To see the other types of publications on this topic, follow the link: Phase Change Random Access Memory.

Journal articles on the topic 'Phase Change Random Access Memory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Phase Change Random Access Memory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

SONG, ZhiTang, LiangCai WU, Feng RAO, SongLin FENG, and XiLin ZHOU. "Study of phase change materials for phase change random access memory." SCIENTIA SINICA Physica, Mechanica & Astronomica 46, no. 10 (September 6, 2016): 107309. http://dx.doi.org/10.1360/sspma2016-00216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Raoux, S., G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen, R. M. Shelby, M. Salinga, et al. "Phase-change random access memory: A scalable technology." IBM Journal of Research and Development 52, no. 4.5 (July 2008): 465–79. http://dx.doi.org/10.1147/rd.524.0465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Hock, textscShi Luping, textscZhao Rong, textscYang Hongxin, textscLim Kian Guan, textscLi Jianming, and textscChong Tow Chong. "Elevated-Confined Phase-Change Random Access Memory Cells." Japanese Journal of Applied Physics 49, no. 4 (April 20, 2010): 04DD16. http://dx.doi.org/10.1143/jjap.49.04dd16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kim, Young-Tae, Young-Nam Hwang, Keun-Ho Lee, Se-Ho Lee, Chang-Wook Jeong, Su-Jin Ahn, Fai Yeung, et al. "Programming Characteristics of Phase Change Random Access Memory Using Phase Change Simulations." Japanese Journal of Applied Physics 44, no. 4B (April 21, 2005): 2701–5. http://dx.doi.org/10.1143/jjap.44.2701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Qiang, Gang Niu, Wei Ren, Ruobing Wang, Xiaogang Chen, Xi Li, Zuo‐Guang Ye, Ya‐Hong Xie, Sannian Song, and Zhitang Song. "Phase Change Random Access Memory for Neuro‐Inspired Computing." Advanced Electronic Materials 7, no. 6 (March 17, 2021): 2001241. http://dx.doi.org/10.1002/aelm.202001241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kim, Sung Soon, Jun Hyun Bae, Woo Hyuck Do, Kyun Ho Lee, Young Tae Kim, Young Kwan Park, Jeong Taek Kong, and Hong Lim Lee. "Thermal Stress Model for Phase Change Random Access Memory." Solid State Phenomena 124-126 (June 2007): 37–40. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.37.

