.doi.org/10.3390/horticulturae7100349.
Full textOster, Linda M., Jake Shechter, Benjamin Strain, Manisha Shivrayan, Sankaran Thai Thayumanavan, and Jennifer L. Ross. "Controlling Liquid Crystal Configuration and Phase Using Multiple Molecular Triggers." Molecules 27, no. 3 (2022): 878. http://dx.doi.org/10.3390/molecules27030878.
Full textMashirov A.V., Musabirov I. I., Anikin M. S., et al. "Homogenization annealing and magnetic properties of a sample of the Laves phase GdNi-=SUB=-2-=/SUB=-." Physics of the Solid State 64, no. 14 (2022): 2270. http://dx.doi.org/10.21883/pss.2022.14.54320.13s.
Full textSerikawa, Mao, Kensaku Mabuchi, Makoto Satoh, Yoshinobu Nozue, Yoshihiko Hayashi, and Masahiro Yokoyama. "Measurement of full-scale phase change material products considering hysteresis." Applied Thermal Engineering 192 (June 2021): 116895. http://dx.doi.org/10.1016/j.applthermaleng.2021.116895.
Full textGreen, Nicolas G., and Xu Fang. "A Modified Maxwell Garnett Model: Hysteresis in phase change materials." Journal of Physics: Conference Series 1322 (October 2019): 012038. http://dx.doi.org/10.1088/1742-6596/1322/1/012038.
Full textSzilard, D., W. J. M. Kort-Kamp, F. S. S. Rosa, F. A. Pinheiro, and C. Farina. "Hysteresis in the spontaneous emission induced by VO2 phase change." Journal of the Optical Society of America B 36, no. 4 (2019): C46. http://dx.doi.org/10.1364/josab.36.000c46.
Full textFrame, James D., Nicolas G. Green, and Xu Fang. "Modified Maxwell Garnett model for hysteresis in phase change materials." Optical Materials Express 8, no. 7 (2018): 1988. http://dx.doi.org/10.1364/ome.8.001988.
Full textMasche, M., L. Ianniciello, J. Tušek, and K. Engelbrecht. "Impact of hysteresis on caloric cooling performance." International Journal of Refrigeration 121 (October 13, 2020): 302–12. https://doi.org/10.1016/j.ijrefrig.2020.10.012.
Full textTaranenko, D. "INCREASING THE ENERGY EFFICIENCY OF WALLS BY INCLUDING PHASE CHANGE MATERIALS IN THEIR STRUCTURE." Bulletin of Belgorod State Technological University named after. V. G. Shukhov 10, no. 5 (2025): 18–29. https://doi.org/10.34031/2071-7318-2025-10-5-18-29.
Full textLongbiao, Li. "A thermomechanical fatigue hysteresis-based damage evolution model for fiber-reinforced ceramic–matrix composites." International Journal of Damage Mechanics 28, no. 3 (2018): 380–403. http://dx.doi.org/10.1177/1056789518772162.
Full textAfremov, Leonid L., and Ilia G. Iliushin. "The Effect of Mechanical Stresses on the Coercive Force of the System of Two-Phase Interacting Nanoparticles." Solid State Phenomena 215 (April 2014): 89–94. http://dx.doi.org/10.4028/www.scientific.net/ssp.215.89.
Full textKurazhkovskaya, Nadezhda, Boris Klain, Oleg Zotov, and Alexander Kurazhkovskii. "Hysteresis cycles and invariance of the Dst index form during geomagnetic storm development." Solnechno-Zemnaya Fizika 11, no. 2 (2025): 45–55. https://doi.org/10.12737/szf-112202504.
Full textQue, Longlei, and Xuelai Zhang. "Experimental investigations on the thermal performance and phase change hysteresis of composite phase change material Na2HPO4·12H2O/SiO2." Journal of Energy Storage 54 (October 2022): 105360. http://dx.doi.org/10.1016/j.est.2022.105360.
