Dissertations / Theses on the topic 'Phase-field model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Phase-field model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Agrawal, Vaibhav. "Multiscale Phase-field Model for Phase Transformation and Fracture." Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/850.
Full textShe, Minggang. "Phase field model for precipitates in crystals." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/46020.
Full textIncludes bibliographical references (p. 261-270).
Oxygen precipitate caused by oxygen supersaturation is the most common and important defects in Czochralski (CZ) silicon. The presence of oxygen precipitate in silicon wafer has both harmful and beneficial effects on the microelectronic device production. Oxygen precipitates are useful for gathering metallic contaminants away from the device regions and for increasing the mechanical strength of the wafer [Borghesi, 1995], but they also can destroy the electrical and mechanical characteristics of the semiconductor and microelectronic devices [Abe, 1985; Kolbesen, 1985]. The understanding of the mechanism of the formation and growth of the oxygen precipitates in CZ silicon is a key to improve the quality of silicon wafer. The goal of this thesis is to provide a full understanding of the growth of an isolated oxygen precipitate in CZ silicon and its morphological evolution by means of phase-field method, and to gain the insight of the morphological transition of the oxygen precipitate and the distribution of oxygen, vacancy, and self-interstitial around the single oxygen precipitate. The traditional approach to simulate multiphase system is the sharp interface model. Sharp interface model requires tracking the interface between phases, which make the simulation much difficult and complicate. Phase-field model offers an alternative approach for predicting mesoscale morphological and microstructure evolution of inhomogeneous multiphase system. The most significant computational advantage of a phase-field model is that explicit tracking of the interface is unnecessary. In this thesis, the phase-field model is applied to simulate the evolution of oxygen precipitates in CZ silicon. A phase-field model for a two-component inhomogeneous system was first derived to set up the framework of phase-field method and a dynamically adaptive finite element method also was built to specifically solve phase-field equations. This model was used to investigate the effects of interfacial and elastic properties on the growth of a single precipitate, coarsening of two precipitates, and competitive growth of multiple precipitates. For an isolated precipitate growth, both elastic energy and interfacial energy affect the precipitate morphological evolution.
(cont.) Numerical results show the shape of the precipitate is determined by the relative contributions of elastic energy and interfacial energy, the degree of elastic anisotropy, and the degree of interfacial anisotropy. A dimensionless length scale LS3 was defined to represent the relative contributions of the interfacial energy and elastic energy. For large LS3 (LS3 > 5), the anisotropic elasticity plays a dominant role and precipitate evolves to held the elastic anisotropy even if the interfacial anisotropy is very strong. However, if LS3 ~1 or elasticity is isotropic, the strong anisotropy ([epsilon]4 =/> 0.05 ) of the interface will be the dominant factor to determine the precipitate shape. The growth rate of an isolated precipitate follows the diffusion-controlled power law. The elasticity significantly decreases the precipitate growth rate, while the anisotropy of the interface does not. Coarsening of two precipitates was also explored with different interfacial and elastic properties. The results also show that both elasticity and interfacial anisotropy enhance the coarsening rate. For competitive growth of multiple precipitates, a gap was found to be developed between the precipitates because of the precipitate screening, but this gap could be destroyed by increasing the interfacial energy or introducing elastic energy. Based on the framework of the previous phase-field model, another phase-field model coupling CALPHAD thermodynamic assessment was developed to simulate the growth of the oxygen precipitate in CZ isilicon. An asymptotic analysis was performed to understand the phase-field model at the sharp interface limit and all physical principles of the solid precipitate growth problem were recovered. a Cristobalite and amorphous oxygen precipitates were calculated at different orientations and temperatures. Disk-like shape, square, ellipse, a slightly deformed sphere are reproduced for oxygen precipitates, which agrees with the experimental observations very well. In addition, the growth rates of amorphous precipitates and a cristobalite precipitates at different temperatures show that at high temperature 1100 °C, amorphous precipitate has the largest growth rate, while at low temperature 900 °C, a cristobalite precipitate grows faster.
(cont.) This qualitatively explained why different polymorphs and shapes of the oxygen precipitate were observed in experiments at different annealing temperatures.
by Minggang She.
Ph.D.
Renuka, Balakrishna Ananya. "Application of a phase-field model to ferroelectrics." Thesis, University of Oxford, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.728788.
Full textChoudhury, Abhik Narayan [Verfasser]. "Quantitative phase-field model for phase transformations in multi-component alloys / Abhik Narayan Choudhury." Karlsruhe : KIT Scientific Publishing, 2013. http://www.ksp.kit.edu.
Full textEiken, Janin [Verfasser]. "A Phase-Field Model for Technical Alloy Solidification / Janin Eiken." Aachen : Shaker, 2010. http://d-nb.info/1124364226/34.