Full text
Abstract:
Thermal stress model considering the effect of phase transformation is proposed for Phase-Change Random Access Memory (PRAM). The results of simulation show that the high level of stress is generated on the junction where Ge2Sb2Te5(GST), TiN and SiO2 meet together. The high level of stress can also be observed in the interface between TiN and SiO2. From simulation results, it can be predictable that delamination between GST and TiN can occur during operation of PRAM. It is expected that the simulation model, which has been developed in this research, is very useful tool for PRAM device design.
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Kyung Soo, Jongho Lee, and Il Hwan Cho. "Highly Scalable Vertical Channel Phase Change Random Access Memory." Japanese Journal of Applied Physics 50, no. 5R (May 1, 2011): 050206. http://dx.doi.org/10.7567/jjap.50.050206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Miao, X. S., L. P. Shi, H. K. Lee, J. M. Li, R. Zhao, P. K. Tan, K. G. Lim, H. X. Yang, and T. C. Chong. "Temperature Dependence of Phase-Change Random Access Memory Cell." Japanese Journal of Applied Physics 45, no. 5A (May 9, 2006): 3955–58. http://dx.doi.org/10.1143/jjap.45.3955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, Kyung Soo, Jongho Lee, and Il Hwan Cho. "Highly Scalable Vertical Channel Phase Change Random Access Memory." Japanese Journal of Applied Physics 50, no. 5 (May 6, 2011): 050206. http://dx.doi.org/10.1143/jjap.50.050206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Jung-Min, Yuta Saito, Yuji Sutou, Junichi Koike, Jin Won Jung, Masashi Sahashi, and Yun-Heub Song. "Multiple phase change structure for the scalable phase change random access memory array." Japanese Journal of Applied Physics 53, no. 4 (March 28, 2014): 041801. http://dx.doi.org/10.7567/jjap.53.041801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Yun, Jae-Jin, and Won-Jong Lee. "Phase Change Characteristics of InxSb40-xTe60Chalcogenide Alloy for Phase Change Random Access Memory." Japanese Journal of Applied Physics 50, no. 7R (July 1, 2011): 071201. http://dx.doi.org/10.7567/jjap.50.071201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Yun, Jae-Jin, and Won-Jong Lee. "Phase Change Characteristics of InxSb40-xTe60Chalcogenide Alloy for Phase Change Random Access Memory." Japanese Journal of Applied Physics 50, no. 7 (July 20, 2011): 071201. http://dx.doi.org/10.1143/jjap.50.071201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Giraud, V., J. Cluzel, V. Sousa, A. Jacquot, A. Dauscher, B. Lenoir, H. Scherrer, and S. Romer. "Thermal characterization and analysis of phase change random access memory." Journal of Applied Physics 98, no. 1 (July 2005): 013520. http://dx.doi.org/10.1063/1.1944910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Son, Ji Hoon, HongKyw Choi, Nakwon Jang, Hong Seung Kim, Dong Young Yi, and Seong Hwan Lee. "Size Effect of Nano Scale Phase Change Random Access Memory." Journal of Nanoscience and Nanotechnology 10, no. 5 (May 1, 2010): 3165–69. http://dx.doi.org/10.1166/jnn.2010.2276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Qiao, Baowei, Jie Feng, Yunfeng Lai, Yanfei Cai, Yinyin Lin, Ting-ao Tang, Bingchu Cai, and Bomy Chen. "Si–Sb–Te films for phase-change random access memory." Semiconductor Science and Technology 21, no. 8 (June 28, 