Full textChristie, R. J., P. K. Wu, P. Photinos, and S. C. Abrahams. "Phase transitions and ferroelectricity in NaSb3F10." Journal of Applied Crystallography 42, no. 1 (2008): 58–62. http://dx.doi.org/10.1107/s0021889808036182.
Full textBrener, R., and H. Shechter. "Intramolecular Rotational Phase-Transition in Bulk and Adsorbed Fe(CO)5 on (0001) Graphite*." Zeitschrift für Naturforschung A 43, no. 10 (1988): 855–58. http://dx.doi.org/10.1515/zna-1988-1004.
Full textBu, Wen Shao, Lei Lei Xu, Xian Bo Wang, and Xin Win Niu. "Double-Hysteresis Current Control Strategy of PWM Rectifier." Applied Mechanics and Materials 433-435 (October 2013): 1037–44. http://dx.doi.org/10.4028/www.scientific.net/amm.433-435.1037.
Full textHsu, Ting-Heng, Chieh-Hsuan Chung, Feng-Ju Chung, Chun-Che Chang, Ming-Chang Lu, and Yu-Lun Chueh. "Thermal hysteresis in phase-change materials: Encapsulated metal alloy core-shell microparticles." Nano Energy 51 (September 2018): 563–70. http://dx.doi.org/10.1016/j.nanoen.2018.06.021.
Full textМаширов, А. В., И. И. Мусабиров, М. С. Аникин та ін. "Гомогенизационный отжиг и магнитные свойства образца фазы Лавеса GdNi-=SUB=-2-=/SUB=-". Физика твердого тела 63, № 12 (2021): 1994. http://dx.doi.org/10.21883/ftt.2021.12.51655.13s.
Full textSaito, Naoki, Toshiyuki Satoh, and Norihiko Saga. "Double Air Chambers Pneumatic Artificial Muscle and Non-Hysteresis Position Control." Actuators 13, no. 8 (2024): 282. http://dx.doi.org/10.3390/act13080282.
Full textSuleimenov, I. E., O. Guven, G. A. Mun, et al. "Hysteresis Effects During the Phase Transition in Solutions of Temperature Sensitive Polymers." Eurasian Chemico-Technological Journal 19, no. 1 (2017): 41. http://dx.doi.org/10.18321/ectj501.
Full textChen, Xin, Vladimir Shvartsman, Doru C. Lupascu, and Q. M. Zhang. "Comment on “Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures” by G. Vats, A. Kumar, N. Ortega, C. R. Bowen and R. S. Katiyar, Energy Environ. Sci., 2016, 9, 1335." Energy & Environmental Science 14, no. 3 (2021): 1612–14. http://dx.doi.org/10.1039/d0ee02548h.
Full textNikitin, Sergey, Andrey Smirnov, Anatoly Bogdanov, and Ioulia Ovchenkova. "The transformation of the magnetostructural phase transition with Ti addition in Gd5Si2Ge2." EPJ Web of Conferences 185 (2018): 05006. http://dx.doi.org/10.1051/epjconf/201818505006.
Full textSzilard, Daniela, Patrícia P. Abrantes, Felipe A. Pinheiro, Felipe S. S. Rosa, Carlos Farina, and Wilton J. M. Kort-Kamp. "Optical Forces on an Oscillating Dipole Near VO2 Phase Transition." Universe 7, no. 6 (2021): 159. http://dx.doi.org/10.3390/universe7060159.
Full textClerici, Davide, Francesco Mocera, and Aurelio Somà. "Experimental Characterization of Lithium-Ion Cell Strain Using Laser Sensors." Energies 14, no. 19 (2021): 6281. http://dx.doi.org/10.3390/en14196281.