Full textAhmad, Noor Atinah. "Phase-field model of rapid solidification of a binary alloy." Thesis, University of Southampton, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242477.
Full textKoslowski, Marisol Ortiz Michael. "A phase-field model of dislocations in ductile single crystals /." Diss., Pasadena, Calif. : California Institute of Technology, 2003. http://resolver.caltech.edu/CaltechETD:etd-05302003-094155.
Full textXu, Ying. "TWO-DIMENSIONAL SIMULATION OF SOLIDIFICATION IN FLOW FIELD USING PHASE-FIELD MODEL|MULTISCALE METHOD IMPLEMENTATION." Lexington, Ky. : [University of Kentucky Libraries], 2006. http://lib.uky.edu/ETD/ukymeen2006d00524/YingXu_Dissertation_2006.pdf.
Full textTitle from document title page (viewed on January 25, 2007). Document formatted into pages; contains: xiii, 162 p. : ill. (some col.). Includes abstract and vita. Includes bibliographical references (p. 151-157).
Baba, Karim Sidi. "Adaptive finite element computations of a double obstacle phase field model." Thesis, University of Sussex, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244349.
Full textRonquillo, David Carlos. "Magnetic-Field-Driven Quantum Phase Transitions of the Kitaev Honeycomb Model." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587035230123328.
Full textGladbach, Peter [Verfasser]. "A phase-field model of dislocations on parallel slip planes / Peter Gladbach." Bonn : Universitäts- und Landesbibliothek Bonn, 2017. http://d-nb.info/1130704823/34.
Full textLuo, Yongming [Verfasser]. "Existence and Regularity Results of a Ferroelectric Phase-Field Model / Yongming Luo." Kassel : Universitätsbibliothek Kassel, 2019. http://d-nb.info/1201508339/34.
Full textAggarwal, Raghav. "A phase field model for the gallium permeation of aluminum grain boundaries." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/115719.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 117-122).
Interfaces, such as grain boundaries, solid-liquid interfaces and solid-solid heterophase interfaces, are important features found in materials. Material properties such as fracture toughness, corrosion susceptibility and high temperature creep are influenced by grain boundary physics. The structure of grain boundaries affects their properties. In this thesis, we have developed a predictive model for a particular grain boundary structure-property relationship: the permeation of liquid gallium through aluminum grain boundaries. Liquid gallium is known to permeate through aluminum grain boundaries. The reduction in interface energy by the replacement of one Al-Al grain boundary interface with two Al-Ga interfaces drives the permeation. The speed of permeation depends on factors which affect the Al-Al grain boundary energy, such as grain boundary crystallography, applied stress, and temperature. Literature suggests two major hypotheses for the permeation mechanism: front propagation, and diffusion and coalescence. We have used phase field methods to develop a predictive model for the permeation of gallium through individual aluminum grain boundaries. The model uses location dependent grain boundary energy (LDGBE) distributions for aluminum grain boundaries to predict permeation velocities. Importantly, by changing the model's parameters, its behavior can be adjusted smoothly from front propagation, to diffusion and coalescence. We have used experimental data collected by Hugo and Hoagland, along with LDGBE maps computed by our collaborators, to infer the parameters of the phase field model. The inference has been done in a Bayesian framework, which gives us estimates of the model parameters with quantifiable uncertainty. The inferred model parameters strongly support the front propagation hypothesis. We discuss the implications of this inference and potential limitations of our methodology.
by Raghav Aggarwal.
Ph. D.
Cheng, Zifeng. "Modelling Brittle Fractures with Finite Elements: A Time-independent Phase-field Model." Thesis, Faculty of Engineering, School of Civil Engineering, 2020. https://hdl.handle.net/2123/29350.
Full textChoudhury, Abhik Narayan [Verfasser], and B. [Akademischer Betreuer] Nestler. "Quantitative phase-field model for phase transformations in multi-component alloys / Abhik Narayan Choudhury. Betreuer: B. Nestler." Karlsruhe : KIT-Bibliothek, 2012. http://d-nb.info/1021178721/34.
Full textHartley, Tina R. "An analysis of phase separation processes for stochastic and nonlocal extensions of the classical phase-field model." Fairfax, VA : George Mason University, 2008. http://hdl.handle.net/1920/3216.
Full textVita: p. 203. Thesis director: Thomas Wanner. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computational Sciences and Informatics. Title from PDF t.p. (viewed Aug. 28, 2008). Includes bibliographical references (p. 199-202). Also issued in print.
Bawana, Niyem Mawenbe. "Thermal Response in a Field Oriented Controlled Three-phase Induction Motor." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7740.
Full textWang, Donglian. "A Wavelet Galerkin solution technique for the phase field model of microstructural evolution." Thesis, University of Surrey, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250908.