2006): 1073–76. http://dx.doi.org/10.1088/0268-1242/21/8/016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Sarwat, Syed Ghazi. "Materials science and engineering of phase change random access memory." Materials Science and Technology 33, no. 16 (July 18, 2017): 1890–906. http://dx.doi.org/10.1080/02670836.2017.1341723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ren, W., X. Z. Jing, Y. H. Xiang, H. B. Xiao, B. C. Zhang, B. Liu, Z. T. Song, et al. "(Invited) Thin Film Challenges of Phase Change Random Access Memory." ECS Transactions 52, no. 1 (March 8, 2013): 461–65. http://dx.doi.org/10.1149/05201.0461ecst.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hongxin, Yang, Shi Luping, Lee Hock Koon, Zhao Rong, and Chong Tow Chong. "Endurance Enhancement of Elevated-Confined Phase Change Random Access Memory." Japanese Journal of Applied Physics 51, no. 2S (February 1, 2012): 02BD09. http://dx.doi.org/10.7567/jjap.51.02bd09.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Chong, T. C., L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, H. K. Lee, X. S. Miao, A. Y. Du, and C. H. Tung. "Phase change random access memory cell with superlattice-like structure." Applied Physics Letters 88, no. 12 (March 20, 2006): 122114. http://dx.doi.org/10.1063/1.2181191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Hongxin, Yang, Shi Luping, Lee Hock Koon, Zhao Rong, and Chong Tow Chong. "Endurance Enhancement of Elevated-Confined Phase Change Random Access Memory." Japanese Journal of Applied Physics 51, no. 2 (February 20, 2012): 02BD09. http://dx.doi.org/10.1143/jjap.51.02bd09.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Gu, Yifeng, Sannian Song, Zhitang Song, Suyuan Bai, Yan Cheng, Zhonghua Zhang, Bo Liu, and Songlin Feng. "Phase-change material Ge0.61Sb2Te for application in high-speed phase change random access memory." Applied Physics Letters 102, no. 10 (March 11, 2013): 103110. http://dx.doi.org/10.1063/1.4795595.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Liu, Bo, Tao Wei, Jing Hu, Wanfei Li, Yun Ling, Qianqian Liu, Miao Cheng, and Zhitang Song. "Universal memory based on phase-change materials: From phase-change random access memory to optoelectronic hybrid storage*." Chinese Physics B 30, no. 5 (May 1, 2021): 058504. http://dx.doi.org/10.1088/1674-1056/abeedf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kozyukhin, S. A., A. A. Sherchenkov, V. M. Novotortsev, and S. P. Timoshenkov. "Phase-change-memory materials based on system chalcogenides and their application in phase-change random-access memory." Nanotechnologies in Russia 6, no. 3-4 (April 2011): 227–36. http://dx.doi.org/10.1134/s1995078011020121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Gu, Yifeng, Sannian Song, Zhitang Song, Yan Cheng, Xiaofeng Du, Bo Liu, and Songlin Feng. "SixSb2Te materials with stable phase for phase change random access memory applications." Journal of Applied Physics 111, no. 5 (March 2012): 054319. http://dx.doi.org/10.1063/1.3693557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Priya, Bhukya Krishna, and N. Ramasubramanian. "Improving the Lifetime of Phase Change Memory by Shadow Dynamic Random Access Memory." International Journal of Service Science, Management, Engineering, and Technology 12, no. 2 (March 2021): 154–68. http://dx.doi.org/10.4018/ijssmet.2021030109.