Full textKozlovskiy, Artem, Jumat Kargin, Malik Kokarev, and Daut Mukhambetov. "Study of the iron nanoparticles phase transformation during thermal annealing." Chemical Bulletin of Kazakh National University, no. 1 (March 31, 2017): 16–25. http://dx.doi.org/10.15328/cb796.
Full textBan, H., D. Gal, S. Motrja, and A. Molnar. "Hysteresis phenomena in Cd2P2S6 layered crystals." Low Temperature Physics 51, no. 1 (2025): 49–54. https://doi.org/10.1063/10.0034644.
Full textIvanov, Igor, and Oksana Ivanova. "Phase Transitions in Ion-Exchange Materials during the Water Vapor Sorption." EPJ Web of Conferences 248 (2021): 01003. http://dx.doi.org/10.1051/epjconf/202124801003.
Full textHan, Xi, Yang Bai, and Li Jie Qiao. "The Electrocaloric Effect of BaTiO3 Ceramics Using Hydrothermal Synthesized Nano-Sized Starting Powders." Advanced Materials Research 624 (December 2012): 138–41. http://dx.doi.org/10.4028/www.scientific.net/amr.624.138.
Full textSerikawa, Mao, Makoto Satoh, Masayuki Mae, Yoshinobu Nozue, and Yoshihiko Hayashi. "Numerical models of heat storage with respect to phase change materials considering hysteresis." Journal of Energy Storage 55 (November 2022): 105758. http://dx.doi.org/10.1016/j.est.2022.105758.
Full textNguyen, Hai Yen, Xuan Hau Kieu, Huy Ngoc Nguyen, et al. "Structure and magnetic properties of Ni–Mn–Ga shape memory alloys." Advances in Natural Sciences: Nanoscience and Nanotechnology 13, no. 1 (2022): 015014. http://dx.doi.org/10.1088/2043-6262/ac5cb4.
Full textNishikawa, K., S. Takakura, M. Nakatake, M. Yoshimura, and Y. Watanabe. "Effect of surface modification by Ar+ ion irradiation on thermal hysteresis of VO2." Journal of Applied Physics 133, no. 4 (2023): 045305. http://dx.doi.org/10.1063/5.0132957.
Full textLi, Yongtao, Shiyou Zheng, Fang Fang, Hanping Zhang, Qingan Zhang, and Dalin Sun. "Pressure hysteresis in the TiMn1.5Vx-H2 (x = 0.1–0.5) system." Journal of Materials Research 24, no. 9 (2009): 2886–91. http://dx.doi.org/10.1557/jmr.2009.0338.
Full textAharrouch, Rachid, Karima El Kihel, Mohamed Madani, Nabil Hachem, Amer Lafhal, and Mohammed El Bouziani. "Magnetic properties and hysteresis behavior of a ferrimagnetic mixed spin-3/2 and spin-5/2 Ising nanowire." Multidiscipline Modeling in Materials and Structures 16, no. 5 (2020): 1261–76. http://dx.doi.org/10.1108/mmms-11-2019-0194.
Full textSamulionis, Vytautas, Juras Banys, and Yulian Vysochanskii. "Ultrasonic Relaxation in Phase Transition Region in Ferroelectric Semiconductors of Sn2P2S6 Family." Solid State Phenomena 184 (January 2012): 345–50. http://dx.doi.org/10.4028/www.scientific.net/ssp.184.345.
Full textRezaeealam, Behrooz, and Behzad Norouzi. "Investigating Ferroresonance Phenomenon in a Single-Phase Transformer with the Effect of Magnetic Hysteresis." Indonesian Journal of Electrical Engineering and Computer Science 2, no. 2 (2016): 248. http://dx.doi.org/10.11591/ijeecs.v2.i2.pp248-258.
Full textHsieh, C. K., and Chang-Yong Choi. "A General Analysis of Phase-Change Energy Storage for Solar Energy Applications." Journal of Solar Energy Engineering 114, no. 4 (1992): 203–11. http://dx.doi.org/10.1115/1.2930007.
Full text