Full textNowotny, Thomas. "Phase transitions and multifractal properties of random field Ising models." Doctoral thesis, Universitätsbibliothek Leipzig, 2004. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-37023.
Full textIn this work random field Ising models with quenched dichotomous symmetric random field are considered for the one-dimensional case and on the Bethe lattice. To this end the canonical partition function is reformulated to the partition function of one spin in an effective field. In the first part of the work the multifractal spectrum of this effective field is investigated, transitions in the spectrum are explained and inequalities between local and global generalized fractal dimensions are proven which allow to characterize the multifractal spectrum bei various bounds. A further part of the work is dedicated to the characterization of the measure of the local magnetization which is obtained by convolution of the measure of the effective field with itself. In this context the convolution of multifractals is investigated in a more general setup and relations between the multifractal properties of the convolution and the multifractal properties of the convoluted measures are proven. The phase transition from ferro- to paramagnetismus for the model on the Bethe lattice is investigated in the third part of the thesis. Apart from improved exact bounds for the uniqueness of the paramagnetic state essentially three criteria for the transition are developped and numerically evaluated to determine the transition line. The multifractal properties of the effective field for the model on the Bethe lattice finally turn out to be trivial because the interesting dimensions do not exist
Mohanty, Rashmi. "Phase-Field Simulation of Microstructural Development Induced by Interdiffusion Fluxes Under Multiple Gradients." Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4182.
Full textPh.D.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Materials Science & Engr PhD
Tomasi, Alessandro. "An Efficient Multigrid Scheme for Multi-phaseColour Image Segmentation by the Phase-field Model." Thesis, University of Sussex, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487904.
Full textNajem, Sara. "Generalized model for chemotactic and chemotropic effects coupled to actin dynamics: a phase field approach." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114529.
Full textL'abondance des problèmes à interface libre dans la biologie auxquels nous sommes principallement interéssés, nous a conduits à adopter une technique qui les rend relativement faciles à resoudre. Phase Field Method, utilisée pour examiner des systèmes dynamiques possédants des conditions aux limites en mouvement, resoud la diffuculté provenant de suivre leur évolution. Dans ce travail, on modèle le mouvement des neutrophiles qui sonts des cellules du système immunitaire en réponse aux signaux chimiques. Leur morphologie change dynamiquement quand ils se deplancent pour neutraliser leur cible: ce mécanisme est appelé chimiotaxie. Egalement, on propose un modèle pour le développement des cellules nerveuses induit par des médiateurs. Ce processus est nommé chémotropisme. Ce dernier, quand il est lié au mécanisme interne responsable de la polymérisation de l'actine, induit l'avancement du bout de l'axone. Finalement, on a employé la méthode pour construire un modèle généralisé qui permet de dériver les deux modèles chimiotactique et chémotropique. Ces problèmes ont été resouds en construisant des fonctionelles d'énergie libre F , capturant les caractéristiques principaux de la dynamique en fonction d'un paramètre d'order φ qui permet de dinstinguer les différentes phases du système aussi bien que les interfaces qui les séparent. Les éequations aux dérivées partielles décrivant leur evolution sont déterminées en effectuant une différenciation variationelle de F par rapport au champs φ. En suivant cette méthode, on était capable de reproduire la dynamique des morphologies en deux et trois dimensions. La contribution majeure de notre travail réside dans la réduction de la complexité de ces problèmes en suivant les équations aux dérivées partielles. Ces dernières sont liées aux mécanismes internes au niveau moléculaire dérivés dune fonctionelle généralisée F qui décrit le mouvement de la cellule ainsi que sa déformation et sa croissance.
Wallington, Jonathan Peter. "Effective field theories for correlated electrons." Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297769.
Full textGustainis, Peter. "Field induced phase transition in one dimensional Heisenberg antiferromagnet model studied using density matrix renormalization group." Thesis, University of British Columbia, 2017. http://hdl.handle.net/2429/61214.
Full textScience, Faculty of
Physics and Astronomy, Department of
Graduate
Kuhn, Charlotte [Verfasser], and Ralf [Akademischer Betreuer] Müller. "Numerical and Analytical Investigation of a Phase Field Model for Fracture / Charlotte Kuhn. Betreuer: Ralf Müller." Kaiserslautern : Technische Universität Kaiserslautern, 2013. http://d-nb.info/1035405563/34.
Full textDykhuis, Andrew Frederic. "Capturing irradiation-enhanced corrosion of zircaloy-4 with a charge-based diffusion/drift phase field model." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119029.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 389-400).
Zircaloy-4 has been used in pressurized water reactors (PWRs) for decades, and enhanced corrosion rates in reactors compared to out-of-pile have long been observed. However, the exact mechanism explaining the early departure from autoclave kinetics after 3-5 microns of oxide have formed has proved elusive. This thesis considers and evaluates a number of possible explanations for this early acceleration in kinetics. The bulk of the evidence points to Fe depletion from secondary phase particles (SPPs) as the culprit in enhancing Zircaloy-4 corrosion rates in PWRs. These new findings have been incorporated in a mechanistic finite-element phase field model of Zircaloy-4 corrosion called HOGNOSE. It accounts for both diffusion-and drift-based oxygen anion transport in Zircaloy-4 by including the effects of radiation-induced evolution of SPPs in changing the contribution of a local charge transport inequality through their depletion and release of iron. By addressing the imbalance in charged particle transport, the code can be adapted to model multiple zirconium-based alloys in autoclave and irradiated conditions with minimal parameter fitting. Rather than the typical empirical approach, HOGNOSE uses a physics-based methodology to capture the early agreement between autoclave and in-reactor data and the point at which reactor kinetics are enhanced compared to autoclave kinetics. HOGNOSE results agree fairly well with those observed in experiments for oxide thicknesses less than 10 microns, above which other enhancement mechanisms can no longer be safely ignored. HOGNOSE captures increasing amorphization with decreasing temperature, and more subtle corrosion rate enhancement at higher temperatures. Comparisons between HOGNOSE results and literature data suggest that the next focus for mechanistic modeling should consider additional neutron flux effects. To support HOGNOSE development, corrosion testing of Zircaloy-4 in steam at atmospheric pressure and 415 degrees Celsius was performed. Samples were analyzed using a focused ion beam/scanning electron microscope (FIB/SEM) to obtain oxide thickness measurements with greater temporal resolution than is widely provided by autoclave testing. Oxide thickness data was used to determine the thermal dependence of oxygen diffusivity in the oxide within HOGNOSE. HOGNOSE would also benefit from measurements of the concentrations and charge states of cation dopants in post-irradiated Zircaloy oxides to help determine whether this model is truly accurate in its physical description.
by Andrew Frederic Dykhuis.
Ph. D.
Huang, Zhida. "SIMULATION OF METAL GRAIN GROWTH IN LASER POWDER BED FUSION PROCESS USING PHASE FIELD THERMAL COUPLED MODEL." Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case1554391043588225.
Full textTanne, Erwan. "Variational phase-field models from brittle to ductile fracture : nucleation and propagation." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX088/document.
Full textPhase-field models, sometimes referred to as gradient damage, are widely used methods for the numerical simulation of crack propagation in brittle materials. Theoretical results and numerical evidences show that they can predict the propagation of a pre-existing crack according to Griffith’s criterion. For a one- dimensional problem, it has been shown that they can predict nucleation upon a critical stress, provided that the regularization parameter is identified with the material’s internal characteristic length.In this work, we draw on numerical simulations to study crack nucleation in commonly encountered geometries for which closed-form solutions are not available. We use U- and V-notches to show that the nucleation load varies smoothly from the one predicted by a strength criterion to the one of a toughness criterion when the strength of the stress concentration or singularity varies. We present validation and verification of numerical simulations for both types of geometries. We consider the problem of an elliptic cavity in an infinite or elongated domain to show that variational phase field models properly account for structural and material size effects.In a second movement, this model is extended to hydraulic fracturing. We present a validation of the model by simulating a single fracture in a large domain subject to a control amount of fluid. Then we study an infinite network of pressurized parallel cracks. Results show that the stimulation of a single fracture is the best energy minimizer compared to multi-fracking case. The last example focuses on fracturing stability regimes using linear elastic fracture mechanics for pressure driven fractures in an experimental geometry used in petroleum industry which replicates a situation encountered downhole with a borehole called burst experiment.The last part of this work focuses on ductile fracture by coupling phase-field models with perfect plasticity. Based on the variational structure of the problem we give a numerical implementation of the coupled model for parallel computing. Simulation results of a mild notch specimens are in agreement with the phenomenology of ductile fracture such that nucleation and propagation commonly reported in the literature
Tucker, Edward James Wildin. "Finite element approximations of a phase field model, based on the Cahn-Hilliard equation in the presence of an electric field and kinetics." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/14711.
Full textElliott, Richard. "Phase separation in mixed bilayers containing saturated and mono-unsaturated lipids with cholesterol as determined from a microscopic model /." Thesis, Connect to this title online; UW restricted, 2005. http://hdl.handle.net/1773/9675.
Full textMüller, Regina [Verfasser], and Ralf [Akademischer Betreuer] Müller. "A Phase Field Model for the Evolution of Martensite Microstructures in Metastable Austenites / Regina Müller. Betreuer: Ralf Müller." Kaiserslautern : Technische Universität Kaiserslautern, 2016. http://d-nb.info/1113592540/34.