Full text
Abstract:
Emerging NVM are replacing the conventional memory technologies due to their huge cell density and low energy consumption. Restricted writes is one of the major drawbacks to adopt PCM memories in real-time environments. The non-uniform writes and process variations can damage the memory cell with intensive writes, as PCM memory cells are having restricted write endurance. To prolong the lifetime of a PCM, an extra DRAM shadow memory has been added to store the writes that comes to the PCM and to level out the wearing that occurs on the PCM. An extra address directory will store the address of data written to the DRAM and a counter is used to count the number of times the blocks are written into. Based upon the counter values, the data will be written from DRAM to the PCM. The data is written to the DRAM from the PCM, based on the data requirement. Experimental results show the reduction in overall writes in a PCM, which in turn improves the lifetime of a PCM by 5% with less hardware and power overhead.
APA, Harvard, Vancouver, ISO, and other styles
26

Zhao, Zihan, Sicong Hua, Xiao Su, Bo Shen, Sannian Song, Zhitang Song, Weihua Wu, and Jiwei Zhai. "The optimization effect of titanium on the phase change properties of SnSb4 thin films for phase change memory applications." CrystEngComm 22, no. 30 (2020): 5002–9. http://dx.doi.org/10.1039/d0ce00697a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wu, Liangcai, Xilin Zhou, Zhitang Song, Min Zhu, Yan Cheng, Feng Rao, Sannian Song, Bo Liu, and Songlin Feng. "Sb-rich Si–Sb–Te Phase-Change Material for Phase-Change Random Access Memory Applications." IEEE Transactions on Electron Devices 58, no. 12 (December 2011): 4423–26. http://dx.doi.org/10.1109/ted.2011.2167152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gu, Yifeng, Yan Cheng, Sannian Song, Ting Zhang, Zhitang Song, Xuyan Liu, Xiaofeng Du, Bo Liu, and Songlin Feng. "Advantages of SixSb2Te phase-change material and its applications in phase-change random access memory." Scripta Materialia 65, no. 7 (October 2011): 622–25. http://dx.doi.org/10.1016/j.scriptamat.2011.06.045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Gu, Yifeng, Zhitang Song, Ting Zhang, Bo Liu, and Songlin Feng. "Novel phase-change material GeSbSe for application of three-level phase-change random access memory." Solid-State Electronics 54, no. 4 (April 2010): 443–46. http://dx.doi.org/10.1016/j.sse.2009.11.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Bae, Junsoo, Kyuman Hwang, Kwangho Park, Seongbu Jeon, Dae-hwan Kang, Soonoh Park, Juhyeon Ahn, Seoksik Kim, Gitae Jeong, and Chilhee Chung. "Microstructural Characterization in Reliability Measurement of Phase Change Random Access Memory." Japanese Journal of Applied Physics 50, no. 4S (April 1, 2011): 04DD12. http://dx.doi.org/10.7567/jjap.50.04dd12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Jin, Bo, Taekyung Lim, Sanghyun Ju, Marat I. Latypov, Hyoung Seop Kim, M. Meyyappan, and Jeong-Soo Lee. "Ga-doped indium oxide nanowire phase change random access memory cells." Nanotechnology 25, no. 5 (January 9, 2014): 055205. http://dx.doi.org/10.1088/0957-4484/25/5/055205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kim, Kyung Soo, and Il Hwan Cho. "Disturbance Characteristics of Vertical Channel Phase Change Random Access Memory Array." Japanese Journal of Applied Physics 51, no. 8R (August 1, 2012): 084302. http://dx.doi.org/10.7567/jjap.51.084302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Wen, Jing, and Lei Wang. "Interfacial Resistance Characterization for Blade-Type Phase Change Random Access Memory." IEEE Transactions on Electron Devices 67, no. 3 (March 2020): 968–75. http://dx.doi.org/10.1109/ted.2020.2965187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Lu, Yegang, Sannian Song, Zhitang Song, Liangcai Wu, Aodong He, Yuefeng Gong, Feng Rao, and Bo Liu. "Superlattice-like electrode for low-power phase-change random access memory." Applied Physics Letters 101, no. 11 (September 10, 2012): 113104. http://dx.doi.org/10.1063/1.4751258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bae, Junsoo, Kyuman Hwang, Kwangho Park, Seongbu Jeon, Dae-hwan Kang, Soonoh Park, Juhyeon Ahn, Seoksik Kim, Gitae Jeong, and Chilhee Chung. "Microstructural Characterization in Reliability Measurement of Phase Change Random Access Memory." Japanese Journal of Applied Physics 50, no. 4 (April 20, 2011): 04DD12. http://dx.doi.org/10.1143/jjap.50.04dd12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kim, Kyung Soo, and Il Hwan Cho. "Disturbance Characteristics of Vertical Channel Phase Change Random Access Memory Array." Japanese Journal of Applied Physics 51 (July 31, 2012): 084302. http://dx.doi.org/10.1143/jjap.51.084302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Raoux, Simone, Robert M. Shelby, Jean Jordan-Sweet, Becky Munoz, Martin Salinga, Yi-Chou Chen, Yen-Hao Shih, Erh-Kun Lai, and Ming-Hsiu Lee. "Phase change materials and their application to random access memory technology." Microelectronic Engineering 85, no. 12 (December 2008): 2330–33. http://dx.doi.org/10.1016/j.mee.2008.08.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Yang, Hongxin, textscShi Luping, textscLee Hock Koon, textscZhao Rong, textscLi Jianming, textscLim Kian Guan, and textscChong Tow Chong. "Plastic Deformation and Failure Analysis of Phase Change Random Access Memory." Japanese Journal of Applied Physics 48, no. 4 (April 20, 2009): 04C064. http://dx.doi.org/10.1143/jjap.48.04c064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kwon, Yongwoo, Byoungnam Park, and Dae-Hwan Kang. "Scaling of Data Retention Statistics in Phase-Change Random Access Memory." IEEE Electron Device Letters 36, no. 5 (May 2015): 454–56. http://dx.doi.org/10.1109/led.2015.2414952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Fetahovic, Irfan, Edin Dolicanin, Djordje Lazarevic, and Boris Loncar. "Overview of radiation effects on emerging non-volatile memory technologies." Nuclear Technology and Radiation Protection 32, no. 4 (2017): 381–92. http://dx.doi.org/10.2298/ntrp1704381f.