Full textShagolsem, Lenin S., and Jens-Uwe Sommer. "Diblock copolymer–selective nanoparticle mixtures in the lamellar phase confined between two parallel walls: a mean field model." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-139324.
Full textDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich
Shagolsem, Lenin S., and Jens-Uwe Sommer. "Diblock copolymer–selective nanoparticle mixtures in the lamellar phase confined between two parallel walls: a mean field model." Royal Society of Chemistry, 2012. https://tud.qucosa.de/id/qucosa%3A26773.
Full textDieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
上原, 拓也, Takuya UEHARA, 貴洋 辻野, and Takahiro TSUJINO. "フェーズフィールドモデルを用いた変態‐熱‐応力連成解析の定式化." 日本機械学会, 2006. http://hdl.handle.net/2237/9012.
Full textYoon, Hyunse. "Phase-averaged stereo-PIV flow field and force/moment/motion measurements for surface combatant in PMM maneuvers." Diss., University of Iowa, 2009. https://ir.uiowa.edu/etd/453.
Full textBansel, Gurvinder Singh. "Advanced operator splitting based semi-implicit spectral method to solve the binary and single component phase-field crystal model." Thesis, Brunel University, 2011. http://bura.brunel.ac.uk/handle/2438/5900.
Full textParrinello, Antonino. "A rate-pressure-dependent thermodynamically-consistent phase field model for the description of failure patterns in dynamic brittle fracture." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:c6590f4f-f4e2-40e3-ada1-49ba35c2a594.
Full textKar, R. "Study of a rational model of gas phase molecules in external electric field and in solvents using local reactivity descriptors." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2009. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2745.
Full text上原, 拓也, Takuya UEHARA, 貴洋 辻野, and Takahiro TSUJINO. "フェーズフィールドモデルによる析出相内部の応力変化と残留応力のシミュレーション." 日本機械学会, 2006. http://hdl.handle.net/2237/9013.
Full textAbele, Miguel. "Phase diagram for the S equals one-half and J equals three-halves Kondo lattice model." Diss., Temple University Libraries, 2018. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/530879.
Full textPh.D.
A Kondo lattice Hamiltonian for arbitrary total angular momentum J is formulated using a pseudofermion representation and without addition of RKKY interaction terms. An Hartree-Fock treatment is applied, and both variational and Green's function methods are used to calculate physical quantities from the linearized Hamiltonian. The Kondo phase is represented by finite hybridization. Magnetic ordering is examined via ordering vectors, but coexistence with the Kondo phase is not allowed. Phase diagrams are produced in S=1/2 and J=3/2 with second-order transitions at Kondo-paramagnetic and magnetic-paramagnetic boundaries, and first order transitions between Kondo and magnetic phases. Various coupling strengths are explored. Magnetic phases found include antiferromagnetism, ferromagnetism, and spin-density wave ordering of both commensurate and incommensurate varieties. In S=1/2, the magnetic phase exhibits a spike in critical temperature at half-filling. In J=3/2, the Kondo phase is reentrant at weaker coupling but not at stronger coupling.
Temple University--Theses
Luo, Chenyi [Verfasser], and Wolfgang [Akademischer Betreuer] Ehlers. "A phase-field model embedded in the theory of porous media with application to hydraulic fracturing / Chenyi Luo ; Betreuer: Wolfgang Ehlers." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2019. http://d-nb.info/1184884099/34.
Full textKC, Prabhat. "3D Reconstruction of the Magnetic Vector Potential of Magnetic Nanoparticles Using Model Based Vector Field Electron Tomography." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/935.
Full textZhang, Wenlong. "Numerical Representation of Crack Propagation within the Framework of Finite Element Method Using Cohesive Zone Model." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin155325213759381.
Full textAmin, Waseem [Verfasser], Alexander [Gutachter] Hartmaier, and Ingo [Gutachter] Steinbach. "Micromechanical modeling of metals using strain gradient crystal plasticity coupled phase-field model / Waseem Amin ; Gutachter: Alexander Hartmaier, Ingo Steinbach ; Fakultät für Maschinenbau." Bochum : Ruhr-Universität Bochum, 2021. http://d-nb.info/1226429130/34.
Full textStratmann, Matthias [Verfasser], Ingo [Gutachter] Steinbach, and Rainer [Gutachter] Schmid-Fetzer. "Integrated phase-field model with redistribution and long-range diffusion on sublattices / Matthias Stratmann ; Gutachter: Ingo Steinbach, Rainer Schmid-Fetzer ; Fakultät für Maschinenbau." Bochum : Ruhr-Universität Bochum, 2021. http://d-nb.info/1226428657/34.
Full textBruna, Escuer Pere. "Microstructural characterization and modelling in primary crystallization." Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/6588.
Full textLes dades experimentals obtingudes a partir de l'estudi calorimètric de cristal·litzacions primàries s'analitzen generalment en el marc del model KJMA (Kolmogorov, Johnson & Mehl, Avrami). Aquest model proporciona l'evolució temporal de la fracció transformada basant-se en tres hipòtesis:
- Els nuclis de la fase secundaria estan distribuïts aleatòriament en tot l'espai.
- El creixement d'aquests nuclis és isotròpic.
- El creixement s'atura únicament per xoc directe (hard impingement).
En la cristal·lizació de vidres metàl·lics s'ha observat experimentalment un alentiment de la cinètica respecte del comportament calculat emprant la citada cinètica KJMA. Aquest alentiment s'explica a la literatura en base a que en aquest tipus de transformacions, controlades per difusió, la interacció entre els cristalls no és directa sinó que es produeix a través dels perfils de concentració (soft impingement) i, a més, l'evolució d'aquests perfils de concentració causa canvis en la concentració de la matriu amorfa, estabilitzant la i per tant fent que la nucleació de nous cristalls esdevingui no aleatòria. Diversos autors han proposat modificacions del model KJMA per tal d'intentar superar aquestes limitacions, basats bé en consideracions geomètriques, bé en aproximacions de camp mitjà. A pesar de tot, cap d'aquests models és capaç d'explicar satisfactòriament la cinètica observada en cristal·litzacions primàries. L'objectiu d'aquest treball ha estat la simulació realista de la cinètica de les transformacions primàries per trobar una explicació consistent a les diferències observades entre les dades experimentals i els models teòrics disponibles.
Per tal de poder descriure de forma realista el procés de cristal·lització primària s'ha d'estudiar el procés de nucleació i creixement de la fase secundaria alhora que es resol l'equació de difusió en la fase primària. En aquest treball s'ha emprat un model de simulació phase field que permet estudiar aquest sistema introduint una nova variable lligada al camp de concentració que pren dos valors diferents segons es tracti de fase transformada o no transformada. Amb aquest tipus de models també es poden introduir diferents protocols de nucleació i per tant estudiar independentment els efectes de la nucleació en la cinètica. D'aquesta manera s'han realitzat simulacions en 2 i 3 dimensions de cristal·litzacions primàries amb diferents graus de fracció transformada final). Els resultats de les simulacions s'ha comparat amb el model KJMA i, contra el que es preveia, s'ha obtingut un bon acord entre les fraccions transformades del model KJMA i de les simulacions. Donat que el model KJMA no reprodueix satisfactòriament el comportament experimental d'aquest resultat es dedueix que ni el soft impingement ni la nucleació no aleatòria son les responsables de l'alentiment de la cinètica obtingut en cristal·litzacions primàries.
Per tal de trobar una explicació físicament convincent del comportament observat experimentalment s'ha aprofundit en l'estudi teòric de les cristali·litzaciones primàries, incloent-hi l'efecte dels canvis composicionals que tenen lloc en la matriu a mesura que la transformació es produeix. Aquest fet, tot i ser conegut a la bibliografia, ha estat sistemàticament ignorat en l'elaboració de models cinètics. En concret, s'ha fet palès que canvis en la composició química de la fase primària han d'afectar de forma radical a la viscositat, que varia fortament a prop de la transició vitrea, i han de produir canvis en les propietats de transport atòmic. Això s'ha modelat a través de l'assumpció d'un coeficient de difusió depenent de la concentració, en base a la relació modificada d'Stokes-Einstein entre la viscositat i el coeficient de difusió. Les simulacions phase-field amb un coeficient de difusió d'aquest tipus donen lloc a una cinètica més lenta i que mostra un acord excel·lent amb la cinètica experimentalment observada en cristal·litzacions primàries de vidres metàl·lics. Per tant, les simulacions phase field confirmen que la cinètica de les cristal·litzacions primàries està controlada fonamentalment pel canvi en les propietats de transport atòmic, mentre que els efectes de soft impingement i nucleació no aleatoria, tot i estar presents, son secundaris.
El objetivo de la tesi es estudiar la cinética de las cristalizaciones primarias en vidrios metálicos mediante simulaciones de tipo phase field. Una cristalización primaria es una transición de fase sólido-sólido donde la fase que cristaliza (fase transformada o fase secundaria) tiene una composición química diferente a la fase precursora (fase no transformada o fase primaria).
Los datos experimentales obtenidos a partir del estudio calorimétrico de cristalizaciones primarias se analizan generalmente en el marco del modelo KJMA (Kolmogorov, Johnson & Mehl, Avrami). Este modelo proporciona la evolución temporal de la fracción transformada basándose en tres hipótesis:
- Los núcleos de la fase secundaria están distribuidos aleatoriamente en todo el espacio
- El crecimiento de estos núcleos es isotrópico
- El crecimiento se detiene únicamente por choque directo (hard impingement).
En la cristalización de vidrios metálicos se ha observado experimentalmente un retardo de la cinética respecto del comportamiento calculado usando la cinética KJMA. Este retardo se explica en la literatura en base a que en este tipo de transformaciones, controladas por difusión, la interacción entre los cristales no es directa sino que se produce a través de los perfiles de concentración (soft impingement) y, además, la evolución de estos perfiles de concentración causa cambios en la concentración de la matriz amorfa, estabilizándola y por tanto haciendo que la nucleación de nuevos cristales sea no aleatoria. Varios autores han propuesto modificaciones del modelo KJMA para intentar superar estas limitaciones, basados bien en consideraciones geométricas, bien en aproximaciones de campo medio. A pesar de todo, ninguno de estos modelos es capaz de explicar satisfactoriamente la cinética observada en cristalizaciones primarias. El objetivo de este trabajo ha sido la simulación realista de la cinética de las transformaciones primarias para hallar una explicación consistente a las diferencias entre los datos experimentales y los modelos teóricos disponibles.
Para describir de manera realista el proceso de cristalización primaria se tiene que estudiar el proceso de nucleación y crecimiento de la fase secundaria a la vez que se resuelve la ecuación de difusión en la fase primaria. En este trabajo se ha usado un modelo de simulación phase-field que permite estudiar este sistema introduciendo una nueva variable ligada al campo de concentración que toma dos valores diferentes según se trate de fase transformada o no transformada. Con este tipo de modelos también se pueden introducir diferentes protocolos de nucleación y por tanto estudiar independientemente los efectos de la nucleación en la cinética. De esta manera se han realizado simulaciones en 2 y 3 dimensiones de cristalizaciones primarias con diferentes grados de fracción transformada final. Los resultados de la simulaciones se han comparado con el modelo KJMA y, en contra de lo que se preveía, se ha obtenido un buen acuerdo entre las fracciones transformadas del modelo KJMA y de las simulaciones. Dado que el modelo KJMA no reproduce satisfactoriamente el comportamiento experimental, de este resultado se deduce que ni el soft impingement ni la nucleación no aleatoria son las responsables del retardo en la cinética obtenido en cristalizaciones primarias.
Para encontrar una explicación físicamente convincente del comportamiento observado experimentalmente se ha profundizado en el estudio teórico de las cristalizaciones primarias, incluyendo el efecto de los cambios composicionales que tienen lugar en la matriz a medida que la transformación se produce. Este hecho, aún y ser conocido en la bibliografía, ha sido sistemáticamente ignorado en la elaboración de modelos cinéticos. En concreto, se ha hecho patente que cambios en la composición química de la fase primaria tienen que afectar de forma radical a la viscosidad, que varía fuertemente cerca de la transición vítrea, y tienen que producirse cambios en las propiedades de transporte atómico. Esto se ha modelado a través de la asunción de un coeficiente de difusión dependiente de la concentración, en base a la relación de Stokes-Einstein modificada entre la viscosidad y el coeficiente de difusión. Las simulaciones phsae-field con un coeficiente de difusión de este tipo dan lugar a una cinética más lenta y que muestra un acuerdo excelente con la cinética experimentalmente observada en cristalizaciones primarias de vidrios metálicos. Por tanto, las simulaciones phase-field confirman que la cinética de las cristalizaciones primarias está controlada fundamentalmente por los cambios en las propiedades de transporte atómico, mientras que los efectos de soft-impingement y nucleación no aleatoria, aún y estar presentes, son secundarios.
The aim of this thesis is to study the kinetics of primary crystallization in metallic glasses by means of phase-field simulations. A primary crystallization is a solid-solid phase transformation where the crystallized phase (transformed phase or secondary phase) has a chemical composition different than the precursor phase (untransformed phase or primary phase).
Experimental data from calorimetric studies of primary crystallization are usually studied in the framework of the KJMA model (Kolmogorov, Johnson & Mehl, Avrami). This model yields the temporal evolution of the transformed fraction on the basis of three main assumptions:
- A random distribution of particle nuclei of the secondary phase
- The growth of these nuclei is isotropic
- The growth is only halted by direct collisions (hard impingement).
In the crystallization of metallic glasses, a slowing down of the kinetics respect the behavior calculated with the KJMA kinetics has been observed. This delay is explained in the literature by the fact that in this kind of transformations, that are diffusion controlled, the interaction between the crystals is not direct but through the concentration profiles (soft impingement) and moreover, the evolution of these profiles causes changes in the concentration of the amorphous matrix, stabilizing it and thus, the nucleation of new nuclei become non random. Several authors had proposed modifications to the KJMA model to try to overcome these limitations, based either on geometrical considerations or in mean field approaches. However, none of these models is able to explain the observed kinetics in primary crystallizations. The aim of this work has been the realistic simulation of the kinetics of primary crystallization to find a explanation to the differences between the experimental data and the available theoretical models.
In order to describe in a realistic way the process of a primary crystallization, the nucleation and growth process of the secondary phase has to be studied at the same time that the diffusion equation is solved in the primary phase. In this work, it has been used a phase field model for the simulations that allows to study this system introducing a new variable, coupled to the concentration field, that takes two different values in each of the existing phases. With these kinds of models, different nucleation protocols can also be introduced and thus, independently study the effects of the nucleation in the kinetics. Therefore, 2 and 3 dimensional simulations of primary crystallization have been performed with several degrees of final transformed fraction. The simulation results have been compared with the KJMA model and, unexpectedly, a good agreement between the simulations and the KJMA model has been obtained. As the KJMA model does not reproduce satisfactorily the experimental behavior, from this result can be deduced that neither the soft impingement nor the non random nucleation are the responsible of the slowing down observed in the kinetics of primary crystallization.
In order to find a physical convincing explanation of the observed experimental behavior, the theoretical study of primary crystallization has been extended, including the effects of the compositional changes that take place in the matrix as the transformation proceed. This fact, notwithstanding being known in the literature, has been systematically ignored in the development of the kinetics models. In particular, it has become clear that changes in the chemical composition of the primary phase have to radically affect the viscosity, that strongly varies near the glass transition, and some changes in the atomic transport properties must occur. This has been modeled through the assumption of a compositional dependent diffusion coefficient, on the basis of a modified Stokes-Einstein relation between viscosity and diffusion coefficient. Phase field simulations with a diffusion coefficient of this type yield a slower kinetics and show an excellent agreement with the kinetics experimentally observed in primary crystallization of metallic glasses. Thus, phase field simulations confirm that the kinetics of primary crystallization is fundamentally controlled by the changes in the atomic transport properties, while the soft impingement and non random effects, although being present, are secondary.
Bagnoli, Annalisa. "Diffuse interface models for tumour growth within a non-isothermal Cahn-Hilliard theory for phase separation: thermodynamics, chemotaxis and stability." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14120/.
Full textLamotte, Alan. "Estudo da solidificação equiaxial utilizando o modelo do campo de fases tridimensional." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/3/3133/tde-14062016-102840/.
Full textThis work presents a study of the solidification of pure metals using the phase field model. The model is used to simulate solidification in order to obtain the morphology of the solid-liquid interface under different heat transfer conditions. Validation tests were performed comparing the morphology of the solid-liquid interface with the morphologies obtained from previous works for two and three dimensional cases. The adopted phase-field model consisted mainly of two differential equations: one to calculate the field of phase variable and another for the temperature field. The equations were solved numerically in only one eighth of the domain owing to the symmetry of the problem. Model calculations show that a solid sphere with an initial radius smaller than the critical radius for nucleation shrinks, whereas a sphere with a larger radius grows. When it grows in a relatively coarse numerical mesh, the initial solid shape deviates from a sphere owing to perturbations at the solid-liquid interface. When the numerical mesh is refined, the growth of perturbations is not detected, but artificially introduced perturbations grow and distort the spherical shape.
Bayle, Raphaël. "Simulation des mécanismes de changement de phase dans des mémoires PCM avec la méthode multi-champ de phase." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX035.
Full textPhase change memories (PCM) exploit the variation of resistance of a small volume of phase change material: the binary information is coded through the amorphous or crystalline phase of the material. The phase change is induced by an electrical current, which heats the material by the Joule effect. Because of its fast and congruent crystallization, theGe2Sb2Te5 alloy is widely used for PCM. Nevertheless, to get a better reliability at high temperatures, which is required e.g. for automotive applications, STMicroelectronics uses a Ge-rich GeSbTe alloy. In this alloy, chemical segregation and appearance of a new crystalline phase occur during crystallization. The distribution of phases and alloy components are critical for the proper functioning of the memory cell; thus, predictive simulations would be extremely useful. Phase field models are used for tracking interfaces between areas occupied by different phases. In this work, a multi-phase field model allowing simulating the distribution of phases and species in Ge-rich GeSbTe has been developed. The parameters of the model have been determined using available data on this alloy. Two types of simulations have been carried out, firstly to describe crystallization during annealing of initially amorphous deposited thin layer; secondly to follow the evolution of phase distribution during memory operation using temperature fields that are typical for those operations. Comparisons between simulations and experiments show that they both exhibit the same features
Le, Van Lich. "Multi-physics Properties in Topologically Nanostructured Ferroelectrics." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/217166.
Full text