Full text
Abstract:
In this paper we give an overview of radiation effects in emergent, non-volatile memory technologies. Investigations into radiation hardness of resistive random access memory, ferroelectric random access memory, magneto-resistive random access memory, and phase change memory are presented in cases where these memory devices were subjected to different types of radiation. The obtained results proved high radiation tolerance of studied devices making them good candidates for application in radiation-intensive environments.
APA, Harvard, Vancouver, ISO, and other styles
41

An, Jun-seop, Chul-min Choi, Satoshi Shindo, Yuji Sutou, Yong-woo Kwon, and Yun-heub Song. "Impact of contact resistance on memory window in phase-change random access memory (PCRAM)." Journal of Computational Electronics 15, no. 4 (October 21, 2016): 1570–76. http://dx.doi.org/10.1007/s10825-016-0905-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Sun Jing-Yang, Wang Dong-Ming, L Ye-Gang, Wang Miao, Wang Yi-Man, Shen Xiang, Wang Guo-Xiang, and Dai Shi-Xun. "Structure and phase change in Cu-Ge3Sb2Te5 films for use in phase change random access memory." Acta Physica Sinica 64, no. 1 (2015): 016103. http://dx.doi.org/10.7498/aps.64.016103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zhang, Yi, Jie Feng, Hao Wang, Bingchu Cai, and Bomy Chen. "Modeling of Two Different Operation Modes of Phase Change Material for Phase-Change Random-Access Memory." Japanese Journal of Applied Physics 44, no. 4A (April 8, 2005): 1687–92. http://dx.doi.org/10.1143/jjap.44.1687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Gyanathan, Ashvini, and Yee-Chia Yeo. "Phase-Change Random Access Memory With Multilevel Resistances Implemented Using a Dual Phase-Change Material Stack." IEEE Transactions on Electron Devices 59, no. 11 (November 2012): 2910–16. http://dx.doi.org/10.1109/ted.2012.2211881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Cheng, Yan, Yonghui Zheng, and Zhitang Song. "Reversible switching in bicontinuous structure for phase change random access memory application." Nanoscale 13, no. 8 (2021): 4678–84. http://dx.doi.org/10.1039/d0nr09139a.

Full text
Abstract:
A 3D nano-bicontinuous structure consisting of a reversible Sb2Te3 phase and amorphous Si phase is visualized. The amorphous Si frame is stable and the Sb2Te3 nano areas switch between the a- and f-structure.
APA, Harvard, Vancouver, ISO, and other styles
46

Do, Woo-Hyuk, Sung-Soon Kim, Jun-Hyun Bae, Jun-Ho Cha, Kyung-Ho Kim, Young-Kook Lee, and Hong-Lim Lee. "Evaluation of Phase Transition Behavior of Ge2Sb2Te5Thin Film for Phase Change Random Access Memory." Journal of the Korean Ceramic Society 44, no. 1 (January 31, 2007): 18–22. http://dx.doi.org/10.4191/kcers.2007.44.1.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ryu, Seung-Wook, Young-Bae Ahn, Jong-Ho Lee, and Hyeong-Joon Kim. "Thermal Stability of SiO2Doped Ge2Sb2Te5for Application in Phase Change Random Access Memory." JSTS:Journal of Semiconductor Technology and Science 11, no. 3 (September 30, 2011): 146–52. http://dx.doi.org/10.5573/jsts.2011.11.3.146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Park, Chun Woong, Chongdae Park, Woo Young Choi, Dongsun Seo, Cherlhyun Jeong, and Il Hwan Cho. "Scaling Down Characteristics of Vertical Channel Phase Change Random Access Memory (VPCRAM)." JSTS:Journal of Semiconductor Technology and Science 14, no. 1 (February 28, 2014): 48–52. http://dx.doi.org/10.5573/jsts.2014.14.1.048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lian, Xiaojuan, and Lei Wang. "Boolean Logic Function Realized by Phase-Change Blade Type Random Access Memory." IEEE Transactions on Electron Devices 69, no. 4 (April 2022): 1849–57. http://dx.doi.org/10.1109/ted.2022.3152981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Oh, H., B. Cho, W. Y. Cho, S. Kang, B. Choi, H. Kim, K. Kim, et al. "Enhanced Write Performance of a 64-Mb Phase-Change Random Access Memory." IEEE Journal of Solid-State Circuits 41, no. 1 (January 2006): 122–26. http://dx.doi.org/10.1109/jssc.2005.859016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography